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ABSTRACT
As Internet traÆc continues to grow and web sites become
increasingly complex, performance and scalability are ma-
jor issues for web sites. Web sites are increasingly relying
on dynamic content generation applications to provide web
site visitors with dynamic, interactive, and personalized ex-
periences. However, dynamic content generation comes at a
cost { each request requires computation as well as commu-
nication across multiple components.
To address these issues, various dynamic content caching

approaches have been proposed. Proxy-based caching ap-
proaches store content at various locations outside the site
infrastructure and can improve Web site performance by
reducing content generation delays, �rewall processing de-
lays, and bandwidth requirements. However, existing proxy-
based caching approaches either (a) cache at the page level,
which does not guarantee that correct pages are served and
provides very limited reusability, or (b) cache at the frag-
ment level, which requires the use of pre-de�ned page lay-
outs. To address these issues, several back end caching ap-
proaches have been proposed, including query result caching
and fragment level caching. While back end approaches
guarantee the correctness of results and o�er the advantages
of �ne-grained caching, they neither address �rewall delays
nor reduce bandwidth requirements.
In this paper, we present an approach and an implementa-

tion of a dynamic proxy caching technique which combines
the bene�ts of both proxy-based and back end caching ap-
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proaches, yet does not su�er from their above-mentioned
limitations. Our dynamic proxy caching technique allows
granular, proxy-based caching where both the content and
layout can be dynamic. Our analysis of the performance of
our approach indicates that it is capable of providing sig-
ni�cant reductions in bandwidth. We have also deployed
our proposed dynamic proxy caching technique at a ma-
jor �nancial institution. The results of this implementation
indicate that our technique is capable of providing order-of-
magnitude reductions in bandwidth and response times in
real-world dynamic Web applications.
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Distributed systems, Performance evaluation (eÆciency and
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1. INTRODUCTION
To provide visitors with dynamic, interactive, and per-

sonalized experiences, web sites are increasingly relying on
dynamic content generation applications, which build Web
pages on the 
y based on the run-time state of the Web site
and the user session on the site. But, these bene�ts come at
a cost { each request for a dynamic page requires computa-
tion as well as communication across multiple components
inside the server-side infrastructure.
Caching is a widely-used approach to mitigate the perfor-

mance degradations due to WWW content distribution and



delivery. Here, content generated for one user is saved, and
used to serve subsequent requests for the same content.
In general, there are two basic approaches: back-end caching

and proxy-based caching, which we discuss in detail in Sec-
tion 3. Back-end caches typically reside within a site, and
cache at the granularity of a fragment, i.e., a portion of a
Web page. This type of cache works with a dynamic con-
tent application to reduce the computational and communi-
cation resources required to build the page on the site, thus
reducing server-side delays. As we will describe in detail in
Section 3, back-end caching solutions do not rely on URLs
to identify cached content (as is the case with proxy-based
solutions), and thus guarantee correctness of the contents in
a generated page. However, this type of solution does not
reduce the bandwidth needed to connect to the server to ob-
tain content. In contrast, proxy-based caches typically store
content at the granularity of full web pages 1, and reside out-
side the site's infrastructure. As we will explain in detail in
Section 3, this type of caching can provide signi�cant band-
width savings, both in the site's infrastructure as well as on
the WWW infrastructure; however, it su�ers from two ma-
jor drawbacks: (1) full-page dynamically generated HMTL
�les generally have little reusability, leading to low hit ra-
tios; and (2) cache hits are determined based on a request's
URL, which does not necessarily uniquely identify the page
content, leading to the possibility of serving incorrect pages
from cache.
In this paper, we explore whether it is possible to achieve

the bene�ts of both approaches, without the limitations. The
holy grail of dynamic content caching is the ability to cache
dynamic content at �ner granularities outside the site's in-
frastructure. Such an approach would provide the bene-
�ts of caching �ner granularities of content (e.g., greater
reusability), while simultaneously achieving the bene�ts as-
sociated with proxy-based caching (e.g., reduced bandwidth,
reduced �rewall processing). In this paper, we propose an
approach for caching granular proxy-based dynamic content
that combines the bene�ts of both approaches, while su�er-
ing the drawbacks of neither. We describe our approach for
caching granular proxy-based dynamic content in Section 4.
Speci�cally, we describe an architecture for such a system, as
well as the data structures and algorithms needed to make it
work. Based on this approach, we describe the implementa-
tion of a dynamic content caching system, which is currently
in commercial deployment at a major �nancial institution.
Fourth, we show the e�ectiveness of our system by study-

ing its performance analytically and experimentally. Sec-
tion 5 describes our analysis, and the corresponding results,
which indicate that our approach is capable of providing
signi�cant reductions in bandwidth on the site infrastruc-
ture: more than 70% savings in bytes transmitted through
the network. In Section 6, we present experimental results
which validate our analytical �ndings.
This paper outlines the science behind, as well as an imple-

mentation of, a true proxy-based dynamic content caching
system. Speci�cally, our architecture and implementation
describe a dynamic content caching system operating in re-
verse proxy mode, providing signi�cant bandwidth savings
within the site infrastructure. The next step, moving the
proxy out to the edge of the network in forward proxy mode

1One class of proxy-based solutions which cache content at
�ner granularities is dynamic page assembly solutions. We
discuss dynamic page assembly in detail in Section 3.

would provide bandwidth savings beyond the site infrastruc-
ture, between the Web site and the edge of the network. By
placing content on forward proxies, end users would also
see substantial response time improvements, since content
would be delivered from points close to them on the net-
work. However, there are signi�cant technical challenges
associated with moving dynamic content to forward prox-
ies. Section 7 outlines the issues that remain open in order
to take dynamically generated content to the edge.

2. DYNAMIC CONTENT GENERATION:
BACKGROUND AND PRELIMINARIES

Over the past few years, Web sites have transitioned from
a static content model, where content is served from ready-
made �les, to a dynamic content model, where content is
generated on demand. Dynamic content generation allows
sites to o�er a wider variety of services and content. For
instance, a Web page can be customized according to an
individual's preferences, perhaps displaying the user's pre-
ferred stock quotes and a personal greeting.
A broad range of technologies are available to support

such dynamic content generation. For instance, applica-
tion servers (e.g., BEA's WebLogic [30] and IBM's Web-
Sphere [17]) are commonly used to handle page generation
tasks and manage connections to back-end services, such as
DBMSs and content management systems (CMSs). Appli-
cation servers run dynamic scripts or programs to generate
Web pages. These scripts can be written in a number of lan-
guages including Sun's Java Servlets and Java Server Pages
(JSP) [22], the Active Server Pages (ASP) family from Mi-
crosoft [21], and Perl [24].
At a high level, dynamic scripting works as follows. A

user request maps to an invocation of a script. This script
executes the necessary logic to generate the requested page,
which involves contacting various resources (e.g., database
systems) to retrieve, process, and format the requested con-
tent into a user deliverable HTML page.

