

Toward a Progress Indicator for Database Queries

Gang Luo Jeffrey F. Naughton Curt J. Ellmann Michael W. Watzke
 University of Wisconsin-Madison NCR Advance Development Lab

 {gangluo, naughton}@cs.wisc.edu {curt.ellmann, michael.watzke}@ncr.com

Abstract
Many modern software systems provide progress indicators for
long-running tasks. These progress indicators make systems
more user-friendly by helping the user quickly estimate how
much of the task has been completed and when the task will
finish. However, none of the existing commercial RDBMSs
provides a non-trivial progress indicator for long-running
queries. In this paper, we consider the problem of supporting
such progress indicators. After discussing the goals and
challenges inherent in this problem, we present a set of
techniques sufficient for implementing a simple yet useful
progress indicator for a large subset of RDBMS queries. We
report an initial implementation of these techniques in
PostgreSQL.

1. Introduction

Progress indicators are a widely used user-interface technique
in modern software systems. For example, Figure 1 shows a
progress indicator for file downloading. Typically, a progress
indicator has the following two features:
(1) It keeps track of the percentage of the task that has been

completed.
(2) It continuously estimates the remaining task execution

time.
These two features make the software systems much more user-
friendly: by knowing how long he/she needs to wait for a
program to finish, the user can better utilize his/her time [16]. In
fact, in many cases, even a rough estimate of the remaining task
execution time can be beneficial to the user [4].

Figure 1. A typical file download interface.

Such progress indicators are useful whenever a user might

have to wait for a task to complete. Unfortunately, some
RDBMS queries definitely fall into this category, as queries can
take a long time to run. Hence, progress indicators are desirable
in RDBMSs [18, 15]. To the best of our knowledge, however,
none of the existing commercial RDBMSs provides a non-trivial
progress indicator, and we are unaware of any published
techniques for supporting such a progress indicator.

Some RDBMSs provide trivial progress indicators for
complex queries by breaking the query plan into steps, and then
reporting at any time which steps have completed and which
steps are still left to run (see, e.g., [8].) While such a progress
indicator is clearly much better than nothing, for many purposes
it will be too coarse – even a long-running query may only have
a few steps, and such a progress indicator does not give the user
any feedback while a (potentially very long) step is running.

Another way to provide a trivial progress indicator is to use
the optimizer’s estimate of query running time. Providing a
trivial progress indicator based upon the optimizer’s estimate of
query running time is simple. If the optimizer estimates that a
query will take t seconds, and the query has run for t′ seconds,
we estimate that the remaining time is t – t′ seconds. While such
a trivial progress indicator is also better than nothing, it is likely
to be highly inaccurate. This inaccuracy arises from two main
causes:
(1) Optimizers’ query cost estimates typically contain errors.

Furthermore, accurately predicting actual query running
times is more challenging than choosing good plans over
bad ones, as estimates that correctly rank plans only need to
be correct about relative costs, not actual costs. For this
reason, using optimizers’ estimates for progress indicators
is even more problematic than using them for query
optimization.

(2) Due to concurrently running queries and other jobs, the
system load may vary significantly. For a specific query,
even if the optimizer provides an estimate that is precise for
an unloaded system, this estimate may differ substantially
from the actual query execution time in a loaded system.

In this paper, we propose techniques for supporting progress
indicators for RDBMS queries. We demonstrate the utility of
these techniques by an implementation for select-project-join
queries in PostgreSQL. While the resulting progress indicator
can be refined, our experiments show that it is a useful progress
indicator even in the presence of optimizer estimation errors and
varying run-time system loads, and that it imposes a negligible
(less than 1%) penalty on the running time of queries.

Our basic approach is to separate a complex query plan into
pipelined segments, where the boundaries of the segments are
defined by blocking operators. We measure query progress in
terms of the percentage of input processed by each of these
segments. We begin with the optimizer’s estimates for
cardinalities and sizes. However, as a query runs, we obtain
more and more precise information about the inputs to the
segments in its execution plan. Also, at all times, we monitor the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ACM SIGMOD 2004, June 13–18, 2004, Paris, France.
Copyright 2004 ACM 1-58113-859-8/04/06 …$5.00.

speed at which segments are processing their inputs (which is a
function of the query plan and the system load at runtime.) We
use this more precise information to continuously refine the
estimated query execution time and thus to update the progress
indicator.

The rest of this paper is organized as follows. In Section 2, we
discuss related work. In Section 3, we describe the goals of
progress indicators for RDBMSs. In Section 4, we present a set
of techniques for implementing progress indicators in an
RDBMS. In Section 5, we present results from an initial
implementation of our techniques in PostgreSQL. We conclude
in Section 6.

2. Related Work
There has been a lot of work (e.g., [4], [16]) in the HCI

(Human Computer Interaction) community for progress
indicators. However, none of this work has addressed database
queries.

Online aggregation, proposed in [11], shares with this work
the goal of providing continuous feedback during query
execution. For long-running aggregate queries, online
aggregation provides continuously refined approximate
aggregate query results. For simple aggregate queries (e.g., a
single-table scan), the online aggregation interface contains a
progress indicator that indicates the percentage of the query that
has been completed [11]. However, online aggregation provides
no estimate of the remaining query execution time. Online
aggregation requires special non-blocking query evaluation
algorithms [11, 10]. In contrast, the progress indicators
discussed in this paper are not limited to aggregation queries,
and do not require non-blocking query evaluation algorithms.

In dynamic query optimization [2, 14, 5, 12, 9, 17], people
have proposed refining the query cost estimate at one or more
points to change the query plan dynamically. However, such
refinement is not continuous. Also, no estimate of the remaining
query execution time or the percentage completed is provided in
dynamic query optimization.

[1, 3] propose building and maintaining histograms by
analyzing query results (rather than examining the data sets).
Then they use the (refined) histograms to estimate the costs of
future queries more precisely. However, [1, 3] did not use the
intermediate results of a query to estimate the remaining query
execution time/cost as the query is being processed.

Most commercial database vendors (DB2, Oracle, SQL
Server, Teradata, Tandem, etc.) provide database monitoring
tools. These tools provide various information (e.g., elapsed
time, current execution step, number of I/Os performed) for a
running query and can alert the DBA if the running query
exhibits excessive overhead [7, 15, 8, 18]. In certain simple
cases, such information can be used to estimate the remaining
query execution time [15]. However, in general, the information
provided by existing database monitoring tools is not enough to
estimate either the percentage of the query that has been
completed or the remaining query execution time [18].

Some commercial RDBMSs provide query cost estimates
measured in time (e.g., seconds) based on an unloaded RDBMS.
As explained in the introduction, even if a query cost estimate is
precise for an unloaded RDBMS, it can differ significantly from
the actual query execution time in a loaded RDBMS.

[13] proposed a method for estimating the optimizer
compilation time of a query. [13] also proposed using the same
method to monitor the progress of workload analysis tools.

However, no method is proposed in [13] to monitor the progress
of queries.

[15] proposed a method for monitoring the progress of long-
running rollback operations. The idea is to monitor the number
of update log records that have not been rolled back for a
transaction. By calculating the speed that the update log records
are being rolled back, we can estimate the remaining rollback
time for this transaction. This method can be integrated into the
progress indicators for RDBMSs so that these progress
indicators can also monitor the progress of rollback operations.

