
Estimating the Selectivity of XML Path Expressions
for Internet Scale Applications

Ashraf Aboulnaga Alaa R. Alameldeen Jeffrey F. Naughton
University of Wisconsin - Madison

{ashraf,alaa,naughton }@cs.wisc.edu

Abstract
Data on the Internet is increasingly presented in
XML format. This enables novel applications that
pose queries over “all the XML data on the Inter-
net.” Queries over XML data use path expressions
to navigate through the structure of the data, and
optimizing these queries requires estimating the
selectivity of these path expressions. In this pa-
per, we propose two techniques for estimating the
selectivity of simple XML path expressions over
complex large-scale XML data as would be han-
dled by Internet-scale applications: path trees and
Markov tables. Both techniques work by summa-
rizing the structure of the XML data in a small
amount of memory and using this summary for
selectivity estimation. We experimentally demon-
strate the accuracy of our proposed techniques,
and explore the different situations that would fa-
vor one technique over the other. We also demon-
strate that our proposed techniques are more accu-
rate than the best previously known alternative.

1 Introduction

Data on the Internet is increasingly presented in theex-
tensible markup language (XML)format. The standard-
ized, simple, self-describing nature of this format opens the
door for novel Internet-scale applications that integrate and
query XML data from numerous sources all over the Inter-
net.

An example of such an Internet-scale application is the
Niagara Internet query system [NDM+01]. Niagara allows
a user to pose queries against “all the XML documents
on the Internet,” using an integrated search engine to find
XML documents that are relevant to any query based on the
path expressions that appear in it. Another Internet-scale
query processor is Xyleme [Xyl], which aims to build an
indexed, queryable XML repository of all the information
on the World Wide Web.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 27th VLDB Conference,
Roma, Italy, 2001

As an example of the queries that can be handled by
an Internet-scale query processor, consider the following
query expressed in the XQuery language [CFR+01]:

FOR $n_au IN document("*")//novel/author
$p_au IN document("*")//play/author

WHERE $n_au/text()=$p_au/text()
RETURN $n_au

This is a join query that asks for writers who have written
both a play and a novel.document("*") means that
the query should be executed against all the known XML
data on the Internet. In Niagara, the search engine would
find all XML documents relevant to this query by finding
all documents that contain the pathnovel/author or
play/author .

Optimizing a query like this one requires estimating the
selectivities of the path expressions it contains. For ex-
ample, the query optimizer may need to estimate the se-
lectivities of the path expressionsnovel/author and
play/author (i.e., the number ofauthor elements
reachable by each path) to choose the more selective path
expression as the outer data stream of the join. Path ex-
pressions are essential to querying XML, so estimating the
selectivity of these path expressions is essential to XML
query optimization.

Estimating the selectivity of XML path expressions re-
quires having database statistics that contain information
about the structure of the XML data. These statistics must
fit in a small amount of memory because the query opti-
mizer may consult them many times in the course of opti-
mizing a query. The goal here is not to conserve memory,
but rather to conservequery optimization time. The statis-
tics must be small enough to be processed efficiently in the
short time available for query optimization.

Ensuring that the statistics do not consume too much
memory is particularly important for the Internet-scale ap-
plications that we focus on in this paper. It may be safe to
assume that the structure of a single typical XML document
can be captured in a small amount of memory. However,
when considering Internet-scale applications that handle
large amounts of XML data with widely varying structure,
we cannot assume that the overall structure of all the XML
data handled can be captured in a small amount of memory.
The statistics used for selectivity estimation therefore have
to besummarizedso that they fit in the available memory.

In this paper, we present techniques for building
database statistics that capture the structure of complex

XML data in a small amount of memory and for using these
statistics to estimate the selectivity of XML path expres-
sions. The focus of this paper issimple path expressions.

A simple path expression is a sequence oftagsthat rep-
resents a navigation through the tree structure of the XML
data starting anywhere in the tree (not necessarily at the
root). In abbreviated XPath syntax [CD99], which we use
throughout the paper, a simple path expression of length
n is expressed as//t1/t2/ · · · /tn. This path expression
specifies finding a tagt1 anywhere in the document, and
nested in it finding a tagt2, and so on until we find a tag
tn. In this paper, we try to estimate the number oftn el-
ements reached by this navigation. Note that we assume
an unordered model of XML and that we do not consider
navigations based on IDREF attributes or on predicates on
the attribute values.

We propose two techniques for capturing the structure
of XML data for estimating the selectivity of path expres-
sions. The first technique is to construct a tree represent-
ing the structure of the XML data, which we call thepath
tree. We then summarize this tree to ensure that it fits in the
available memory by deleting low-frequency nodes and re-
placing them with nodes representing the information con-
tained in the deleted nodes at a coarser granularity. The
second technique is to store all paths in the data up to a
certain length and their frequency of occurrence in a ta-
ble of paths that we call theMarkov table. We summarize
the Markov table by deleting low-frequency paths, and we
combine the paths of limited length in the Markov table to
estimate the selectivity of longer paths.

The rest of this paper is organized as follows. Section 2
presents an overview of related work. Section 3 describes
path trees. Section 4 describes Markov tables. Section 5
presents an experimental evaluation of the proposed tech-
niques. Section 6 contains concluding remarks.

2 Related Work

Estimating the selectivity of XML path expressions is
related to estimating the selectivity of substring predi-
cates, which has been addressed in several papers [KVI96,
JNS99, JKNS99, CKKM00]. These papers all use variants
of the pruned suffix treedata structure. A suffix tree is a
trie that stores all the strings in a database and all their suf-
fixes. A pruned suffix tree is a suffix tree in which nodes
corresponding to low frequency strings are pruned so that
the tree fits in the available memory.