2.1 Dynamic Layouts
Consider a Web site that caters to both registered users

(i.e., users who have set up an account with the site) and
non-registered users (i.e., occasional visitors). Suppose the
site allows registered users to create a user pro�le, which
speci�es the user's content preferences and allows him to
control the layout of the page. Here, pages contain a num-
ber of elements or fragments. For each request, the Web
site lays out the fragments on a page in a speci�c default
con�guration for non-registered, and for registered users as
determined by the user's pro�le.
In general, an HTML page consists of two distinct com-

ponents: content and layout. Content refers to the actual
information displayed and layout refers to a set of markup
tags that de�ne the presentation (e.g., where the content
appears on the page). Loosely speaking, the di�erent frag-
ments on a page represent content, whereas the layout deter-
mines how the fragments are presented on the user viewable
page. Here, the �nal presentation of the page is partially
determined by the order in which the markup tags appear
in the page, as well as the actual markup tags themselves
(e.g., hHRi, which adds a horizontal rule).
The foregoing discussion highlights two important char-

acteristics of dynamically generated content. First, not only



is the content of many sites dynamic, but also the page lay-
out. In other words, the precise organization of a page is
often determined at run-time. Second, and most important,
the same request URL can produce di�erent content and/or
di�erent layouts. The registered and non-registered users
submit the exact same URL to the site, yet they may re-
ceive very di�erent pages. This fact is very important, and
as we will show, one of the major impediments to caching
dynamic pages in a proxy cache.

2.2 Performance Bottlenecks in Serving Dy-
namic Web Pages

Having described how a dynamic Web page request is
served, we now discuss the potential bottlenecks in this pro-
cess. These bottlenecks can be classi�ed into two broad
areas: (a) network latency, i.e., delays on the network be-
tween the user and the Web site, and (b) server latency, i.e.,
delays at the Web site itself.

2.2.1 Network Latency
Typically, long distances separate users and Web sites.

Furthermore, content that is delivered over the Internet must
go through an extensive network of transmission and switch-
ing devices (e.g., routers, switches). Each such device is a
potential source of delay. The larger the size of the content,
the greater the network delay. Various caching solutions
have beeen proposed to mitigate network delays, which will
be discussed in Section 3.

2.2.2 Server Latency
After a user's request traverses the Internet and arrives

at the Web site, a number of Web site infrastructure delays
can occur, and these delays can be signi�cant. Delays at
the Web server can be broadly classi�ed into two categories:
(1) session processing delays, and (2) dynamic content gen-
eration delays. Web server session processing delays occur
because once a request arrives at the Web site, it must tra-
verse several hardware and software layers, a router, a �re-
wall and a switch, before reaching the Web server. Forcing
a user's request through these devices, each of which has a
�nite throughput, can expose network performance bottle-
necks. With today's Web pages containing an average of
10-20 objects, the sheer number of trips through the Web
site's infrastructure creates signi�cant latency [26]. Further-
more, as more and more users try to access the same con-
tent, the redundant load on the �rewalls and switches for
the same objects increases dramatically. Caching solutions
have also been proposed to address server delays, which will
be discussed in Section 3.
Content generation delays occur as a result of the work

required to generate a Web page. In the case of static Web
sites, content generation involved accessing the appropriate
response �le from a �le system. Thus, generation delays
are negligible in this case. However, in the case of dynamic
sites, the story is completely di�erent. As mentioned previ-
ously, dynamic site requests are processed by an application
layer consisting of application servers and other back end
system components such as DBMSs. Due to the complex-
ity of modern Web site application layers, sites are increas-
ingly employing a layered or n-tier application architecture,
which partitions the application into multiple layers. For
instance, the presentation layer is responsible for the dis-
play of information to users and includes formatting and
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transformation tasks. Presentation layer tasks are typically
handled by dynamic scripts (e.g., ASP, JSP). The business
logic layer is responsible for executing the business logic,
and is typically implemented using component technologies
such as Enterprise Java Beans (EJB). The data access layer
is responsible for enabling connectivity to back-end system
resources (e.g., DBMSs), and is typically provided by stan-
dard interfaces such as JDBC or ODBC. Such multi-layered
architectures have become widely accepted. For instance,
most Java-based Web applications follow the Model View
Controller (MVC) [16] design paradigm. In this paradigm,
presentation logic is handled by JSPs, and business logic is
controlled by Servlets, which in turn invoke the appropriate
business components (EJBs).
To better illustrate how multi-layered architectures serve

requests, consider Figure 1, which illustrates how part of this
request may be served. As this �gure shows, the following
steps are required to serve this request:

1. The application server executes the JSP script. The
JSP, running in the presentation layer, invokes a Java
Servlet in the business logic layer.

2. The Servlet contacts a content management sys-
tem (CMS) (e.g., Vignette [10]) to run personaliza-
tion logic.

3. The CMS requests data from the DBMS. This data
may include, for example, the names, descriptions, and
images associated with the Fiction category, as well as
user pro�le information (assuming that the user has
registered with the site). This request invokes con-
nectivity software (e.g., JDBC), in the data access
layer, which waits for a connection to the DBMS.

4. The DBMS invokes storage applications. These
storage applications may, in turn, make calls to a
�le system (not shown).

As the above example illustrates, serving a request for a
dynamically generated page typically involves nested task
invocations across multiple application layers. This process
can incur several types of delays, including:

� Computational Delays. This type of delay is the
result of executing various types of logic (e.g., query
processing). Note that this delay can occur at multiple
layers.



� Interaction Bottlenecks. This type of delay occurs
when a request must wait for a resource, such as a
connection to a DBMS.

� Cross-tier Communication. This type of delay oc-
curs as a result of the network communication required
between application components. For each invocation,
communication between the two components requires
network protocol support in the connectivity software
(e.g., JDBC), which traverses a network protocol stack
(e.g., TCP/IP).