3. Goals for Progress Indicators
Figure 2 shows an example of the sort of progress indicator

we would like to support for database queries. This interface,
which is continuously updated, displays the elapsed time, the
estimated remaining query execution time, the estimated
percentage of the query that has been completed, the estimated
query cost, and the current query execution speed. Both the
estimated query cost and the current query execution speed are
measured in U’s, where U is an abstract quantity that represents
one unit of work (we will return to the question of how to define
U in Section 4.)

Figure 2. A progress indicator for database queries.

Ideally, a progress indicator should satisfy the following
goals:
(1) Continuously revised estimates: At any time, for all the

information provided to the user, the progress indicator
should give an estimate based on all the information
available about the query and the system at that time. This
estimate should be continuously refined, due to both
changes in the estimates of intermediate result sizes and
changes in the rate at which the query is progressing.

(2) Acceptable pacing: The progress indicator should be
updated frequently enough that the user sees a smooth
display. However, the update rate should not be so frequent
as to overburden either the user interface or the user.

(3) Minimal overhead: The progress indicator should have a
small effect on the efficiency of query execution.

4. Implementation Techniques
In this section, we present our techniques for implementing

progress indicators in an RDBMS. We consider select-project-
join queries, and assume that the available join algorithms are
hash join, nested loops join, and sort-merge join, and that base
relations can be accessed by either table-scans or index-scans.

Our main idea is as follows:
(1) We collect statistics at selected points of a query plan. As a

query is being processed, we will have more and more
precise information about intermediate results (e.g.,

Elapsed time 5 hour 3 min 7 sec
Estimated time left 14 hour 25 min 16 sec (24% done)
Estimated cost 1502831 U
Execution speed 22 U/Sec
 Abort

SQL name Query 1

Progress Indicator

cardinality, size) and the run-time system (e.g., amount of
available memory). We use the improved information to
continuously refine the estimated query cost.

(2) We continuously monitor the query execution speed (i.e.,
how many U’s are processed per second). At any time, the
remaining query execution time is estimated to be the ratio
of the estimated remaining query cost to the observed
current query execution speed.

From time to time, the progress indicator presents the latest
estimates to the user.

In Section 4.1, we describe how we choose the work unit U
and how it is converted to time. In Section 4.2, we define the
concept of segments that is crucial to our query cost estimation.
Then we show how to get the cardinalities and sizes of segment
inputs in Section 4.3. In Section 4.4, we present the statistics
collection techniques. In Section 4.5, we describe how to
continuously refine the query cost estimate. In Section 4.6, we
discuss the techniques used in monitoring the query execution
speed.

4.1 Choosing U and Converting to Time
As mentioned in Section 3, both the estimated query cost and

the current query execution speed are measured by the abstract
unit U. Each U represents one unit of work. We are purposely
being rather vague and general in this statement, as many viable
alternatives exist for U. The important requirements for U are
that one can readily estimate how many U’s a query will take to
execute, and that one can readily convert from U’s to estimated
time, since ultimately time is likely to be the unit most
meaningful to users. Reasonable candidates for U include I/Os,
CPU cycles, or even a combination of the two, perhaps using
some weighting factor.

Our progress indicator works by continuously refining both its
estimate of how many U’s the segments in a query will take to
execute (segments are defined in Section 4.2) and its estimate of
the conversion factor from U to time. The estimated number of
U required to process a segment changes as the system gathers
more statistics about intermediate results as the query runs. The
refinements in the estimates of the conversion factor from U to
time result from observations of how quickly the system is
processing U. (If U were chosen to be CPU cycles, this
translates to the admittedly strange sounding question “how fast
is the system processing CPU cycles?”; in this case, this
question would really mean “how many CPU cycles per second
are being devoted to this query?”)

In this paper, for simplicity, we define U in terms of bytes
processed, with the intuition that this is easy to measure and
serves as a rough proxy for CPU and I/O. That is, the cost of a
query Q is the total size of the (input and intermediate result)
tuples that are to be read and written by Q. Similarly, at any
time, we represent the amount of work that has been done on Q
using the total bytes that have been processed so far for Q.

We set U to be one page of bytes, and assume initially (before
the query starts running) that executing the query will require a
number of U equal to the optimizer’s estimate of the number of
I/Os for the query. Before giving its first estimate of running
time, the progress indicator “watches” some amount of
processing to see how quickly the system is consuming U; we
discuss this in more detail in Section 4.6.

As the query runs, the estimated time to process one U will
change to reflect the observed processing rate in the system. The
time to process one U could range from the time for one

physical I/O (if the system is disk-bound) to the time to process
one buffer-pool resident page of data (if the data accessed by the
query is completely cached in memory) or anywhere in between.
In fact, in a heavily loaded system, the time to process a U could
even exceed the time to perform a physical I/O.

This simple definition of U limits the precision of our
estimates; however, in our experiments, described in Section 5
below, this definition worked well in our tests, both for I/O and
CPU intensive queries. We leave it as an interesting area for
future work to explore how to improve the estimates without
imposing undue overhead by refined definitions of U.

4.2 Definition of Segments
In order to support progress indicators, we divide a query plan

into one or more segments so that we can focus on the individual
segments rather than the entire query plan. (Dividing a query
plan into parts has been proposed before, for resource
management and parallel processing purposes [6].) Each
segment contains one or more consecutive operators that can be
executed as a pipeline. A pipeline continues within a segment
and breaks at the end of a segment. In practice, blocking
operators (e.g., hash-table build operators, sort operators,
intermediate result materialization operators) serve as natural
separation points of different segments [14].

Each segment can be viewed as a tree. The root of the tree is
the output of the segment. The leaves of the tree are the inputs of
the segment. The inputs of a segment either come from base
relations or from the outputs of lower-level segments.

Figure 3 shows a query plan that contains five segments:
(1) Segment S1 computes π(σ(A)) and hashes the results into

multiple partitions PA.
(2) Segment S2 computes σ(B) and hashes the results into

multiple partitions PB.
(3) Segment S3 computes a hash join using PA and PB and sorts

the results into multiple sorted runs RAB.
(4) Segment S4 computes σ(C) and sorts the results into

multiple sorted runs RC.
(5) Segment S5 computes a sort-merge join using RAB and RC

and generates the final query result after projection.

Figure 3. A query plan example.

4.3 Cardinalities and Sizes of Segment Inputs
In this section, we show how to get the cardinalities and sizes

of segment inputs. As mentioned in Section 4.2, there are two
kinds of inputs to segments:
(1) Upper-level segment inputs: An upper-level input of a

segment is the output of some other lower-level segment.
(2) Base segment inputs: A base input of a segment comes

from a base relation.

A (table-scan)
B (table-scan)

C (index-scan)

sort-merge join

σ

π

σ
σ π S1

S2

S3

S5

S4

hash join

hash hash

sort sort

For an upper-level input of a segment S, at the time S starts
execution, all the segments that are below S must have finished.
Hence, the output cardinalities and sizes of these lower-level
segments are known exactly, since they are computed as the
segments run (see Section 4.4 below).