The techniques in [JNS99] and [CKKM00] are the ba-
sis for techniques developed in [CJK+01] for estimating
the selectivity oftwig queries. Like path expressions, twig
queries specify a navigation through the structure of XML
documents or other tree-structured data. Twig queries are
more general than the simple path expressions we con-
sider in this paper. They can specify navigations based on
branchingpath expressions, and they can specify specific
data valuesthat must be found at the ends of the path ex-
pressions (rather than navigating based only on the struc-
ture of the XML data).

The techniques developed in [CJK+01] are the best pre-
viously known techniques that can be applied to the prob-
lem of estimating the selectivity of XML path expressions,
even though they solve a more general problem. We re-
stricted the data structures developed in [CJK+01] for twig
queries to the simpler problem of estimating the selectiv-
ity of path expressions by storing the minimum amount of
information needed for selectivity estimation and no infor-
mation about data values or path branching. We found that
our data structures were able to give more accurate selectiv-
ity estimates for this simpler but very common case. The
techniques developed in [CJK+01] are described in more
detail in Section 5.1.

Estimating the selectivity of XML path expressions
requires summarizing the structure of the XML data.
This can be done usingDataGuides [GW97] or T-
indexes[MS99]. These methods construct graphs that rep-
resent structural summaries of the data. For tree-structured
XML data, the graphs constructed by both methods are
identical, and they have the same structure as our unsum-
marized path trees. However, the problem of summarizing
these graphs if they do not fit in the available memory is not
addressed in [GW97] or [MS99]. On the other hand, the
techniques we develop in this paper can summarize path
trees to fit in any amount of memory.

Summarizing DataGuides is addressed in [GW99]. In
that paper, a DataGuide is summarized by finding common
labels in the paths represented in it or similar sets of objects
reachable by these paths. This summary is not suitable for
selectivity estimation because the frequency of occurrence
of the paths does not play a role in summarization. Also, no
summarization is possible if all the labels are distinct, and
no guarantees can be made on the size of the summarized
data guide.

The query optimizer of the Lore semi-structured
database system estimates the selectivity of XML path ex-
pressions by storing selectivity information for all paths in
the database of length up tok, wherek is a tuning param-
eter [MW99]. This approach is valid but not scalable be-
cause the memory required for storing all paths of length
up to k grows as the database grows. The Markov table
approach that we propose in this paper also builds a table
of all paths in the database up to a certain length, but this
table is summarized if it overgrows the available memory.
We also provide a method of combining the paths of lim-
ited length stored in the Markov table to obtain accurate
selectivity estimates for longer path expressions.

Path expressions are used in object-oriented databases.
Some cost models for query optimization in object-oriented
databases depend on the selectivity of path expressions, but
no methods for accurately estimating this selectivity have
been proposed. See, for example, [GGT96].

3 Path Trees
In this section, we describepath treesthat represent the
structure of XML data and present techniques for summa-
rizing these trees. We also describe using summarized path
trees for selectivity estimation.

<A>

 <D> </D>

 <C>
 <D> </D>
 <E> </E>
 <E> </E>
 <E> </E>
 </C>

E 3D 1D 1

B 2 C 1

A 1

Figure 1: An XML document and its path tree

A path tree is a tree representing the structure of an
XML document. Every node in the path tree represents
a path starting from the root of the XML document. The
root node of the path tree represents the root element of the
document. A path tree node has a child node for every dis-
tinct tag name of an XML element directly nested in any
of the elements reachable by the path it represents. Every
path tree node is labeled with thetag nameof the elements
reachable by the path it represents and with the number of
such elements, which we call thefrequencyof the node.
Figure 1 presents an XML document and its path tree.

The path tree of an XML document can be constructed
in one scan of the document using an event-based XML
parser [SAX] and a stack that grows to the maximum nest-
ing depth of the XML elements in the document. To con-
struct a path tree for multiple XML documents, we create
an artificial root node for all the XML data so that we can
view it as a single tree.

A path tree contains all the information required for se-
lectivity estimation. To estimate the selectivity of a query
path expression, we scan the tree looking for all nodes with
tags that match the first tag of the path expression. From
every such node, we try to navigate down the tree follow-
ing child pointers and matching tags in the path expression
with tags in the path tree. This will lead us to a set of path
tree nodes which all correspond to the query path expres-
sion. The selectivity of the query path expression is the
total frequency of these nodes. This algorithm isO(n),
wheren is the number of nodes in the path tree.

The problem with a path tree is that it may be larger
than the available memory, so we need to summarize it. To
summarize a path tree, we delete the nodes with the lowest
frequencies from anywhere in the tree. We try to preserve
some of the information represented in the deleted nodes
at a coarser granularity by adding nodes to the path tree
that represent groups of deleted nodes. These nodes that
we add have the special tag name “∗”, which stands for
“any tag name”, so we call them∗-nodes(“star nodes”).
Next, we present four methods of summarizing path trees
that differ in the amount of information they try to preserve
in the∗-nodes.

3.1 Sibling-∗
In the first method for summarizing path trees, which we
call sibling-∗, we repeatedly choose the path tree node with
the lowest frequency and mark it for deletion1. Marking a

1This can be done inO(n log n) using a priority queue.

node for deletion does not reduce the size of the path tree.
However, when we mark a node,A, for deletion, we check
its siblings to see if they contain a node,B, that is either a
∗-node or a regular node that has been marked for deletion.
If we find such a node, nodesA andB arecoalescedinto
one∗-node, which reduces the size of the path tree.