� Object Creation and Destruction. This type of
delay is common in object-oriented applications, which
must repeatedly create and destroy objects.

� Content Conversion. This type of delay is a result
of data transformations (e.g., XML-to-HTML) and/or
formatting tasks.

Each of these content generation delays contributes to the
end-to-end latency in delivering a Web page. As user load
on a site increases, the site infrastructure is often unable
to serve requests fast enough. The end result is increased
response times for end users.
In summary, the performance bottlenecks in serving dy-

namic content are of two main types: network latency and
server latency. Server latency is further composed of session
processing delays and dynamic content generation delays. In
the next section, we will discuss existing caching approaches
that attempt to mitigate all of these types of delays.

3. EXISTING APPROACHES AND THEIR
LIMITATIONS

A widely used existing approach to address WWW perfor-
mance problems is based on the notion of content caching.
A variety of such methods exist. For a treatment of Web
caching techniques, refer to [23] - this work includes many
references, which we do not repeat in this paper. These
caching approaches can be classi�ed as back end and proxy-
based caching solutions. We discuss each in turn.

3.1 Back-end Caching Approaches
In response to these drawbacks, back end caching ap-

proaches have been proposed to accelerate dynamically gen-
erated content. These approaches are based on the idea of
caching content at the various layers within the site architec-
ture. For instance, various types of database caching have
been suggested, including caching the results of database
queries [20] and caching database tables in main memory [28,
9]. Database caching approaches can reduce some of the
delays associated with query processing operations. An-
other back end approach is presentation layer caching, which
caches HTML fragments. Many application servers provide
this type of caching capability (e.g., WebLogic from BEA
Systems [30]), which can mitigate delays due to presentation
layer tasks. Solutions from vendors such as SpiderCache [29]
take the approach of caching dynamically generated pages
within the site infrastructure. These solutions are similar to
reverse proxy caches, except that they operate within the
site infrastructure, and are typically implemented as plug-
ins to the Web server. A recent work proposes a back end
caching system that caches content at various levels, such

as database queries, HTML fragments, and pages [34]. An-
other more general back-end caching approach is component
level caching [14, 13], which caches arbitrary objects, in-
cluding HTML fragments and programmatic objects. This
approach addresses delays due to computation as well as de-
lays due to communication between di�erent modules, and is
available commercially as a software solution from Chutney
Technologies [32].
All of the above-mentioned back end caching approaches

can help reduce the delays associated with generating con-
tent. Also, since they reside at the back-end, these solutions
do guarantee the correctness of the output, unlike proxy-
based caches. Finally, by caching at �ner granularities,
these solutions achieve greater reuse of content and allow
�ne-grained invalidation. A limitation of back-end caching
solutions, however, is that they deliver all content from the
dynamic content application itself, and thus do not address
network-related delays, i.e., delays resulting from the need
to transmit high-bandwidth content through the site and
WWW infrastructures (e.g., �rewall processing delays, rout-
ing delays).

3.2 Proxy-based Caching Approaches
Proxy-based caching approaches are based on caching con-

tent outside the site's infrastructure. Such content can in-
clude static content such as media �les (pictures, audio,
video) or dynamically generated HTML pages. The utility
of using proxies to cache static content is well-known and is
not the focus of this paper. Rather, we wish to study the
usefulness of using proxies to cache the output of dynamic
Web sites. Two broad approaches exist in using proxies to
cache dynamic pages: page-level caching and dynamic page
assembly.

3.2.1 Page-level Caching
In this approach, the proxy caches full page outputs of

dynamic sites. This approach has been considered in the
literature, e.g., [6, 5] propose page-level caching techniques.
A number of commercially available solutions are based on
this approach. Some operate in reverse proxy mode, sit-
ting between the site and the Internet cloud (usually just
outside the site �rewall { a reverse proxy resides between
the site �rewall and the Internet cloud.), and relieving the
site infrastructure from the work required to push responses
through the site. Software solutions include Inktomi's Traf-
�c Server [8] and Internet Security and Acceleration (ISA)
Server from Microsoft [27], while hardware solutions are
available from vendors such as CacheFlow [4] and Network
Appliance [3]. Other solutions are deployed in forward proxy
mode, i.e., in distributed caching architectures located at
numerous points around the Internet. These solutions are
based largely on the fundamental body of work that ad-
dresses distributed proxy caching, e.g., [15, 25]. These so-
lutions, also known as Content Delivery Networking (CDN)
solutions, are primarily service-based solutions o�ered by
vendors such as Akamai [31] and Digital Island [1].
In general, page-level caches can improve web site per-

formance by reducing (a) delays associated with generating
the content, (b) delays associated with packet �ltering and
other �rewall-related delays, and (c) the bandwidth required
to transmit the content from the back end application to the
proxy-based cache.
There are, however, three major limitations associated



with using page-level caching solutions to cache dynamic
pages. First and foremost, page level caching solutions must
rely on the request URL to identify pages in cache. When
pages are dynamically generated, di�erent invocations of a
given script, even with the same input parameters, are not
guaranteed to produce the same page. Consider a Web site
that greets registered users on each page. Suppose a reg-
istered user, whom we will call Bob, requests a page. The
page displayed to Bob will include a "Hello, Bob" greeting.
Suppose a subsequent user, whom we will call Alice, requests
the same page (using the same request URL). Alice is not
a registered user on the site, so she should receive the page
without a greeting. However, if the site is using a proxy
cache, Alice will be served the page that was just served to
Bob, since this page matches the request URL. Thus, as this
example illustrates, proxy-based caches may serve incorrect
pages. This problem, traditionally, has prevented the use of
proxies in caching dynamic pages.
Another limitation of page level solutions is that there is

often very little reusability of full HTML pages. Sites that
serve highly personalized pages, for instance, may include a
customer greeting on every page, thus making every page in-
stance unique, and reusable only if the same user makes the
same request. This can lead to low hit ratios, in which case
few, if any, of the bene�ts of caching are actually realized.
Furthermore, caching at the page level causes unnecessary

invalidation. If only one or a few elements on a page become
invalid, then the entire page becomes invalid. Consider, for
example, a stock quote page on an online brokerage site.
Suppose that, given a ticker symbol as input, the output
page consists of three basic content elements: a current price
quote, a set of recent headlines for the company, and histori-
cal research data (e.g., price to earnings ratio). Clearly, price
quotes become invalid relatively quickly (perhaps within sec-
onds), while news headlines might be updated every thirty
minutes and historical data on a monthly basis. In this sce-
nario, the page cache would invalidate cached pages as the
price quotes become invalid, thus leading to the regenera-
tion of the news headlines and historical content elements at
a much greater frequency than the frequency at which they
change.