In contrast, a base input of a segment is either a table-scan or
an index-scan. At the beginning of a table-scan or index-scan,
we have to use the optimizer’s cardinality and size estimate for
the cardinality and size of the input, even if this estimate is not
precise. (We have no choice – we have not even seen any of the
input data in question.) Suppose that the optimizer’s cardinality
estimate for the base segment input is Ne and the precise
cardinality is Np. There are two possible cases:
(a) Np≤Ne. During the table-scan or index-scan, we keep using

Ne as the estimated segment input cardinality. After
finishing the scan, we know the precise number Np and use
it as the precise segment input cardinality.

(b) Np>Ne. During the table-scan or index-scan, we keep using
Ne as the estimated segment input cardinality, until the
actual number of tuples that have been read exceeds Ne.
From then on until the finish of the scan, we use the actual
number of tuples read so far as the estimated segment input
cardinality.

During the table-scan or index-scan, we collect statistics about
the average tuple size. The size of the base segment input is the
product of its cardinality and its average tuple size.

If the estimated segment input cardinality and/or size changes,
we need to (see Section 4.5 below) refine the estimates related to
the current segment, and propagate these changes upward in the
query plan tree.

4.4 Collecting Statistics
We collect statistics about cardinalities and average tuple

sizes of the intermediate results, which can be computed on the
fly inexpensively as the intermediate results are being generated.
For any intermediate result, its size is the product of its
cardinality and its average tuple size.

We collect statistics (output cardinality, average tuple size) at
the output of each segment. The only exception is the last
segment in the query plan, for which the output is the final query
result that will be returned to the user. Therefore, no statistics
are collected there.

Unlike [14], we do not collect statistics about the number of
distinct values and histograms of the intermediate results. In our
experiments, which are described in Section 5 below, our
statistics collection techniques worked well. It is an interesting
area for future work to explore whether either collecting more
complex statistics or collecting statistics within segments can
significantly improve the estimates without imposing undue
overhead.

Unlike [14], we do not insert statistics collector operators into
the query plan. Rather, we embed the statistics collection code in
the operator code. For each operator, we augment its data
structure so that the collected statistics can be held there. For
each query plan, we use a flag to control whether statistics need
to be collected. When the progress indicator feature is in use, the
flag is turned on and we collect statistics in appropriate
operators. If one does not wish to modify existing operator code,
our approach to statistics collection can be modified to use that
presented in [14].

4.5 Refining the Estimate of the Number of U
Required by the Query

In this section, we describe techniques for refining the
estimate of the number of U the query will require for its
execution. The number of U required by a query is the sum of
the number of U required by all the segments in the query plan.
In the remainder of this section we refer to this number as the
“cost of the query.” Similarly, we call the number of U it takes
to execute a segment the “cost of the segment.” In Section 4.6
we will turn to the issue of estimating the conversion factor from
U to time.

As mentioned in Section 3, we want to update the display on
the progress indicators as smoothly as possible. Hence, we need
to continuously refine the estimates of the segment costs. For
segments that have finished execution, we know the exact costs.
Therefore, we only need to focus on the cost of the segment that
is currently being executed and the costs of the future segments
that have not started execution.

In the following, we first show how to compute the cost of a
segment. Then we give an overview of the refining procedure
for query cost estimation. Finally, we describe the refining
procedure for query cost estimation in detail.

Computing the Cost of a Segment

As mentioned in Section 4.2, each segment contains one or
more steps that are executed in a pipeline. Recall that in our
techniques we only monitor bytes processed at the boundaries of
segments. This means we only need to consider the inputs to the
segment and the final output.

Intuitively, a byte coming from a segment input is counted
once as it is input into that segment. A byte produced by a
segment is counted once as it is output by that segment (except
when the segment output is the final output that is displayed to
the user), and again as it is input by the next segment. If the
intermediate result is indeed materialized to disk, this “double
counting” corresponds to the cost of the byte being written to
disk and then read back in. If at runtime this intermediate result
actually ends up being buffered in memory, this double counting
corresponds roughly to the cost of the byte being handled at the
output of the lower segment and then again at the input of the
next segment.

A special case arises if an operator at the leaves or root of a
segment is a multi-stage operator (for example, a multi-stage
partition operator for a hash join, or a multi-stage sort). For such
operators, bytes handled by the operator will be counted once
each time they are logically read or written.

The reader may wonder if computing costs only at segment
boundaries is a good idea, since for deep pipelines this approach
ignores a lot of computation within the pipeline. While it is true
that our approach does not explicitly account for computation in
the pipeline, this computation is implicitly considered because it
impacts the speed with which a segment consumes its input. It is
an interesting open question whether in general progress
indicators can benefit from explicitly accounting for costs within
pipelines.

Overview of the Refining Procedure for Query Cost
Estimation

 As the current segment is being processed, we continuously
refine the estimates for its output cardinality, its average output
tuple size, and the total U it will consume (we describe precisely

how we do this later in this section.) We propagate the improved
estimates for the current segment upwards in the query plan to
the next segment. Then we refine the estimates of the output
cardinality, average output tuple size, and U for the next
segment. Recall that in our progress estimator, U is just the
number of bytes processed by the segment. So the question
arises: how can we compute the expected U for a future
segment?

Fortunately, we can compute the expected U for a future
segment by invoking the optimizer’s cost estimation module
with the improved estimates of output cardinality and output
size for the current segment (and the existing estimates for any
other inputs to the future segment, if it is a multiple-input
segment – the estimates for these segment inputs are not being
refined if they are not from the current segment.) Because the
optimizer gives a number of I/Os in its estimate, we can convert
this to bytes simply by multiplying the estimate by the page size.

We continue this propagation of estimates and recalculation
of costs until we reach the top of the query plan. Then we use
the exact costs of the past segments, the improved cost estimate
of the current segment, and the improved cost estimates of the
future segments, to refine the estimated query cost.

For example, consider the query plan example shown in
Figure 3. Suppose the current segment is S2. We continuously
use the improved estimates related to segment S2 to refine the
estimates related to segments S3 and S5. The improved estimates
related to segment S2 will not influence the estimates related to
segments S4. Hence, for segments S4, we use the original
estimates provided by the optimizer. (The optimizer’s estimates
can be kept in the query plan using the annotated query plan
technique in [14].)

From the above description, we can see that the key step of
refining the query cost estimate is refining the estimates related
to the current segment. Hence, we now turn to discuss how we
refine the estimates of output cardinality, size, and U for the
current segment.

Refining the Estimates Related to the Current Segment

Estimating the average output tuple size is easy: at any time,
we use the average output tuple size computed so far as the
estimated average tuple size of the final output. Since we are
using bytes processed as U, the U required by the current
segment is just the product of its estimated cardinalities and
average tuple sizes of its inputs and the output. We have shown
how to get the estimated cardinalities and average tuple sizes of
the inputs in Section 4.3. Hence, in the following, we focus on
estimating the output cardinality. We first introduce the concept
of dominant inputs, which we use to enable an approximate
indication of how far along the current segment is in processing
its inputs.