Each∗-node represents multiple sibling nodes deleted
from the path tree. The parent of a∗-node is the par-
ent of the deleted nodes it represents, and the children of
these deleted nodes become children of the∗-node. When
a node,A, is coalesced with a∗-node, the children ofA be-
come children of the∗-node. Some of the children ofAmay
have the same tag name as children of the∗-node. Since
these children are now siblings, the children with common
tag names are coalesced, further reducing the size of the
path tree. Coalescing the children of coalesced nodes is
repeated recursively if needed.

Since both∗-nodes and nodes with regular tags may be
coalesced during summarization, all path tree nodes store
the number of nodes in the original unsummarized path
tree that they represent and the total frequency of these
nodes.∗-nodes always represent multiple nodes in the orig-
inal path tree that have been deleted, while nodes with reg-
ular tags can represent either single nodes in the original
path tree or multiple nodes with the same tag name that
have been coalesced because their parents were coalesced.

During path tree summarization, we do not consider∗-
nodes as candidates for deletion. Coalesced nodes with reg-
ular tag names are deleted only if theirtotal frequency is the
lowest frequency in the path tree.

When the size of the path tree is reduced enough so that
it fits in the available memory, we traverse the tree and com-
pute for every∗-node the average frequency of the multiple
deleted nodes that it represents. This is the frequency that
is used for selectivity estimation.

Nodes with regular tag names can represent multiple
nodes in the original path tree if they are coalesced when
their parents are coalesced. For such nodes, we donot al-
ways use the average frequency for selectivity estimation.
We use the average frequency in some cases, but we use
the total frequency in other cases. Thus, both the total fre-
quency and the number of nodes represented have to be re-
tained so that the average frequency can be computed when
needed. Details are presented in the next section.

Figures 2 and 3 present a path tree of 12 nodes and its
sibling-∗ summarization to 9 nodes. The nodes of this tree
are marked for deletion in the orderA, I , J , E, H, D, C,
G. Sibling nodes that can be coalesced are identified when
markingJ , D, andG. CoalescingGandH allows us to coa-
lesce the twoK nodes, saving us an extra node. The sum-
marized path tree retains both the total frequency of theK
node and the number of nodes it represents.

The∗-nodes in sibling-∗ summarization try to preserve
the exact position of the deleted nodes in the original path
tree. The cost of preserving this exact information is that
we may need to delete up to2n nodes to reduce the size of
the tree byn nodes.

A 1

C 9B 13

D 7 E 5 F 15 G 10 H 6

I 2 J 4 K 11 K 12

Figure 2: An example path tree

A 1

C 9B 13

F 15

K f=23
n=2

* 6

* 3

* 8

Figure 3: The sibling-∗ summarization of Figure 2

3.2 Selectivity Estimation

To estimate the selectivity of a query path expression using
a summarized path tree, we try to match the tags in the path
expression with tags in the path tree to find all path tree
nodes to which the path expression leads. The estimated
selectivity is the total frequency of all these nodes. When
we cannot match a tag in the path expression to a path tree
node with a regular tag, we try to match it to a∗-node that
can take its place.

Tags in any position of the query path expression can
be matched to∗-nodes. For example, the path expression
//A/B/Cwould match all of //A/∗/C, //A/∗/∗, and //∗/B/∗. To
find all the matches for a query path expression, we tra-
verse the path tree looking for nodes whose tags match tags
in any position of the path expression and start navigating
from these nodes, matching with∗-nodes when necessary.
We allow matches with any number of∗-nodes as long as
they include at least one node with a regular tag name. We
do not allow matches consisting entirely of∗-nodes be-
cause there is not enough confidence in such a match.

When we match a tag from the query path expression
with a ∗-node, we are making the assumption that this tag
was present in the original path tree but was deleted and re-
placed with the∗-node. We are essentially assuming that all
query path expressions ask for paths that exist in the data,
so we aggressively try to match them in the summarized
path tree.

If a match of the query path expression in the path tree
ends at a node,A, with a regular tag that represents mul-
tiple coalesced nodes of the original path tree, we check
whether or not this match took us through a∗-node. If the
match took us through one or more∗-nodes, nodeA con-
tributes theaveragefrequency of the nodes it represents to
the estimated selectivity. A∗-node encountered during the
match represents multiple deleted nodes from the original
path tree. We assume that if we were using the original

A 1

C 9B 13

F 15 G 10

K 11 K 12

* 6

* 3

Figure 4: The level-∗ summarization of Figure 2

unsummarized path tree, the match would have taken us
through only one of the nodes represented by the∗-node
and ended at only one of the nodes represented by nodeA,
so nodeA contributes its average frequency. On the other
hand, if the match in the summarized path tree did not take
us through a∗-node, then the match in the unsummarized
path tree would have taken us toall the nodes represented
by nodeA, so nodeA contributes thetotal frequency of the
nodes it represents to the estimated selectivity. This ex-
plains why nodes with regular tags that represent multiple
coalesced nodes of the original path tree need to retain both
the total frequency and the number of nodes they represent.

3.3 Level-∗
The second method for summarizing path trees, which we
call level-∗, has a∗-node for every level of the path tree
representing all deleted nodes at this level. As before, we
delete the lowest frequency path tree nodes. All nodes
deleted at any given level of the path tree are coalesced
into the∗-node for this level. The parents of these nodes
become parents of the∗-node and the children of these
nodes become children of the∗-node. This means that the
path tree can become adag. However, we can still us the
same selectivity estimation algorithm as for sibling-∗. As
in sibling-∗, when the children of a deleted node are added
to the children of the corresponding∗-node, any nodes that
become siblings that have the same tag must be coalesced.
Figure 4 shows the level-∗ summarization of the path tree
in Figure 2 to 9 nodes.