3.2.2 Dynamic Page Assembly
Dynamic page assembly is an approach popularized by

Akamai [31] as part of the Edge Side Includes (ESI) initia-
tive [7], and found in other products, such as IBM's trig-
ger monitor feature (available as part of WebSphere Edge
Server version 2.0 [11]). This approach entails establish-
ing a template for each dynamically generated page. The
template speci�es the content and layout of the page us-
ing a set of markup tags. Essentially, each page is factored
into a number of fragments (speci�cally, separate dynamic
scripts) that are used to assemble the page at a network
cache when the page is requested. Content generated from
templates and factored fragments are cacheable as separate
HTML �les on distributed caching architectures; here, re-
sponses are actually assembled at these distributed caching
locations around the Internet, rather than hitting the origin
server. By moving the dynamic content closer to the user,
many of the same bene�ts of page-level caching accrue, with
the additional bene�t of further reduced response times and
network bandwidth requirements (since content need not be
delivered from the origin Web site).

There are two major limitations associated with the dy-
namic page assembly approach. A key drawback is the re-
quirement that a site follow a speci�ed page design paradigm,
speci�cally, the use of templates which in turn call sepa-
rate dynamic scripts for each dynamically generated frag-
ment. This requires that page layout be known in advance.
The problem with this scenario is that these caches base re-
sponse decisions on the requested URL; once the template
and fragments for one of the two results in this example
are present in the cache, every request for a particular URL
will be served from cache, regardless of whether the tem-
plate in cache would produce the same output page as the
dynamic scripts on the Web site. Thus, sites supporting
dynamic layouts (most sites) will not be able to take ad-
vantage of dynamic page assembly. In addition, the use of
templates and fragments is a major departure from the stan-
dard Model-View-Controller design paradigm used in many
Web sites; thus, utilizing this new design paradigm may re-
quire redesigning and rebuilding a Web site from the ground
up.
Another, equally signi�cant drawback of the dynamic page

assembly approach is that it cannot be used in the context of
pages with semantically interdependent fragments. Indeed,
it turns out that if there exist dependencies among the frag-
ments of a page, it may be diÆcult, if not impossible, to fac-
tor the page into fragments. For example, a dynamic script
may contain the following execution sequence: (1) query the
user pro�le repository based on the visitor's userId obtained
at login and generate a user pro�le object; (2) based on the
user pro�le object, generate a Personal Greeting frag-
ment; and (3) based on the user pro�le object, generate a
Recommended Products fragment for the user. Here,two
of these fragments, the Personal Greeting and the Recom-
mended Products fragments, are dependent on the same user
pro�le object. If these two fragments were processed in se-
quence in the script, it might be possible to combine them
into a single fragment (i.e., generated by a single script in
dynamic page assembly). However, other processing may
occur between the generation of these two fragments, pro-
cessing which may or may not result in another cacheable
fragment. In either case, factoring this script into fragments
would require the same call to the user pro�le repository to
be repeated for both the Personal Greeting and Recom-
mended Products fragments. Clearly, the repetition of
the same call in generating a single page is redundant. As
a result, using a dynamic page assembly approach to cache
this page would result in signi�cant repetition of work on the
site. The corollary is that these approaches are optimal only
for pages that can be easily decomposed into a small num-
ber of static, independent fragments, and where the overall
layout of the page does not change.
A recent work that can be considered a dynamic assembly

approach is [19]. This work proposes a proxy cache that
stores query templates, along with query results, which are
used to manage the cache. While this approach can mitigate
some delays associated with query processing, it does not
address the numerous other delays associated with dynamic
content generation.

3.2.3 Summary of Proxy-based Caching Approaches
In summary, proxy caching approaches, whether based

on full-page caching or dynamic page assembly, when they
work, are able to generate signi�cant bandwidth savings by



serving the request from the proxy rather than having to
route it through the origin Web site infrastructure. How-
ever, due to the many limitations discussed above, their ap-
plicabilty in caching dynamic pages is rather limited and
their primary use is in caching static content or �xed layout
content that can be factored into some combination of static
fragments.

3.3 Summary of Existing Approaches
In summary, we note a strong dichotomy between the

two above-mentioned approaches. Proxy-based approaches,
when e�ective, can provide tremendous bandwidth savings
by serving content from points outside the site's infrastruc-
ture. However, these approaches su�er from several severe
limitations in the context of dynamic sites which limit their
e�ectiveness in practice, leading to the loss of the bene�ts
of caching. Back end approaches mitigate these issues, yet
cannot provide any bandwidth bene�ts. The \Holy Grail"
of content caching has been a solution that can provide both
bandwidth savings, like proxy-based approaches, as well as
server-side acceleration, like the back-end approaches dis-
cussed above.
In this paper, we propose an approach for granular proxy-

based caching of dynamic content that combines the bene-
�ts of proxy-based caching with those of back-end caching
techniques, while attempting to minimize their limitations.
Unlike existing dynamic page assembly techniques, our ap-
proach supports dynamic page layouts and thus does not
require that a particular site design be enforced.

4. DYNAMIC PROXY-BASED CACHING AP-
PROACH

In this section, we describe our proposed approach for
granular proxy-based caching of dynamic content. We �rst
discuss the intuition behind our approach, followed by the
architecture and technical details.