For each segment, we define one or two dominant inputs. As
mentioned in Section 4.2, each segment can be viewed as a tree.
The leaves of the tree are the inputs of the segment. Among all
the inputs of a segment, we choose a dominant input so that
once all the tuples in the dominant input have been processed,
the entire segment finishes execution. There is an exception: for
a segment that contains a sort-merge join operator, we define
two dominant inputs. In more detail,
(1) If a segment contains only one input, this input is defined

as the dominant input.
(2) If a segment contains multiple inputs, this segment must

contain at least one join operator. If this segment contains

multiple join operators, we find the join operator at the
lowest level of the segment. There are several possible
cases for this join operator:
(a) If it is a nested loops join operator, we define the

dominant input to be the input of the segment that is a
left descendant of the nested loops join operator (the
outer relation [20]).

(b) If it is a hash join operator, we define the dominant
input to be the input of the segment that is a right
descendant of the hash join operator (the probe
relation).

(c) If it is a sort-merge join operator, we define the
dominant inputs to be the two inputs of the segment
that are descendants of the sort-merge join operator.

As an example, consider the query plan example shown in
Figure 3. We list the dominant inputs of the segments as
follows:
(1) Segment S1: A.
(2) Segment S2: B.
(3) Segment S3: PB.
(4) Segment S4: C.
(5) Segment S5: RAB and RC.

Next we turn to discuss how to use the percentage of the
dominant input that has been processed so far to refine the
estimated output cardinality. We first discuss the case that the
current segment contains one dominant input. Then we discuss
the case that the current segment contains two dominant inputs.

At the time that the current segment starts execution, we give
an initial estimate E1 of its output cardinality. E1 is computed
using the input cardinalities of the current segment and the
optimizer’s cost estimation module. This estimate may of course
be wrong; our goal is to detect this while the segment is running,
and gradually replace it with an estimate that approaches the true
output cardinality as the execution of the segment nears
completion. We do this as follows.

Suppose that the dominant input cardinality of the current
segment is z. Assume that so far, we have processed x of z and
generated y output tuples. Then the percentage that the dominant
input has been processed is p=x/z. If we assume that at any time,
the number of output tuples that have been generated is
proportional to the percentage that the dominant input has been
processed, then we can estimate the final output cardinality of
the current segment to be E2=y/p=yz/x. In practice, this
assumption may not be valid and we also want to consider the
initial estimate E1.

At any time, we use the following heuristic formula to
estimate the final output cardinality E of the current segment:
E=p×E2+(1-p)×E1. This heuristic formula intends to smooth
fluctuations in the estimator and to let it gradually change from
the initial estimate (when the current segment just starts
execution, we know nothing about the actual segment output
cardinality) to the actual segment output cardinality (when the
current segment finishes execution, we know this quantity
exactly).

Recall that a segment containing a sort-merge join operator
has two dominant inputs. In this case, once we reach the end of
either dominant input, the sort-merge join (and thus the
segment) immediately finishes execution. Therefore, we need to
use the dominant input that is being scanned relatively faster to
decide the percentage p that the two dominant inputs have been
processed [21].

We use an example to illustrate the procedure. Consider a
sort-merge join operator with two input relations A and B. We
assume that both A and B have already been sorted. Suppose that
the cardinality of A is |A|, and the cardinality of B is |B|.
Suppose that we have processed x tuples from A and y tuples
from B. Let qA=x/|A| and qB=y/|B|. Then we use the following
formula to decide p: p=max(qA, qB).

4.6 Monitoring Current and Predicting
Future Query Execution Speed

Recall that our progress indicator depends on two things: the
estimates of U, and the estimated conversion factor between U
and time. The conversion of U to time should reflect what we
are observing as the system is running. So, at all times, we keep
track of the amount of work (measured in U’s) that has been
done for query Q in the last T seconds, where T is a pre-defined
number. The average speed that the work has been done for
query Q in the last T seconds is used as the estimated current
execution speed of query Q. To minimize the influence of
temporary fluctuations, this T should not be too small. However,
this T should also not be too large. Otherwise, the calculated
execution speed will not closely reflect the actual current
execution speed. In our implementation, we choose T to be 10.
In our experiments, we found that this number is sufficient to
provide a smooth estimate of the current query execution speed.

This approach to calculating the conversion from U to time is
admittedly simplistic, and although it worked well in our
experiments, there are cases in which it will be misleading.

One situation in which this approach is misleading is when
the system load fluctuates substantially. At times of high load,
the progress indicator will overestimate the execution time,
since it will think that each U takes a relatively long time to
process. At times of light load, it will underestimate the
execution time for analogous reasons. There is not much that
can be done about this – it is the same situation as the one that
occurs during a file download, when varying available
bandwidth causes the estimated download time to be inaccurate.
One possible improvement to our approach would be to
incorporate some history beyond T in order to “smooth” the
estimates (e.g., perhaps computing a decaying average, so that
while the most recent execution speed has the major impact, the
overall execution speed also has an impact.)

The second situation in which our simple conversion from U
to time could be misleading occurs when segments have
radically different characteristics. In particular, a problem arises
when one segment can be expected to process U much more
quickly than another. For example, consider a two-segment plan,
in which segment S1 feeds segment S2. If S1 processes U more
slowly than S2 (perhaps S1 is I/O-intensive whereas S2 has a high
buffer pool hit rate), then while S1 runs it will overestimate the
time it will take to run S2. (Using our simple conversion
approach, the progress indicator will eventually figure this out
and improve its estimate - in this simple two-segment example,
it will adjust once S2 starts running.) This problem could be
alleviated by a more complex conversion from U to time –
ideally this conversion should take into account both the
expected processing speed for the segments and the current
system load. While space limitations precluded us from
exploring such complex conversions between U and time in this
paper, we think this is an interesting and promising area for
future work.

5. Performance
In this section, we present results from a prototype

implementation of progress indicators in PostgreSQL Version
7.3.4 [19]. We implemented all the techniques described in
Section 4, except for those techniques that are used to handle
sort-merge join. In all our tests, our prototyped progress
indicators could be updated every ten seconds with less than 1%
overhead, which we consider to have met the three goals
mentioned in Section 3: continuously revised estimates,
acceptable pacing, and minimal overhead.

5.1 Experiment Description
Our measurements were performed with the PostgreSQL

client application and server running on a Dell Inspiron 4000 PC
with one 600MHz processor, 512MB main memory, one 40GB
IDE disk, and running the Microsoft Windows XP operating
system. (We repeated some of the experiments on a computer
with a 2.4GHz processor, 512MB main memory, and one 73GB
SCSI disk. The results were similar, so we omit them here.)

The five relations used for the tests followed the schema of
the standard TPC-R Benchmark relations [22]:

customer (custkey, name, address, nationkey, phone,
acctbal, mktsegment),

orders (orderkey, custkey, orderstatus, totalprice, orderdate,
ship-priority),

lineitem (orderkey, partkey, suppkey, linenumber, quantity,
extendedprice, discount, tax, returnflag,
linestatus).

The customer_subset1 relation and the customer_subset2
relation have the same schema as the customer relation while
either of them contains only 3K tuples. In our tests, on average,
each customer tuple matches ten orders tuples on the attribute
custkey. Each orders tuple matches 4 lineitem tuples on the
attribute orderkey.