The∗-nodes in level-∗ summarization preserve only the
level in the path tree of the deleted nodes, not their exact po-
sition as in sibling-∗. Hence, level-∗ usually deletes fewer
nodes than sibling-∗ to reduce the size of the tree by the
same amount. To reduce the size of a path tree byn nodes,
level-∗ needs to delete fewer thann + l nodes, wherel is
the number of levels in the tree.

3.4 Global-∗
The third method for summarizing path trees is theglobal-
∗ method, in which a single∗-node represents all low-
frequency nodes deleted from anywhere in the path tree.
The parents of the deleted nodes become parents of the∗-
node and their children become children of the∗-node, so
the path tree can become acyclic graphwith cycles involv-
ing the global∗-node. Nevertheless, we can still use the
same selectivity estimation algorithm as for sibling-∗ and
level-∗. Figure 5 shows the global-∗ summarization of the
path tree in Figure 2 to 9 nodes.

C 9B 13

D 7 F 15 G 10 H 6

K 11 K 12

*
3

Figure 5: The global-∗ summarization of Figure 2

Global-∗ preserves less information about the deleted
nodes than sibling-∗ or level-∗, so it has to delete fewer
nodes. To reduce the size of a path tree byn nodes, global-
∗ deletesn + 1 nodes.

3.5 No-∗
The final path tree summarization method, which we call
no-∗, does not rely on∗-nodes at all to represent deleted
nodes. In the no-∗method, low-frequency nodes are simply
deleted and not replaced with∗-nodes. The path tree can
become aforestwith many roots. To reduce the size of a
path tree byn nodes, no-∗ deletes exactlyn nodes. This is
only one node less than global-∗.

The fundamental difference between no-∗ and the meth-
ods that use∗-nodes is the effect of the absence of∗-nodes
on selectivity estimation. When matching a query path ex-
pression in a path tree summarized with no-∗, if any tag in
the path expression is not found, we assume that the en-
tire path expression does not exist. No-∗ conservatively as-
sumes that nodes that do not exist in the summarized path
tree did not exist in the original path tree. Methods that
use∗-nodes, on the other hand, aggressively assume when-
ever possible that nodes that do not exist in the summa-
rized path treedid exist in the original path tree but were
deleted and replaced with∗-nodes. The characteristics of
the query workload determine which of these two assump-
tions is more accurate.

4 Markov Tables
In this section, we describe a different method of represent-
ing the structure of XML data for selectivity estimation.

We construct a table of all the distinct paths in the data of
length up tom and their frequency, wherem is a parameter
≥ 2. The table provides selectivity estimates for all path
expressions of length up tom. To estimate the selectivity
of longer path expressions, we combine several paths of
lengthm using the formula

f(t1/t2/ · · · /tn) = f(t1/t2/ · · · /tm) ×
n−m∏

i=1

f(t1+i/t2+i/ · · · /tm+i)
f(t1+i/t2+i/ · · · /tm+i−1)

(1)

where f(t1/t2/ · · · /tn) is the frequency of the path
t1/t2/ · · · /tn. f(t1/t2/ · · · /tk) for anyk ≤ m is obtained
by a lookup in the table of paths2.

2This can be done inO(1) by using a hash table.

A 1

B 11

D 7C 9

C 6

D 8

D 4

FreqPath FreqPath

1A 6AC

11B 4AD

15C 9BC

19D 7BD

11AB 8CD

Figure 6: A path tree and the corresponding Markov table

For example, ifm = 3 and the query path expression is
//A/B/C/D, the formula used would be:

f(A/B/C/D) = f(A/B/C)
f(B/C/D)
f(B/C)

The fractionf(B/C/D)/f(B/C) can be interpreted as the av-
erage number ofDelements contained in allB/Cpaths.

In this approach, we are assuming that a tag in any path
in the XML data depends only on them− 1 tags preceding
it. We are, in effect, modeling the paths in the XML data
as a Markov process of orderm− 1, so we call the table of
paths that we use theMarkov table. The “short memory”
assumption made in this approach is very intuitive, and we
expect it to hold for most XML data, even form = 2 or
3. This assumption is also used for selectivity estimation
in [JNS99] and [CJK+01]. Figure 6 presents a path tree
and its corresponding Markov table form = 2.

Markov tables represent an accurate approximation of
the structure of the XML data based on the short memory
assumption, but they may not fit in the available memory.
As we did for path trees, we summarize Markov tables by
deleting low-frequency paths.

Low-frequency paths of length1 or 2 that are deleted
from the Markov table are replaced with special∗-paths
(“star paths”) that preserve some of the information lost by
deletion. These∗-paths are very similar to the∗-nodes used
in path tree summarization. Low-frequency paths of length
greater than2 (for m > 2) are discarded and not replaced
with ∗-paths. If estimating the selectivity of a query path
expression using Equation 1 involves looking up a path of
length> 2 that is not found in the Markov table, we switch
to using Equation 1 with paths of length1 and2 (i.e., with
m = 2). This corresponds to using a Markov process of
order1.

Next, we describe three methods of summarizing
Markov tables that differ in the way they use∗-paths to
handle deleted paths of length1 and2. For all these meth-
ods, deleted paths of length greater than2 are discarded and
not replaced with∗-paths.