4.1 Intuition
Our objective is to deliver dynamic pages from proxy

caches. Recall that dynamic pages are \dynamic" across
two dimensions: they posess dynamic content and dynamic
layout. Any dynamic content caching system must account
for both - in fact, the primary weakness of existing proxy
caching schemes arises from their inability to map a URL
to the appropriate content and layout. To mitigate this
weakness, our essential intuition may be summarized as fol-
lows: we will cache dynamic content fragments in the proxy
caches, but the layout information would be determined, on
demand, from the source site infrastructure. In other words,
we propose to respond to a dynamic page request, Ri, as fol-
lows. We will route Ri through a dynamic proxy, Di, to the
site infrastructure. Upon reaching the site infrastructure,
Ri will cause the appropriate dynamic script to run. A back
end module will observe the running of this script and de-
termine the layout of the page to be generated (the actual
process is much more complicated, and will be described
in greater detail subsequently in this section). This layout,
which will be much smaller than the actual page output, will
be routed to the proxy Di. The proxy will �ll in the content
from its cache and route it to the requestor.
For example, consider again a request for a Category page

on an e-commerce site. The request passes through the dy-
namic proxy cache, which routes it to the origin site. At the

origin site, the application server executes the category.jsp
script to serve this request. A monitor at the back end
observes the application processing and generates the page
layout accordingly. This layout will contain \holes" to indi-
cate where the cached fragments should be inserted. These
\holes" are shown as the empty boxes in the layout. This
layout is sent to the dynamic proxy cache, which �lls in the
\holes" with the appropriate fragments from its cache. The
resulting page is then delivered to the user.
This high-level example raises many questions about the

details of our dynamic proxy caching system. For instance,
how does the monitor at the back end determine the page
layout? How does the monitor know which fragments are in
the dynamic proxy cache? How is the dynamic proxy cache
managed? In the remainder of this section, we answer these
types of questions by explaining the details of this system.

4.2 System Architecture
The Dynamic Proxy Cache (DPC) stores dynamic frag-

ments outside the site infrastructure and assembles these
fragments in response to user requests. Note that the DPC
can also cache other types of content as well (e.g., rich con-
tent, static fragments). However, in this paper, we focus on
the novel aspects of our approach { the ability to handle
dynamic content and dynamic layouts. The ability to sup-
port dynamic layouts is enabled by the Back End Monitor
(BEM). The BEM resides at the back end and generates the
layout for each request. This layout is passed back to the
DPC, which assembles the page that is returned to the re-
questing user. As we will soon show, this approach enables
signi�cant reductions in bandwidth requirements, since only
the page layouts and perhaps some content, are transmitted
from the back end to the DPC.
The DPC can reside either (a) at the origin site (in a re-

verse proxy con�guration, as is the case for the DPC labeled
D1), or (b) at the network edge (in a forward proxy con�g-
uration, as is the case for DPCs D2 and D3). In the former
case, the primary bene�t is the reduction in the number
of bytes transferred through the site infrastructure for each
request.
In the latter case, the forward proxy con�guration (similar

to that of present-day CDNs), the bene�ts are even greater
{ the reduction in bytes transferred for each request is real-
ized not only within the site infrastructure, but also across
the Internet. The basic underlying technical issues are the
same for both the reverse proxy as well as the forward proxy
con�gurations. The main di�erence between the two is that
a forward proxy con�guration typically would mandate a
distributed cache architecture, whereas a reverse proxy con-
�guration is a logically single unit. Thus, two issues arise in
the forward proxy case that are not present in the reverse
proxy case: (1) request routing, and (2) cache coherency.
Request routing refers to the problem of determining which

dynamic proxy should service an incoming request. This
problem has been studied extensively in the context of CDNs,
which focus primarily on routing requests for static �les
(e.g., image �les), where a �le is uniquely identi�ed by its
URL. A key di�erence between request routing for CDNs
and for our system is the nature of the content. Our system
must address the issue of routing requests for dynamic frag-
ments. Clearly, routing that is based on URL is not applica-
ble in our case since page fragments cannot be determined
from the URL. Given that multiple copies of fragments may



exist in the dynamic proxies, the issue of cache coherency
arises. When changes to source data cause a fragment to
become invalid, some mechanism must be in place to ensure
that all dynamic proxies are aware of this change so that all
serve the correct version of the fragment.
Our commercially implemented solution incorporates tech-

niques which address the above-mentioned issues and thus
can be con�gured either as a forward proxy or as a reverse
proxy. Due to the conciseness and space requirements of
this paper, our subsequent treatment will assume a reverse
proxy con�guration. Note however, that all the technical is-
sues would apply, virtually unchanged, to the forward proxy
case.
Having described the system architecture, we now delve

into the technical details.

4.3 Technical Details
Our dynamic proxy caching system consists of two main

phases: (a) system initialization, and (b) run-time opera-
tion. In this section, we discuss these two phases, followed
by an in depth discussion of the system components.

4.3.1 System Initialization Phase
A prerequisite of our dynamic proxy caching system is

that the cacheable fragments be identi�ed and marked. This
is an initialization activity which we refer to as tagging. The
tagging process enables page layouts to be determined dy-
namically at run-time.
Once the cacheable fragments are identi�ed, each of the

corresponding code blocks in the script is tagged. Tagging
essentially means marking a code block as cacheable. This
is done by inserting APIs around the code block, enabling
the output of the code block to be cached at run-time. The
tagging process assigns a unique identi�er to each cacheable
fragment, along with the appropriate metadata (e.g., time-
to-live).

4.3.2 Run-Time Operation
At run-time, a user submits a request to the site. This

request, e.g., http://www.booksOnline.com/catalog.jsp?
categoryID=Fiction is passed through to the application
server. This causes the catalog.jsp script to be invoked
with the parameter name-value pair categoryID-Fiction.
The application logic in the script runs as usual, until a
tagged code block is encountered. When such a code block
is encountered, a check is made to see whether the fragment
produced by that code block exists in the DPC. This is done
by looking up the fragmentID in the BEM's cache directory.
The cache directory will be described in detail in the next
section. For now, it is suÆcient to know that the cache
directory contains the fragmentIDs and additional metadata
for each fragment in the DPC.
When a request is made, there are two general cases pos-

sible:

1. The fragmentID is not in cache or is in cache
but invalid. In this case, an entry is inserted into
the cache directory for this fragment, the content is
generated, and a SET instruction is written to the page
template. This instruction will insert the fragment
into the DPC.

2. The fragmentID is in cache and is valid. In this
case, a GET instruction is written to the page template.

This instruction will retrieve the fragment from the
DPC.

At run time, a cache directory lookup is done for the nbKey
fragmentID. If the fragmentID is not found or is invalid, an
entry is inserted into the cache directory. Details of this
process will be described in the next section. For now, it is
suÆcient to know that the BEM assigns a key that is used
by the DPC. The Navigation Bar code block executes to
generate the content, which is then written to the template,
along with a SET instruction. If the fragmentID is found
in cache, only the key and a GET instruction are written
to the template. Similar processing would be done for the
remaining cacheable code blocks.
For the �rst request for a given page, none of the frag-

ments will be in cache, so the layout will consist of SET
instructions, along with the generated content. For subse-
quent requests, the cacheable fragments will likely be cached,
assuming that they have not been invalidated. In this case,
the layout will consist mostly of GET instructions and hence
will be much smaller. Having described the run-time opera-
tion of our system, we are now ready to discuss the system
components in greater detail.