Table 1. Test data set.
 number of tuples total size

customer 0.15M 23MB
orders 1.5M 114MB
lineitem 6M 755MB
customer_
subset1

3K 0.46MB

customer_
subset2

3K 0.46MB

We evaluated the performance of progress indicators in the

following way:
(1) Before we ran queries, we ran the PostgreSQL statistics

collection program on all the five relations.
(2) We performed three kinds of tests:

(a) Unloaded system test: We ran the whole query on an
unloaded system.

(b) I/O interference test: We started executing the query
on an unloaded system. In the middle of query
execution, we started a large file copy.

(c) CPU interference test: We started executing the
query on an unloaded system. In the middle of query
execution, we started a CPU-intensive program.

(3) We tested five queries:
(a) Query Q1:

select * from lineitem;
(b) Query Q2:
select c.custkey, c.acctbal, o.orderkey, o.totalprice,

l.discount, l.extendedprice
from customer c, orders o, lineitem l
where c.custkey=o.custkey and o.orderkey=l.orderkey and

absolute(l.partkey)>0;
(c) Query Q3:
select c.custkey, c.acctbal, o1.orderkey, o1.totalprice,

o2.totalprice
from customer c, orders o1, orders o2
where c.custkey=o1.custkey and o1.orderkey=o2.orderkey

and c.nationkey<10;
(d) Query Q4:
select c.custkey, c.acctbal, o.orderkey, o.totalprice,

o.shippriority, l.discount, l.extendedprice
from customer c, orders o, lineitem l
where c.custkey=o.custkey and o.orderkey=l.orderkey and

absolute(o.totalprice)>0 and absolute(l.partkey)>0;
(e) Query Q5:
select *
from customer_subset1 c1, customer_subset2 c2
where c1.custkey<>c2.custkey;
For query Q2, we report the test results for both the
unloaded system test and the I/O interference test.
However, for queries Q1, Q3 and Q4, we only report the test
results for the unloaded system test. This is because for the
I/O interference test, the test results for queries Q1, Q3 and
Q4 are similar to those for query Q2 and do not provide
much extra information. For query Q5, we report the test
results for both the unloaded system test and the CPU
interference test.

(4) Before we ran each test, we restarted the computer to
ensure a cold buffer pool. (We repeated our experiments
with a warm buffer pool. The results were similar, so we do
not present them here.) In all tests, we stored the outputs
from progress indicators into a file.

5.2 Test Results for Query Q1
The purpose of the test with query Q1 is to show that for

simple queries, the optimizer’s estimates can be fairly precise
for an unloaded system.

Figure 4 shows the query cost estimated by the progress
indicator over time. The curve that represents the query cost
estimated by the progress indicator is almost a straight line. That
is, during the entire query execution, the progress indicator
estimates the cost of query Q1 fairly precisely. This is because
query Q1 is a table-scan query on the lineitem relation. Due to
statistics collection, PostgreSQL has accurate knowledge of the
size of the lineitem relation.

Figure 5 shows the query execution speed monitored by the
progress indicator over time. Query Q1 is a table-scan query that
only performs sequential I/O. Also, it is the only query that runs
in the system. Hence, during the entire query execution period,
the monitored query execution speed is quite stable.

Figure 6 shows the remaining query execution time estimated
by the progress indicator over time. Besides the curve
representing the remaining query execution time estimated by
the progress indicator, there are two lines in Figure 6:
(1) The first line is a dashed line that shows the actual

remaining query execution time over time. This dashed line
almost coincides with the curve that represents the
remaining query execution time estimated by the progress
indicator. That is, during the entire query execution period,
the remaining query execution time that is estimated by the
progress indicator is fairly precise. This is because during
the entire query execution period, (1) the progress indicator
estimates the cost of query Q1 fairly precisely, and (2) the
query execution speed is quite stable.

(2) The second line is a dotted line that shows the optimizer’s
“estimate” of the remaining query execution time over
time. We use the optimizer’s estimate of the query running
time to predict the remaining query execution time. (The
optimizer’s estimate of the query running time is computed
as the optimizer’s estimated number of I/Os for the query
divided by the optimizer’s estimate of the system’s disk I/O
speed.) We can see that compared to the dotted line, the
curve that represents the remaining query execution time
estimated by the progress indicator is “closer” to the dashed
line. That is, the progress indicator is better than the
optimizer in estimating the remaining query execution time.
Also, the dotted line is not far from the dashed line. This is
because for query Q1, the optimizer’s estimate of the
number of I/Os is fairly precise while the optimizer’s
estimate of the disk I/O speed is a little bit different from
the monitored query execution speed.

Figure 7 shows the progress indicator’s estimate of the
percentage of the query that has been completed over time. The

Figure 6. Remaining query execution time
estimated over time (unloaded system test for Q 1).

0

20

40

60

80

100

0 20 40 60 80 100
time (seconds)

e
st

im
a

te
d

re
m

a
in

in
g

qu
e

ry
 e

xe
cu

tio
n

tim
e

(s

e
co

nd
s)

Figure 5. Q uery execution speed over time
(unloaded system test for Q 1).

0

300

600

900

1200

1500

0 20 40 60 80 100
time (seconds)

qu
e

ry
 e

xe
cu

tio
n

sp
e

e
d

(U
s

pe
r

se
co

nd
)

Figure 4. Q uery cost estimated over time
(unloaded system test for Q 1).

40000

60000

80000

100000

120000

0 20 40 60 80 100
t ime (seconds)

es
tim

at
ed

 q
u

er
y

co
st

 (
U

s)

completed percentage curve is fairly close to a straight line, as
work is continuously being done at a rather steady speed.

5.3 Test Results for Query Q2
The purpose of the tests with query Q2 is to show how our

progress indicator adjusts to the optimizer’s estimation errors
that result from complex query plans. Query Q2 contains two
joins:
(1) A join of the customer relation and the orders relation on

the join attribute custkey.
(2) A join of the orders relation and the lineitem relation on the

join attribute orderkey.
The query plan chosen by PostgreSQL is shown in Figure 8. In
the rest of Section 5.3, we refer to the hybrid hash join between
the customer relation and the orders relation as the first hybrid
hash join. We refer to the hybrid hash join between the
intermediate result that is generated by the first hybrid hash join
and the lineitem relation as the second hybrid hash join.

Figure 8. Query plan chosen by PostgreSQL.

We first discuss the test results from the unloaded system test
in Section 5.3.1. Then we discuss the test results from the I/O
interference test in Section 5.3.2.

5.3.1 Unloaded System Test Results for Query Q2

Figure 9 shows the query cost estimated by the progress

indicator over time, with the exact query cost indicated by the

horizontal dotted line. At the beginning of query execution, the
query cost estimated by the progress indicator remains as a
constant that is far different from the exact query cost. Starting
from 95 seconds, the query cost estimated by the progress
indicator begins to increase and keeps approaching the exact
query cost. This trend continues until 300 seconds, when the
query cost estimated by the progress indicator reaches the exact
query cost. From then on until the query completion time, the
query cost estimated by the progress indicator remains as a
second constant (the exact query cost).