4.1 Suffix-∗
The first method for summarizing Markov tables, which
we call suffix-∗, has two special∗-paths: a path,∗, repre-
senting all deleted paths of length1, and a path,∗/∗, rep-
resenting all deleted paths of length2. When deleting a
low-frequency path of length1, it is added to the path∗.

When deleting a low-frequency path of length2, we donot
add it to the path∗/∗ right away.

We keep a set of deleted paths of length2, SD. When
we delete a path of length2, sayA/B, we look for any path
in the setSD that starts with the same tag as the path being
deleted, in this caseA. If no such path is found, we remove
the path being deleted,A/B, from the Markov table and add
it to SD. If we find such a path inSD, sayA/C, we remove
A/B from the Markov table, removeA/C fromSD, and add a
new pathA/∗ that represents these two paths to the Markov
table.

A/∗ represents all deleted paths that start with the tagA.
We call the pathA/∗ a “suffix-∗” path. When we delete a
path of length2, before we check the setSD, we check the
Markov table to see if there is a suffix-∗ path that has the
same starting tag as the path being deleted. If we find such
a path, the path being deleted is combined with it. In our
example, if we deleteA/D, we would combine it withA/∗.

Suffix-∗ paths in the Markov table are considered for
deletion based on thetotal frequency of the deleted paths
that they represent. When a suffix-∗ path is deleted, it is
added to the path∗/∗.

In our example, pathsA/B and A/C individually qual-
ify for deletion because of their low frequency. Their total
frequency when they are combined intoA/∗ may be high
enough to prevent them from being deleted. If at some
point during summarization the total frequency ofA/∗ is
the lowest frequency in the Markov table, it is deleted and
added to the path∗/∗.

This summarization algorithm is a greedy algorithm that
may miss opportunities for combining paths. However, it
is simple and practical, and it achieves good results.

At the end of summarization, paths still remaining inSD

are added to the path∗/∗, and the average frequencies of all
∗-paths are computed. When selectivity estimation uses a
∗-path, it uses the average frequency of all deleted paths
represented by this∗-path.

To estimate the selectivity of a query path expression,
we try to use Equation 1 with the maximumm in the
Markov table. If any of the required paths is not found
in the table, we switch to using Equation 1 withm = 2 for
the entire path expression. In this case, if a required path of
length1 is not found, we use the frequency of the path∗. If
a required path of length2, sayA/B, is not found, we look
for a pathA/∗. If we find it, we use its frequency. Otherwise
we use the frequency of the path∗/∗. If all the paths used
for estimation are∗-paths, we estimate the selectivity of the
query path expression to be zero, because we consider that
there is not enough confidence in the result of Equation 1
in this case.

4.2 Global-∗
The second method for summarizing Markov tables, which
we call global-∗, has only two∗-paths: a path,∗, repre-
senting all deleted paths of length1, and a path,∗/∗, repre-
senting all deleted paths of length2. When deleting a low-
frequency path of length1 or 2, it is immediately added to

the appropriate∗-path. Selectivity estimation is the same as
for suffix-∗. Global-∗ does not preserve as much informa-
tion about deleted paths as suffix-∗, but it may delete fewer
paths to summarize the Markov table.

4.3 No-∗
The final method for summarizing Markov tables, which
we call no-∗, does not use∗-paths. Low-frequency paths
are simply discarded.

When using Equation 1 for selectivity estimation using a
Markov table summarized with no-∗, if any of the required
paths form = 2 is not found, we estimate a selectivity of
zero. No-∗ for Markov tables is similar to no-∗ for path
trees. It conservatively assumes that paths that do not exist
in the summarized Markov table did not exist in the original
Markov table.

5 Experimental Evaluation

In this section, we present an experimental evaluation of
our proposed techniques using real and synthetic data sets.
We determine the best summarization methods for path
trees and Markov tables and the conditions under which
each technique wins over the other. We also compare our
proposed techniques to the best known alternative: the
pruned suffix trees of [CJK+01].

5.1 Estimation Using Pruned Suffix Trees

To estimate the selectivity of path expressions and the more
general twig queries, [CJK+01] proposes building a trie
that represents all the path expressions in the data. For ev-
ery root-to-leaf path in the data, the path and all its suffixes
are stored in the trie. Every possible path expression in the
data is therefore represented by a trie node. Every trie node
contains the total number of times that the path it repre-
sents appears in the data. To prune the trie so that it fits in
the available memory, the low-frequency nodes are deleted.
To avoid deleting internal trie nodes without deleting their
descendants, pruning is done based on the total frequency
of the node and all its descendants.

To estimate the selectivity of a query path expression,
themaximal (i.e., longest) sub-pathsof this path expression
that appear in the trie are determined, and their frequencies
are combined in a way that is very similar to the way we
combine frequencies in our Markov table technique.

In [CJK+01], every node of the trie stores a hash signa-
ture of the set of nodes that the path expression it represents
is rooted at. These hash signatures are used to combine the
selectivities of multiple paths to estimate the selectivity of
branching path expressions, ortwig queries. Since we do
not consider branching path expressions, we do not store
hash signatures in the nodes of the trie that we use in our
experiments. The trie with set hash signatures is referred
to in [CJK+01] as acorrelated suffix tree. In this paper, we
refer to the trie that does not include set hash signatures as
thepruned suffix tree.

Note that Markov tables bear some similarity to pruned
suffix trees. A key difference between these two techniques
is that Markov tables only store paths of length up tom
while pruned suffix trees store paths that may be of any
length and that may contain tags that are not needed due
to the “short memory” property. Furthermore, the summa-
rization methods for Markov tables are very different from
the summarization method for pruned suffix trees.