4.3.3 System Components
In this section, we provide a detailed explanation of the

two main components of our dynamic proxy caching sys-
tem, the Dynamic Proxy Cache (DPC) and the Back End
Monitor (BEM).
The DPC is a proxy cache that stores dynamic fragments

and assembles these fragments on demand using run-time
page layout instructions. The DPC assembles pages by fol-
lowing the instructions provided by the BEM (to be de-
scribed in more detail later in this section). All cache man-
agement functionality for the DPC is handled by the BEM as
well. The structure of the DPC cache is straightforward: it
is implemented as an in-memory array of pointers to cached
fragments, where the DpcKey serves as the array index.
The BEM resides at the back end and has two primary

functions: (1) managing the cache for the DPC, and (2)
caching intermediate objects. We proceed to describe each
of these functions.
Managing the DPC cache is a critical function of the

BEM. This function is enabled by the cache directory, a
critical data structure contained in the BEM. The cache di-
rectory keeps track of the fragments in the DPC and their
respective metadata. The cache directory has the following
basic structure:

fragmentID unique fragment identi�er (name+parameterList)
dpcKey unique fragment identifer within the DPC
isValid 
ag to indicate validity of fragment
ttl time-to-live value for fragment

The dpcKey is a unique integer identi�er associated with
each fragment that serves as a common key for both the
BEM and the DPC. There are two reasons why we use this
dpcKey. First, it reduces the tag size. The fragmentIDs
described in the previous section are typically quite long,
especially those that include a list of parameters. By as-
signing an integer, we are able to reduce the size of the page
templates that are sent to the DPC. Second, as we will soon
show, assigning a common key eliminates the need for ex-
plicit communication between the BEM and the DPC.



There are two basic ways in which fragments can become
invalid: (a) an invalidation policy determines that a frag-
ment is invalid, or (b) a replacement policy determines that
a fragment should be evicted from cache. A cache invalida-
tion manager monitors fragments to determine when they
become invalid. Fragments may become invalid due to, for
instance, expiration of the ttl or updates to the underly-
ing data sources. A cache replacement manager monitors
the size of the cache directory and selects fragments for re-
placement when the directory size exceeds some speci�ed
threshold.
In any case, the fragment's isValid 
ag will be set to

FALSE to indicate that it is no longer valid. When this oc-
curs, the dpcKey for the fragment is inserted at the end of the
freeList. This technique ensures that a subsequent request
for the fragment will be generated and served fresh.
Note that the size of the freeList should be at least as

large as the maximum cache size. This is due to the fact that
invalid fragments are not explicitly removed from the DPC.
Rather, the slots corresponding to these fragments simply
remain unused until they are subsequently assigned to a new
fragment by the BEM. For example, suppose a fragment Fi,
having dpcKey 2, becomes invalid. It is marked as such by
the BEM and \2" is inserted back into the freeList. No
action is taken by the DPC. Eventually, dpcKey 2 will be
assigned to a fragment (either Fi or a new fragment) by the
BEM, at which time the appropriate content will be inserted
into the corresponding slot in the DPC.
Having described the technical details of our proposed ap-

proach, we now examine the bene�ts of this approach. In
the next section, we present an analysis that attempts to
quantify these bene�ts.

5. ANALYTICAL RESULTS
There are two types of bene�ts that accrue in our model:

(a) performance and scalability of the server side, and (b)
bandwidth savings. In this section, we analyze these bene-
�ts. Due to space limitations, we only present the results of
our bandwidth savings analysis. Table 1 contains the nota-
tion to be used throughout this section.

Symbol Description

E = fe1; e2; : : : ; emg set of fragments
C = fc1; c2; : : : ; cng set of pages
Ei = fej : ej 2 cig set of fragments corresponding

to page ci
sej average size of fragment ej (bytes)
g average size of tag (bytes)
f average size of header (bytes)
h hit ratio, i.e., fraction of fragments

found in cache
R total number of requests during

observation period

Table 1: Notation

In our analysis, we wish to compare the bandwidth savings
for two cases: (a) with the dynamic proxy cache and (b)
without. We next describe our assumptions and derive a
generic expression for the number of outbound bytes served
by a given Web site infrastructure, i.e., the number of bytes
transmitted between the back end and the DPC during a
given time period. We then derive speci�c expressions for
each of the two cases.

Recall from our discussion in Section 2 that a dynamic
script generates pages. For the purposes of this analysis, we
model a given Web application as a set of such pages C =
fc1; c2; : : : ; cng. Each page is created by running a script
(as described in Section 2), and the resulting page consists
of a set of fragments, drawn from the set of all possible
fragments, E = fe1; e2; : : : ; emg. We let Ei, Ei � E , be the
set of fragments corresponding to page ci. There exists a
many-to-many mapping between C and E , i.e., a page can
have many fragments and a fragment can be associated with
many pages. We are interested in the size of a page, which
depends on the size of its constituent fragments. The exact
size of a fragment cannot be determined a priori, since it
will depend upon a variety of run-time factors (e.g., query
selectivity). Thus, we use the average size of a fragment
ej , which we denote by sej . Each page also has f bytes of
header information associated with it. Header information
includes HTTP headers, such as Server, Content-type.
We de�ne expected bytes served, B, as the average number

of bytes served by the Web site that is hosting the applica-
tion during some time interval. In other words, B is the
number of bytes transferred between the back end and the
DPC during some period of interest. To compute B, we
need to know the size of each response and the number of
times the page is accessed during the time interval. A re-
sponse refers to the content that is generated by the applica-
tion server to represent the requested page. In our analysis,
we are interested in capturing the impact of our system on
the bandwidth requirements for the dynamic content that is
served.
When the dynamic proxy cache is not used, the response

size is simply the page size. However, when the dynamic
proxy cache is used, the size of the response will be di�erent
from the page size due to the inclusion of the tags and the
exclusion of the cacheable content. Let Sci be the size of the
response corresponding to page ci as delivered by the hosting
site, and ni(t) be the number of times the page ci is accessed
during the speci�ed time interval. Then the general form of
B over a given time interval is given by: �ni=1Sci � ni(t).
Note that Sci will be di�erent for the no cache and dynamic
proxy cache cases, while ni(t) will be the same. We now
proceed to derive expressions for ni(t) and Sci .
In deriving an expression for ni(t), we need to charac-

terize the access rate for a given page, e.g., the probability
that the Fiction category page is requested, and the arrival
rate of requests to the www.books.com site. Let P(i) be the
probability that page ci is accessed for a given request and
f(t) be the probability density function (pdf) that describes
the arrival rate of requests. Then the number of times page
ci is accessed during the interval (t1; t2) is P(i)

R t2
t1

f(t)dt.