We explain this behavior as follows:
(1) Due to statistics collection, PostgreSQL knows both the

cardinalities and the sizes of the three relations used in
query Q2. Since all tuples in both the customer relation and
the orders relation participate in the first hybrid hash join,
PostgreSQL estimates the cost of the first hybrid hash join
fairly precisely.

(2) The join between the customer relation and the orders
relation is a key-foreign key join. Also, all tuples in both
the customer relation and the orders relation participate in
this join. Hence, PostgreSQL estimates both the cardinality
and the size of the intermediate result that is generated by
the first hybrid hash join fairly precisely.

(3) PostgreSQL does not give a good estimate of the selectivity
of the select condition absolute(l.partkey)>0 on the
lineitem relation. Rather, for this select condition,
PostgreSQL uses a default value 1/3 as an approximation to
the real selectivity. This approximation is far from the real
selectivity, which is 1 (since the absolute value of l.partkey
is always positive). Hence, PostgreSQL gives a rather
imprecise cardinality estimate for the intermediate result of
the selection on the lineitem relation. As a result,
PostgreSQL gives a rather imprecise cost estimate for the
second hybrid hash join.

(4) Before 95 seconds, PostgreSQL is working on the first
hybrid hash join. During this period, the progress indicator
does not change the query cost estimate that is provided by
PostgreSQL, even if it is far different from the exact query
cost. This is because:
(a) PostgreSQL estimates the cost of the first hybrid hash

join fairly precisely.
(b) During this period, the progress indicator does not

change the cost estimate for the second hybrid hash
join, as the progress indicator does not see anything
during the execution that would cause it to change the
estimates for the inputs to the second hybrid hash join.

(5) Between 95 seconds and 300 seconds, PostgreSQL is
working on the selection on the lineitem relation. During
this period, the progress indicator begins to detect that
PostgreSQL was wrong in its cardinality estimate for the
intermediate result of the selection on the lineitem relation.
As a side effect, the progress indicator also continuously
refines the cost estimate for the second hybrid hash join. As
a result, the query cost estimated by the progress indicator
keeps approaching the exact query cost.

(6) Between 300 seconds and query completion time,
PostgreSQL is working on the second hybrid hash join.
During this period, the cardinalities of both inputs to the
second hybrid hash join are known exactly so the progress
indicator can make accurate predictions.

Figure 9. Q uery cost e stimated over time
(unloaded system test for Q 2).

150000

200000

250000

300000

0 100 200 300 400 500 600
time (seconds)

e
st

im
a

te
d

qu
e

ry
 c

os
t

(U
s)

lineitem (table-scan)

customer (table-scan)

σ

π orders (table-scan)

hybrid hash join

hybrid hash join

π

π

π

π

hash

hash

Figure 7. Completed percentage estimated over
time (unloaded system test for Q 1).

0%

20%

40%

60%

80%

100%

0 20 40 60 80 100
time (seconds)

es
tim

at
ed

 c
o

m
p

le
te

d

p
er

ce
n

ta
g

e

Figure 10 shows the query execution speed monitored by the
progress indicator over time. During query execution, the
monitored query execution speed fluctuates. This is mainly due
to the following reasons:
(1) The system performance has some random fluctuations

over time.
(2) The entire query execution is composed of multiple stages

(e.g., sequentially scanning a relation, probing a hash
table). Different stages have different performance
characteristics. For example, during some stages we mainly
perform sequential I/Os while during some other stages we
mainly perform random I/Os. Also, during some stages we
mainly perform I/O-intensive operations while during some
other stages we mainly perform CPU-intensive operations.

Figure 11 shows the remaining query execution time

estimated by the progress indicator over time. The closer to
query completion time, the more precise the remaining query
execution time estimated by the progress indicator. This is
because the closer to query completion time, the more precise
the query cost estimated by the progress indicator.

Like Figure 6, Figure 11 contains:
(1) a dashed line that shows the actual remaining query

execution time over time.
(2) a dotted line that shows the optimizer’s “estimate” of the

remaining query execution time over time.
After 340 seconds, the dashed line almost coincides with the
curve that represents the remaining query execution time
estimated by the progress indicator. That is, after 340 seconds,
the remaining query execution time that is estimated by the
progress indicator is fairly precise.

Compared to the dotted line, the curve that represents the
remaining query execution time estimated by the progress
indicator is much “closer” to the dashed line. That is, the
progress indicator is much better than the optimizer in
estimating the remaining query execution time.

Figure 12 shows the progress indicator’s estimate of the
percentage of the query that has been completed over time. This

percentage keeps increasing with time, as work is continuously
being done.

As mentioned above, after 300 seconds, the progress
indicator’s estimate of the query cost remains as a constant.
Also, as shown in Figure 10, after 300 seconds, the query
execution speed does not change much. Hence, after 300
seconds, the slope of the completed percentage curve remains
almost as a constant.

5.3.2 I/O Interference Test Results for Query Q2

In the I/O interference test, we started executing the query on
an unloaded system. At 190 seconds, we started a large file copy
that ran until 885 seconds. While it was running, this file copy
made the system heavily loaded and significantly decreased the
execution speed of the query. Hence, the query execution time
increased from 510 seconds to 1027 seconds.

In each figure of Section 5.3.2, we use two vertical dashed-
dotted lines, one representing the start of the file copy, and
another representing the end of the file copy.

Figure 13 shows the query cost estimated by the progress
indicator over time, with the exact query cost indicated by the
horizontal dotted line. We were initially perplexed by the shape
of the curve in Figure 13. Why doesn’t it match that of Figure 9?
After all, a concurrently running job should not impact the
estimate of the number of U a query will take, yet in Figure 13
the start of the file copy is clearly visible. After more reflection,
we realized that this makes sense. At 190 seconds, when the file
copy starts, the progress indicator is “learning” that the
optimizer's estimates were wrong. It does so by watching the
generation of intermediate results. When the file copy starts, the
rate at which intermediate results are generated decreases, so the
progress indicator begins “learning” more slowly, hence the
decrease in the slope of the curve.

Figure 14 shows the query execution speed monitored by the

progress indicator over time. Before 190 seconds (before the file
copy starts running), the shape of the curve in Figure 14 is
similar to that in Figure 10. However, once the file copy starts,

Figure 11. Remaining query execution time
estimated over time (unloaded system test for Q 2).

0

200

400

600

800

0 100 200 300 400 500 600
time (seconds)

es
tim

at
ed

 r
em

ai
ni

ng

qu
er

y
ex

ec
ut

io
n

tim
e

(s
ec

on
ds

)

Figure 13. Q uery cost estimated over time (I/O
interference test for Q 2).

150000

200000

250000

300000

0 200 400 600 800 1000 1200
time (seconds)

es
tim

at
ed

 q
u

er
y

co
st

 (
U

s)

Figure 10. Q uery execution speed over time
(unloaded system test for Q 2).

0

200

400

600

800

0 100 200 300 400 500 600
time (seconds)

q
u

er
y

ex
ec

u
tio

n
 s

p
ee

d

(U
s

p
er

 s
ec

o
n

d
)

Figure 12. Completed percentage estimated over
time (unloaded system test for Q 2).