5.2 Data Sets

We present the results of experiments on one synthetic and
one real data set. The synthetic data set has 1,000,000 XML
elements. Its unsummarized path tree has 3197 nodes and
6 levels, requiring 38KB. The unsummarized Markov ta-
bles form = 2 and3 require 60KB and 110KB, respec-
tively. The frequencies of the path tree nodes follow a Zip-
fian distribution with skew parameterz = 1. The Zipfian
frequencies are assigned in ascending order to the path tree
nodes in breadth first order (i.e., the root node has the low-
est frequency and the rightmost leaf node has the highest
frequency). 50% of the internal nodes of this path tree have
repeated tag names, which introduces “Markovian mem-
ory” in the data. For example, if two internal nodes of the
path tree have tag nameA, and only one of these nodes has
a child nodeB, then if we are at a nodeA, whether or not
this node has a childB will depend onwhichA node this is,
which in turn depends on how we got to this node from the
root node. More details about our synthetic data generation
process can be found in [ANZ01].

The real data set is the DBLP bibliography database,
which has 1,399,765 XML elements. Its unsummarized
path tree has 5883 nodes and 6 levels, requiring 69KB.
The unsummarized Markov tables form = 2 and3 require
20KB and 98KB, respectively.

5.3 Query Workloads

We present results for two workloads for every data set.
Each workload consists of 1000 query path expressions
having a random number of tags between 1 and 4.

The query path expressions in the first workload, which
we call therandom pathsworkload, consist of paths that
are chosen at random from the path tree of the data set.
Thus, all queries have non-zero result sizes. This workload
models a user who knows the structure of the data well, and
so asks for paths that exist in the data.

The query path expressions in the second workload,
which we call therandom tagsworkload, consist of ran-
dom concatenations of the tags that appear in the data set.
In this workload, most query path expressions of length 2
or more have a result size of zero. This workload models a
user who knows very little about the structure of the data.

The average result sizes of the random paths and random
tags workloads on the synthetic data set are 491 and 71,
respectively. For the DBLP data set, the average result sizes
of the random paths and random tags workloads are 36,060
and 343, respectively.

5.4 Performance Evaluation Method

We present the performance of the different selectivity es-
timation techniques in terms of theiraverage absolute er-
ror for all queries in the workload. The conclusions from
the relative error are the same, but the relative error is not
defined for many queries in the random tags workloads be-
cause their actual result size is 0.

For a given data set and query workload, we vary the
available memory for the different selectivity estimation
techniques from 5KB to 50KB and present the average ab-
solute error for the 1000 queries in the workload for each
technique at each memory setting.

In all the data structures used for estimation, tag names
are not stored as character strings. Instead, we hash the tag
names and store their hash values. This conserves memory
because a tag requires one integer of storage regardless of
its length.

5.5 Summarizing Path Trees
In this section, we illustrate the best summarization meth-
ods for path trees. Figures 7(a) and (b) present the aver-
age absolute error in selectivity estimation using path trees
summarized in different ways for the random paths and ran-
dom tags workloads on the synthetic data set, respectively.

Figure 7(a) shows that, for the random paths workload,
all summarization methods that use∗-nodes have similar
performance, and they are all better than the no-∗ method.
The methods using∗-nodes are better than no-∗ because
the query path expressions ask for paths that exist in the
data, so the aggressive assumption that these methods make
about nodes not in the summarized path tree are mostly
valid and result in higher accuracy. Since all methods us-
ing∗-nodes have similar performance, we conclude that the
more detailed information maintained by the more com-
plex sibling-∗ and level-∗ methods does not translate into
higher estimation accuracy. Hence, for workloads that ask
for paths that exist in the data, global-∗ is the best path tree
summarization method.

The situation is different for the random tags workload
in Figure 7(b). Since query path expressions in the random
tags workload ask for paths that mostly do not exist in the
data, the correct thing to do when we are unable to match
the entire query path expression with nodes in the path tree
is to estimate a selectivity of zero. This is what no-∗ does.
The methods that use∗-nodes are misleading in this case
because they allow us to match tags in the query path ex-
pression with∗-nodes in the path tree even when the query
path expression does not exist in the data. This results in
significantly less accuracy than no-∗. Hence, for workloads
that ask for paths that do not exist in the data, no-∗ is the
best path tree summarization method.

5.6 Summarizing Markov Tables
In this section, we illustrate the best summarization meth-
ods for Markov tables. For all data sets and query work-
loads, we observe that unsummarized Markov tables with
m = 3 are very accurate, so we only evaluate the perfor-
mance of summarized Markov tables withm = 2 and3,

0

50

100

150

200

250

300

350

400

450

500

0 5 10 15 20 25 30 35 40 45 50

A
bs

ol
ut

e
E

rr
or

Available Memory (KB)

Sibling-*
Level-*

Global-*
No-*

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40 45 50

A
bs

ol
ut

e
E

rr
or

Available Memory (KB)

Sibling-*
Level-*

Global-*
No-*

(a) (b)

Figure 7: Path tree summarization, synthetic data set, (a) random paths and (b) random tags

but not withm > 3. In general, the practical values ofm
are2 and3.

Figures 8(a) and (b) present the estimation accuracy us-
ing Markov tables summarized in different ways for the
random paths and random tags workloads on the synthetic
data set, respectively.