We assume that P(i) is governed by the Zip�an distribu-
tion, which has been shown to describe Web page requests
with reasonable accuracy [2, 12].
We now derive expressions for response size Sci for the

two cases. For the no cache case, the size of the response for
page ci, denoted as SNCci

, is given by �8ej2cisej + f , which
is the sum of the sizes of all the fragments on the page and
the header information.
For the dynamic proxy cache case, we must consider �rst

whether a given fragment is considered to be cacheable. Let
Xj be an indicator variable de�ned as follows:



8ej 2 E;Xj =

�
1 if fragment ej is cacheable
0 otherwise

We assume that the cacheability of each fragment is de-
termined at design time. At run-time, we are interested
in the fraction of fragments found in cache, which we de-
note as h. Then, the size of the response SCci , is given by
�8ej2ci [Xj [(h� g)+ (1� h)(sej +2g)] + (1�Xj)(sej ) + f ].
We have compared the expected bytes served for the two

cases using the baseline parameter values shown in Table 2.
Our choice of 0.8 as the baseline hit ratio is driven largely
by the numerous studies that have shown that Web requests
often exhibit locality [2, 12]. Furthermore, our experience
with several large enterprise Web applications indicates that
such hit ratios are easily achievable in practice.

Parameter Value

hit ratio (h) 0.8
fragment size (se) 1K bytes
number of fragments per page 4
number of pages 10
average size of header information (f) 500 bytes
tag size (g) 10 bytes
cacheability factor 0.6
number of requests during interval (R) 1 million

Table 2: Baseline Parameter Settings for Analysis

In this comparison, we plot the ratio B
C

B
NC . Figure 2(a)

shows the results of this comparison as fragment size (se)
is varied. As this �gure shows, this ratio decreases as frag-
ment size increases. For small fragments sizes (e.g., less than
1 KB), the ratio exhibits a steep drop. This drop can be ex-
plained as follows: For small fragment sizes, the size of the
tags is large with respect to the fragment size, decreasing
the savings in bytes served for the dynamic proxy cache.
This is why the ratio is greater than 1 as the fragment size
approaches 0. As these results indicate, our dynamic proxy
caching technique has a greater impact for larger fragment
sizes (e.g., greater than 1 KB).
We now examine the sensitivity of expected bytes served

to changes in key parameter values. We begin by varying hit
ratio (h), while holding all other parameter values constant.
Figure 2(b) shows the percentage savings in expected bytes
served as the hit ratio is varied from 0 to 1. In the case where
no fragments are served from cache (i.e., h = 0), we see that
the savings is negative. In other words, there is a cost to use
the dynamic proxy cache in this case because it adds tags
to the responses, thereby increasing the response sizes. This
e�ect holds up to the point where h = 0:01. Thus, as long
as 1% or more fragments are served from cache, using the
dynamic proxy cache will reduce the expected bytes served.
Clearly, the greatest savings occurs when all fragments are
served from cache (i.e., h = 1).
The foregoing results indicate that the dynamic proxy

cache is indeed bene�cial in terms of reducing the expected
number of bytes transferred. The dynamic proxy cache,
however, incurs a cost. In particular, assembly of the page
at the dynamic proxy cache requires that each response be
scanned for the tags. A logical question that arises is: does
the savings in bytes transferred o�set the cost to scan? We
now provide a comparative analysis in an attempt to answer

this question. More speci�cally, we compare the savings in
expected bytes served to the scan cost. Note that regardless
of whether the dynamic proxy cache is used, each packet is
scanned by the �rewall. Let y be the cost for the �rewall
to scan a byte. Then the cost to scan in the case where no
cache is used is given by:

scanCost
NC = B

NC
� y (1)

Let z be the scan cost per byte for the dynamic proxy
cache. Then the cost to scan in the case where the dynamic

proxy cache is used is scanCostC = B
C
(y + z). Both the

�rewall and the dynamic proxy cache scan a given string of
bytes. Since string matching algorithms (e.g., KMP [18]) are
linear-time algorithms, we can consider the scanning costs
for the �rewall and the dynamic proxy cache to be of the
same order. Thus, we assume that z � y. Making this
substitution, our expression for the scan cost per byte for
the dynamic proxy cache becomes:

scanCost
C = B

C
� 2y (2)

In comparing our expressions for the cost to scan in both
cases, (1) and (2), we expect the dynamic proxy cache to
provide better performance when the following condition

holds: B
NC

> 2B
C
. Thus, we can conclude the following

result:

Result 1. It is preferable to use the dynamic proxy cache
when the expected bytes served with no cache are more than
twice the expected bytes served with cache.

Figure 3(a) shows a comparison of (1) and (2) as the
cacheability factor is varied (using again the parameter set-
tings in Table 2). The cacheability factor is the percentage
of all fragments that are cacheable for a given application.
This �gure shows two plots: (a) the savings in expected
bytes served, and (b) the savings in bytes scanned (both
expressed as percentages). The upper curve shows the sav-
ings in bytes served. As expected, this savings increases as
the cacheability ratio increases. Note that this savings is
positive over the entire range, indicating that employing the
dynamic proxy cache will always decrease the bytes served.
The lower curve shows the savings in the scan cost. The
savings in this case also increases as the cacheability ratio
increases. An important di�erence in this curve is that the
savings in bytes does not always o�set the scan cost, as in-
dicated by the negative range. More speci�cally, using the
parameters we have selected, if the cacheability ratio is less
than about 50%, then it is not worth caching since the scan
cost is greater than the savings in bytes served.

6. EXPERIMENTAL RESULTS
In this section, we attempt to validate our analytical re-

sults obtained in Section 5 with a set of experimental results.
We have implemented our dynamic proxy caching system.