0%

20%

40%

60%

80%

100%

0 100 200 300 400 500 600
time (seconds)

es
tim

at
ed

 c
om

pl
et

ed

pe
rc

en
ta

ge

the query execution speed is decreased. This situation continues
until 885 seconds, when the file copy finishes. After 885
seconds, the query execution speed again returns to that seen in
the unloaded system test.

Figure 15 shows the remaining query execution time

estimated by the progress indicator over time. Before 190
seconds (i.e., before the file copy starts running), the shape of
the curve in Figure 15 is similar to that in Figure 11. At 190
seconds, due to the start of the file copy, the remaining query
execution time estimated by the progress indicator increases
sharply. At 885 seconds, when the large file copy finishes, the
remaining query execution time estimated by the progress
indicator drops significantly.

Like Figure 6, Figure 15 contains:
(1) a dashed line that shows the actual remaining query

execution time over time.
(2) a dotted line that shows the optimizer’s “estimate” of the

remaining query execution time over time.
The general trend shown in Figure 15 is similar to that shown in
Figure 11:
(a) After 895 seconds, the dashed line almost coincides with

the curve that represents the remaining query execution
time estimated by the progress indicator. That is, after 895
seconds, the remaining query execution time that is
estimated by the progress indicator is fairly precise.

(b) Compared to the dotted line, the curve that represents the
remaining query execution time estimated by the progress
indicator is much “closer” to the dashed line. That is, the
progress indicator is much better than the optimizer in
estimating the remaining query execution time.

Figure 16 shows the progress indicator’s estimate of the
percentage of the query that has been completed over time. In
general, this percentage keeps increasing with time, as work is
continuously being done. Again, the impact of the file copy is
apparent between 190 seconds and 885 seconds.

5.4 Test Results for Query Q3
The purpose of the test with query Q3 is to show how the

progress indicator handles the optimizer’s estimation errors that
occur due to correlation. In this test, we changed the data in the
orders relation, so that on average, each customer tuple matches
r orders tuples on the attribute custkey, where:
(a) r=20 if the nationkey attribute value of the customer tuple

is between 0 and 9.
(b) r=0 if the nationkey attribute value of the customer tuple is

between 10 and 19.
(c) r=10 if the nationkey attribute value of the customer tuple

is between 20 and 24.
Hence, in query Q3, there is correlation in the customer relation
between the nationkey attribute and the number of orders that
the customer has made.

Query Q3 contains two joins. The first join is between the
customer relation and o1. The second join is between the join
result generated by the first join and o2. Because of the
correlations in the data, PostgreSQL’s optimizer does not give a
precise cardinality estimate for the first join.

Figure 17 shows the query cost estimated by the progress
indicator over time, with the exact query cost indicated by the
horizontal dotted line. At the beginning of query execution, the
query cost estimated by the progress indicator, which comes
from the optimizer, is far different from the exact query cost.
Starting from 10 seconds, the progress indicator begins to detect
that the optimizer was wrong, and its cost estimate begins to
increase and approaches the exact query cost. This trend
continues until 80 seconds, when the query cost estimated by the
progress indicator reaches the exact query cost. From then on
until the query completion time, the query cost estimated by the
progress indicator remains as a constant (the exact query cost).

5.5 Test Results for Query Q4
The purpose of the test with query Q4 is to show how the

progress indicator adjusts to the optimizer’s estimation errors
that grow with the number of joins in a query. Query Q4
contains two joins. The first join is between the customer

Figure 14. Q uery execution speed over time (I/O
interference test for Q 2).

0

200

400

600

800

0 200 400 600 800 1000 1200
time (seconds)

q
u

e
ry

 e
xe

cu
tio

n
 s

p
e

e
d

(U

s
p

e
r

se
co

n
d

)

Figure 16. Completed percentage estimated over
time (I/O interference test for Q 2).

0%

20%

40%

60%

80%

100%

0 200 400 600 800 1000 1200
time (seconds)

es
tim

at
ed

 c
o

m
p

le
te

d

p
er

ce
n

ta
g

e
Figure 15. Remaining query execution time

estimated over time (I/O interference test for Q 2).

0

200

400

600

800

1000

0 200 400 600 800 1000 1200
time (seconds)

es
tim

at
ed

 r
em

ai
ni

ng

qu
er

y
ex

ec
ut

io
n

tim
e

(s
ec

on
ds

)

Figure 17. Q uery cost estimated over time
(unloaded system test for Q 3).

70000

75000

80000

85000

90000

0 50 100 150 200
time (seconds)

e
st

im
a

te
d

qu
e

ry
 c

os
t

(U
s)

relation and the orders relation. The second join is between the
result of the first join and the lineitem relation.

Query Q4 contains two select conditions:
absolute(o.totalprice)>0 on the orders relation, and
absolute(l.partkey)>0 on the lineitem relation. Due to the same
reason as explained in Section 5.3.1 for Figure 9, PostgreSQL’s
optimizer gives a rather imprecise selectivity estimate for both
select conditions.

Due to errors in the selectivity estimate for the select
condition absolute(o.totalprice)>0, PostgreSQL’s cost estimate
of the first join is imprecise. Due to errors in the selectivity
estimate for the select condition absolute(l.partkey)>0,
PostgreSQL’s cost estimate of the second join is also rather
imprecise.

Figure 18 shows the query cost estimated by the progress

indicator over time, with the exact query cost indicated by the
horizontal dotted line. The vertical dashed-dotted line represents
the time when the first join finishes and the second join starts.
We can see that the progress indicator makes adjusts to both
optimizer estimation errors twice as the query is being
processed: first, while the first join is running; second, during
the second join.

5.6 Test Results for Query Q5
In all the above tests, the four queries used (Q1, Q2, Q3 and

Q4) were primarily I/O-intensive. In this section, we discuss the
test results for query Q5, which is CPU-intensive. We first
discuss the test results from the unloaded system test in Section
5.6.1. Then we discuss the test results from the CPU interference
test in Section 5.6.2.

5.6.1 Unloaded System Test Results for Query Q5

Figure 19 shows the remaining query execution time

estimated by the progress indicator over time, with the actual
remaining query execution time indicated by the dashed line.
We see that even for this CPU-bound query, calculating the
progress of the query using bytes consumed gives good results.
The query plan chosen was nested loops join, so in this case the
progress indicator is really measuring progress through the

“dominant input” (in this case the outer relation of the nested
loops join.)

5.6.2 CPU Interference Test Results for Query Q5

In this section, we discuss the test results from the CPU
interference test for query Q5. In the CPU interference test, we
started executing the query on an unloaded system. At 120
seconds, we started a CPU-intensive program that kept running
until the query finished execution. During its execution, this
CPU-intensive program made the system heavily loaded and
significantly decreased the execution speed of the query. Hence,
the query execution time increased from 211 seconds to 463
seconds.

Figure 20 shows the remaining query execution time

estimated by the progress indicator over time, with the actual
remaining query execution time indicated by the dashed line. At
120 seconds, when the CPU-intensive program starts execution,
the progress indicator “notices” that the query execution has
slowed down, and the remaining query execution time estimated
by the progress indicator increases significantly. Starting from
140 seconds, the curve that represents the remaining query
execution time estimated by the progress indicator almost
coincides with the dashed line. That is, starting from 140
seconds, the remaining query execution time estimated by the
progress indicator becomes fairly precise.