Figure 8(a) shows that, for the random paths workload,
suffix-∗ summarization is best. Unlike for path trees, the
summarization method that preserves the most information
about deleted paths works best for Markov tables.m = 2
andm = 3 have similar performance, so the conclusion
is to use the simplerm = 2. Thus, the best Markov table
approach for workloads that ask for paths that exist in the
data is to usem = 2 and suffix-∗ summarization.

Figure 8(b) shows that, for the random tags workload,
m = 2 and global-∗ or no-∗ summarization are the best
methods. No-∗ works well for the same reason that it works
well in path tree summarization for the random tags work-
load. Global-∗ is similar in performance to no-∗ because
many of the query path expressions that ask for paths that
do not exist in the data get matched entirely with the paths∗
and∗/∗, so they have an estimated selectivity of zero, which
is correct. The best Markov table approach for workloads
that ask for paths that do not exist in the data is, therefore,
to usem = 2 and the simpler no-∗ summarization.

5.7 Estimation Accuracy

In this section, we compare the best techniques for path
trees and Markov tables as identified in the previous sec-
tions. We also compare these techniques to the pruned suf-
fix tree approach.

Figure 9(a) presents the selectivity estimation errors for
the random paths workload on the synthetic data set us-
ing path trees summarized with global-∗, Markov tables
with m = 2 summarized with suffix-∗, and pruned suf-
fix trees. Figure 9(b) presents the selectivity estimation
errors for the random tags workload on the synthetic data
set using path trees summarized with no-∗, Markov tables
with m = 2 summarized with no-∗, and pruned suffix trees.
Figures 10(a) and (b) present the same information for the
DBLP data set.

For the synthetic data set, path trees are the most ac-
curate technique, and both path trees and Markov tables
are more accurate than pruned suffix trees. For the DBLP
data set, Markov tables are the most accurate technique,
and they are much more accurate than pruned suffix trees.
Path trees, on the other hand, are the least accurate tech-
nique for the DBLP data set. Their estimation error, which
is too high to show in Figure 10, is usually greater than 100.

The DBLP data set represents bibliography information
for many different conferences and journals. Each confer-
ence or journal is a different sub-tree of the path tree, but
the structure of the data within each of these sub-trees is the
same for any conference or journal. Path tree summariza-
tion cannot compactly represent the common structure of
these sub-trees. On the other hand, Markov tables, and to
a lesser extent pruned suffix trees, can effectively capture
this common structure. For example, note that each bibli-
ography entry in every conference or journal in the DBLP
data set has one or moreauthor elements. In the path
tree, there will be anauthor node in the sub-tree corre-
sponding to every conference or journal. Some of these
nodes will have to be deleted during tree summarization
resulting in a loss of accuracy. In the Markov table, on the
other hand, there will only be oneauthor path for all the
author nodes in the path tree.

Thus, if the data has many common sub-structures,
Markov tables should be used. If the data does not have
many common sub-structures, path trees should be used.
Choosing the appropriate selectivity estimation technique
always results in higher accuracy than using pruned suffix
trees.

6 Conclusions
The proliferation of XML on the Internet will enable novel
applications that query “all the data on the Internet.” The
queries posed by these applications will involve path ex-
pressions, and optimizing these queries will require esti-
mating the selectivity of these path expressions. In this
paper, we presented two techniques for summarizing the
structure of large-scale XML data in a small amount of
memory for estimating the selectivity of XML path expres-
sions: path trees and Markov tables.

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30 35 40 45 50

A
bs

ol
ut

e
E

rr
or

Available Memory (KB)

m=2 Suffix-*
m=2 Global-*

m=2 No-*
m=3 Suffix-*
m=3 Global-*

m=3 No-*

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40 45 50

A
bs

ol
ut

e
E

rr
or

Available Memory (KB)

m=2 Suffix-*
m=2 Global-*

m=2 No-*
m=3 Suffix-*
m=3 Global-*

m=3 No-*

(a) (b)

Figure 8: Markov table summarization, synthetic data set, (a) random paths and (b) random tags

0

20

40

60

80

100

120

140

160

0 5 10 15 20 25 30 35 40 45 50

A
bs

ol
ut

e
E

rr
or

Available Memory (KB)

Path Tree Global-*
Markov m=2 Suffix-*

Pruned Suffix Tree

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35 40 45 50

A
bs

ol
ut

e
E

rr
or

Available Memory (KB)

Path Tree No-*
Markov m=2 No-*
Pruned Suffix Tree

(a) (b)

Figure 9: Estimation accuracy, synthetic data set, (a) random paths and (b) random tags

The correct selectivity estimation technique to use de-
pends on the XML data whose structure is being summa-
rized. If the data has a lot of common structures, Markov
tables withm = 2 should be used. If the data does not have
such common structures, path trees should be used.

The best way to summarize path trees and Markov tables
depends on the characteristics of the query workload. If the
query path expressions ask for paths that exist in the data,
then the aggressive global-∗ and suffix-∗ techniques should
be used for summarizing path trees and Markov tables, re-
spectively. If the query path expressions ask for paths that
do not exist in the data, then the conservative no-∗ tech-
nique should be used for both path trees and Markov tables.

The correct choice from our techniques always results
in higher selectivity estimation accuracy than pruned suf-
fix trees [CJK+01], the best previously known alternative.
The techniques in [CJK+01] solve a more general prob-
lem, so their full power is not evident in the comparison
with our proposed techniques that solve a simpler prob-
lem. It is still an open question whether XML query op-
timizers will require selectivity information about simple
path expressions, in which case our proposed techniques
would be better, or about more complex path expressions
involving branches and values, in which case the tech-
niques in [CJK+01] would be better. Answering this ques-
tion is a possible area for future work.