Both the DPC and the BEM are written in C++. The DPC
is built on top of Microsoft's ISA Server [27] so that we can
take advantage of ISA Server's proxy caching features. The
page assembly code is implemented as an ISAPI �lter that
runs within ISA Server.
Our experiments were run in a test environment that at-

tempts to simulate the conditions described in Section 5.
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Figure 3: Analytical and Experimental Results

Thus, we have incorporated the parameter settings in Ta-
ble 2. The test site is an ASP-based site which retrieves
content from a site content repository.
The basic test con�guration consists of a Web server (Mi-

crosoft IIS), a site content repository (Oracle 8.1.6), a �re-
wall/proxy cache (ISA Server), and a cluster of clients. The
client machines run WebLoad, which sends requests to the
Web server. For the dynamic proxy cache case, the DPC
runs on the ISA Server machine, and the BEM runs on the
IIS machine. Communication between all software modules
is via sockets over a local area network. Figure 4 shows the
test con�guration. This �gure attempts to show both the
logical and physical test con�gurations. The origin site com-
ponents (Web server, DBMS, and BEM) run on one machine
(labeled Origin Site), while the components that reside out-
side the site infrastructure (�rewall, proxy cache, and DPC)
run on another machine (labeled External).
The number of bytes served is obtained by measuring

bandwidth using the Sni�er network monitoring tool [33].
More precisely, the bandwidth measurement is taken be-
tween the Origin Site machine and the External machine in
Figure 4. In these experiments, we are interested in captur-
ing the impact of our system on the bandwidth requirements
for the dynamic content that is served. Based on our ear-
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Figure 4: Test Con�guration

lier discussion regarding static content, the static content
in these experiments is cacheable in the ISA Server proxy
cache. Thus, in steady-state, static content will be served
from the ISA Server proxy cache and therefore will not im-
pact bandwidth requirements between the Web server and
the DPC.
Figure 3(b) shows the ratio B

C

B
NC as fragment size is varied.

Our results from Section 5 are repeated here (the curve la-
beled \Analytical") for comparison purposes. As this �gure
shows, our experimental results follow our analytical results
closely. Interestingly, the analytical curve falls below the
experimental curve. This di�erence can be explained by the
network protocol headers (e.g., TCP/IP headers) that are
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included in the responses, which the Sni�er tool captures in
its bandwidth measurements. However, we do not account
for these headers in our analytical expressions. Thus, for
every response, there is some network protocol messaging
overhead. The smaller the response, the greater this over-
head is. This is why the di�erence between the analytical
and experimental curves is higher for smaller fragment sizes
than it is for larger fragment sizes.
As in Section 5, we now examine the sensitivity of ex-

pected bytes served to changes in hit ratio. Figure 5 shows
a comparison of this sensitivity for the analytical (curve
repeated from Figure 2(b)) and experimental cases. Here
again, our experimental results closely follow our experi-
mental results. In this case, the analytical curve is slightly
higher than the experimental curve, and the di�erence in-
creases as the hit ratio increases. This is again a result
of the network protocol headers that are included in the
bandwidth measurements. Speci�cally, as more content is
served from cache, response size decreases, yet the network
protocol message size remains constant. Thus, the message
overhead increases with respect to the response size as hit
ratio increases, causing the savings to be smaller in the ex-
perimental case.
Figure 6 shows a comparison of the sensitivity of expected

bytes served to changes in cacheability. The analytical curve
is repeated from Figure 3(a) (the upper curve). Once again,

the experimental results follow our analytical results closely.
We also observe again the e�ects of the network protocol
headers that are included in the experimental results, which
cause the analytical curve to be higher than the experimen-
tal curve.

7. LIMITATIONS OF THIS WORK
The approach considered in this paper assumes a reverse

proxy con�guration, in which a single instance of the cache
sits between a Web site's �rewall and the Internet, serving
cached dynamic content from outside the site's infrastruc-
ture. This provides signi�cant bandwidth savings within the
site's infrastructure, but does not impact bandwidth usage
between the site and the end user.
An ideal approach would place the dynamic proxy cache

on the edge, serving dynamic content from a point close
to the end user and providing bandwidth savings not only
within the site infrastructure, but also between the site and
the forward proxy cache. In this approach, a number of for-
ward proxies would be placed at strategic points around the
network to provide optimal coverage. Since content would
be served from the edge of the network, end users would see
dramatic improvements in response time.
There are, however, a number of technical challenges as-

sociated with approach.

� Request Routing: With multiple dynamic proxy caches
out on the network, how can we route requests for dy-
namic content optimally across the cache set? Most
work in this area addresses the problem of routing
static content identi�ed by a URL. However, we are in-
terested in routing fragments of dynamic content rather
than full pages, which cannot be identi�ed with a URL.
Another complication within this area is the issue of
handling proxy failure. Here, requests routed to a
given dynamic proxy cache must failover seamlessly
and transparently (from the user's point of view) to
another proxy cache.

� Cache Coherency: How do we handle issues of cache
coherency across multiple distributed caches? Here,
multiple copies of a particular fragment may reside on
di�erent dynamic proxy caches distributed across the
network. Some mechanism must be in place to ensure
that correct responses are served to end users from the
caching system.

� Cache Management: How do we manage the content
of multiple caches? Changes to the data source on a
site cause fragments to become invalid. The dynamic
proxy caches distributed across the network need some
means of obtaining notice of such changes.

� Scalability: Clearly, a system comprised of muliple
caches distributed across the network and addressing
the issues noted above must contain some complexity
within its protocols. However, this system must be
capable of serving heavy traÆc loads in real time. In
other words, the data structures and algorithms under-
lying the system must scale, both in time and space
requirements.

8. CONCLUSION



In this paper, we have proposed an approach for granular,
proxy-based caching of dynamic content. The novelty in our
approach is that it allows both the content and layout of Web
pages to be dynamic, a critical requirement for modern Web
applications. Our approach combines the bene�ts of exist-
ing proxy-based and back end caching techniques, without
their respective limitations. We have presented the results
of an analytical evaluation of our proposed system, which
indicates that it is capable of providing signi�cant reduc-
tions in bandwidth on the site infrastructure. Furthermore,
we have described an implementation of our system and pre-
sented a case study which details the performance results of
this system on a major real-world dynamic Web application.
Our implementation results demonstrate that our system is
not only capable of providing order-of-magnitude reductions
in bandwidth requirements, but also order-of-magnitude re-
ductions in end-to-end response times.
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