6. Conclusion
In this paper, we have proposed techniques for supporting

progress indicators for RDBMS queries. Our main idea is that as
a long-running query is being processed, we continuously refine
the query cost estimate and monitor the current query execution
speed. Then we continuously give the user an estimate of both
the percentage of the query that has been completed and the
remaining query execution time. Our experiments show that a
progress indicator based upon our techniques is useful both for
I/O-intensive and CPU-intensive queries, and that it adapts both
to the optimizer’s estimation errors and to varying runtime
system loads.

There are several interesting directions that we are
considering for future work:
(1) The estimation techniques described in this paper are fairly

coarse. For example, while measuring bytes processed is a
reasonable proxy for actually calculating CPU and I/O
utilization, it is certainly not exact. It is a non-trivial task to
make the estimates more precise by a more detailed
consideration of these factors, and it would be interesting to
see if the resulting increase in accuracy can be obtained at a
reasonable overhead, and also if this increase in accuracy is
significant from the user’s perspective.

Figure 18. Q uery cost estimated over time
(unloaded system test for Q 4).

150000

200000

250000

300000

0 100 200 300 400 500 600 700
t ime (seconds)

es
tim

at
ed

 q
ue

ry
 c

os
t (

U
s)

Figure 19. Remaining query execution time
estimated over time (unloaded system test for Q 5).

0

50

100

150

200

250

0 50 100 150 200 250
t ime (seconds)

es
tim

at
ed

 r
em

ai
n

in
g

q

u
er

y
ex

ec
u

tio
n

 ti
m

e
(s

ec
o

n
d

s)

Figure 20. Remaining query execution time

estimated over time (CPU interference test for Q 5).

0

100

200

300

400

500

0 100 200 300 400 500
time (seconds)

e
st

im
a

te
d

 r
e

m
a

in
in

g
 q

u
e

ry

e
xe

cu
tio

n
 t

im
e

 (
se

co
n

d
s)

(2) The estimation techniques described in this paper do not
make use of detailed statistics about intermediate results
(for example, they consider only the sizes of the
intermediate results, not histograms on their distributions.)
Again, it would be interesting to see if the effort required to
collect and use better statistics pays off in terms of user
satisfaction.

(3) It would be interesting to extend our techniques in order to
support wider classes of queries (one interesting such
challenge is how to handle correlated subqueries) and to
support systems with more options for query evaluation.

(4) As mentioned in Section 4, we do not explicitly count the
CPU cost due to operators internal to segments. These costs
are implicitly counted in that they slow the progress of the
segment in consuming its input. It is an interesting open
question whether and when progress indicators could be
improved by “looking inside” the pipelined segments.

Progress indicators have other potential uses besides
providing a user-friendly interface. For example, progress
indicators can be useful for:
(1) Load management. Suppose that due to some reason (e.g.,

to speed up the execution of a certain query), the DBA
decides to choose several queries from a pool of running
queries and blocks their execution for a while. A progress
indicator can help the DBA choose which queries to block.

(2) Automatic administration. The user may embed triggers
in a progress indicator to facilitate automatic database
administration. For example, the firing condition of such a
trigger can be: “send an email to the user if after a whole
day’s execution, the query finishes less than 10% of the
work.” This trigger function can be achieved by keeping
track of the history of the progress indicator.

(3) Performance tuning. By keeping track of the history of a
progress indicator, we can see whether the originally
estimated query cost is precise enough and where time goes
during query execution. Such information can help us
discover the performance bottleneck. Then we can decide
whether we need to improve the query plan by keeping
statistics up-to-date, using a higher level of optimization, or
designing a better database schema.

It would be interesting to experiment with these and other uses
of progress indicators in RDBMSs.

Acknowledgements
We would like to thank Yibin Pan for useful discussions. This

work was supported by the NCR Corporation and also by NSF
grants CDA-9623632 and ITR 0086002.

References
[1] A. Aboulnaga, S. Chaudhuri. Self-tuning Histograms:

Building Histograms Without Looking at Data. SIGMOD
Conf. 1999: 181-192.

[2] G. Antoshenkov. Dynamic Query Optimization in
Rdb/VMS. ICDE 1993: 538-547.

[3] N. Bruno, S. Chaudhuri, and L. Gravano. STHoles: A
Multidimensional Workload-Aware Histogram. SIGMOD
Conf. 2001: 211-222.

[4] D.A. Berque, M.K. Goldberg. Monitoring an Algorithm's
Execution. Computational Support for Discrete
Mathematics, DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, Vol. 15, pp. 153-163, 1992.

[5] R.L. Cole, G. Graefe. Optimization of Dynamic Query
Evaluation Plans. SIGMOD Conf. 1994: 150-160.

[6] C. Chekuri, W. Hasan, and R. Motwani. Scheduling
Problems in Parallel Query Optimization. PODS 1995:
255-265.

[7] DB2. SQL/Monitoring Facility. http://www.sprdb2.com
/SQLMFVSE.PDF, 2000.

[8] M. Dempsey. Monitoring Active Queries with Teradata
Manager 5.0. http://www.teradataforum.com
/attachments/a030318c.doc, 2001.

[9] M.A. Derr. Adaptive Query Optimization in a Deductive
Database System. CIKM 1993: 206-215.

[10] P.J. Haas, J.M. Hellerstein. Ripple Joins for Online
Aggregation. SIGMOD Conf. 1999: 287-298.

[11] J.M. Hellerstein, P.J. Haas, and H. J. Wang. Online
Aggregation. SIGMOD Conf. 1997: 171-182.

[12] Y.E. Ioannidis, R.T. Ng, and K. Shim et al. Parametric
Query Optimization. VLDB Journal 6(2): 132-151, 1997.

[13] I.F. Ilyas, J. Rao, and G.M. Lohman et al. Estimating
Compilation Time of a Query Optimizer. SIGMOD Conf.
2003: 373-384.

[14] N. Kabra, D.J. DeWitt. Efficient Mid-Query Re-
Optimization of Sub-Optimal Query Execution Plans.
SIGMOD Conf. 1998: 106-117.

[15] U. Larry. Monitoring Rollback Progress.
http://www.interealm.com/technotes/larry/rollback_time.ht
ml, 2002.

[16] B.A. Myers. The Importance of Percent-Done Progress
Indicators for Computer-Human Interfaces. SIGCHI 1985:
11-17.

[17] K.W. Ng, Z. Wang, and R.R. Muntz et al. Dynamic Query
Re-Optimization. SSDBM 1999: 264-273.

[18] Oracle. Communication with Oracle during long-running
query. http://www.experts-exchange.com/Databases
/Oracle/Q_20675711.html, 2003.

[19] PostgreSQL homepage, 2003. http://www.postgresql.org.
[20] R. Ramakrishnan, J.E. Gehrke. Database Management

Systems, Third Edition. McGraw-Hill, 2002.
[21] M. Stillger, G.M. Lohman, and V. Markl et al. LEO -

DB2's LEarning Optimizer. VLDB 2001: 19-28.
[22] TPC Homepage. TPC-R benchmark, www.tpc.org.