At this time, we cannot conclusively determine the typ-
ical characteristics of XML data that will be available on
the Internet, so we cannot recommend an overall best tech-
nique for selectivity estimation. However, if we were to
make an educated guess, we would say that things like stan-
dard DTDs and schema libraries will result in a lot of com-
mon sub-structures. We would also guess that users typi-
cally know enough about the semantics of the tag names to
ask for paths that generally do exist in the data. Thus, we
would recommend Markov tables withm = 2 and suffix-∗
summarization. If this guess proves to be wrong, we sim-
ply need to choose another one of our proposed techniques.
In any case, developing a general framework for choosing
the correct selectivity estimation technique is an interesting
topic for future work.

Acknowledgements

We thank Zhiyuan Chen and Divesh Srivastava for pro-
viding us with the code for pruned suffix trees and help-
ing us with this code, and for providing us with a real
XML data set that we used in some of our experiments.
Ashraf Aboulnaga and Jeff Naughton were funded by NSF
through grants CDA-9623632 and ITR 0086002, and by
DARPA through NAVY/SPAWAR Contract No. N66001-
99-1-8908. Alaa Alameldeen was funded by NSF through
grant EIA-9971256.

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

A
bs

ol
ut

e
E

rr
or

Available Memory (KB)

Path Tree Global-*
Markov m=2 Suffix-*

Pruned Suffix Tree

0

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25 30 35 40 45 50

A
bs

ol
ut

e
E

rr
or

Available Memory (KB)

Path Tree No-*
Markov m=2 No-*
Pruned Suffix Tree

(a) (b)

Figure 10: Estimation accuracy, DBLP data set, (a) random paths and (b) random tags

References
[ANZ01] Ashraf Aboulnaga, Jeffrey F. Naughton, and

Chun Zhang. Generating synthetic complex-
structured XML data. InProc. 4th Int. Work-
shop on the Web and Databases (WebDB’2001),
Santa Barbara, California, May 2001.

[CD99] James Clark and Steve DeRose (eds.).
XML path language (XPath) version
1.0. W3C Recommendation available at
http://www.w3.org/TR/xpath, November 1999.

[CFR+01] Don Chamberlin, Daniela Florescu, Jonathan
Robie, Jérôme Siméon, and Mugur Stefanescu
(eds.). XQuery: A query language for
XML. W3C Working Draft available at
http://www.w3.org/TR/xquery, February 2001.

[CJK+01] Zhiyuan Chen, H.V. Jagadish, Flip Korn, Nick
Koudas, S. Muthukrishnan, Raymond Ng, and
Divesh Srivastava. Counting twig matches in a
tree. InProc. IEEE Int. Conf. on Data Engi-
neering, pages 595–604, Heidelberg, Germany,
April 2001.

[CKKM00] Zhiyuan Chen, Flip Korn, Nick Koudas, and
S. Muthukrishnan. Selectivity estimation for
boolean queries. InProc. ACM SIGACT-
SIGMOD-SIGART Symposium on Principles
of Database Systems (PODS), pages 216–225,
Dallas, Texas, May 2000.

[GGT96] Georges Gardarin, Jean-Robert Gruser, and
Zhao-Hui Tang. Cost-based selection of path
expression processing algorithms in object-
oriented databases. InProc. Int. Conf. on Very
Large Data Bases, pages 390–401, Mumbai
(Bombay), India, September 1996.

[GW97] Roy Goldman and Jennifer Widom.
DataGuides: Enabling query formulation
and optimization in semistructured databases.
In Proc. Int. Conf. on Very Large Data Bases,
pages 436–445, Athens, Greece, August 1997.

[GW99] Roy Goldman and Jennifer Widom. Approxi-
mate DataGuides. InProc. Workshop on Query
Processing for Semistructured Data and Non-
standard Data Formats, Jerusalem, Israel, Jan-
uary 1999.

[JKNS99] H.V. Jagadish, Olga Kapitskaia, Raymond T.
Ng, and Divesh Srivastava. Multi-dimensional
substring selectivity estimation. InProc. Int.
Conf. on Very Large Data Bases, pages 387–
398, Edinburgh, Scotland, September 1999.

[JNS99] H.V. Jagadish, Raymond T. Ng, and Divesh Sri-
vastava. Substring selectivity estimation. In
Proc. ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of Database Systems
(PODS), pages 249–260, Philadelphia, Penn-
sylvania, May 1999.

[KVI96] P. Krishnan, Jeffrey Scott Vitter, and Bala Iyer.
Estimating alphanumeric selectivity in the pres-
ence of wildcards. InProc. ACM SIGMOD Int.
Conf. on Management of Data, pages 282–293,
Montreal, Canada, June 1996.

[MS99] Tova Milo and Dan Suciu. Index structures for
path expressions. InProc. 7th Int. Conf. on
Database Theory, pages 277–295, Jerusalem,
Israel, January 1999.

[MW99] Jason McHugh and Jennifer Widom. Query op-
timization for XML. In Proc. Int. Conf. on Very
Large Data Bases, pages 315–326, Edinburgh,
Scotland, September 1999.

[NDM+01] Jeffrey Naughton, David DeWitt, David
Maier, et al. The Niagara Internet query sys-
tem. IEEE Data Engineering Bulletin, 24(2),
June 2001.

[SAX] SAX 2.0: The simple API for XML.
http://www.megginson.com/SAX/index.html.

[Xyl] Xyleme home page. http://www.xyleme.com.

