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Abstract

If industry visionaries are correct, our lives will soon be
full of sensors, connected together in loose conglomerations
via wireless networks, each monitoring and collecting data
about the environment at large. These sensors behave very
differently from traditional database sources: they have in-
termittent connectivity, are limited by severe power con-
straints, and typically sample periodically and push imme-
diately, keeping no record of historical information. These
limitations make traditional database systems inappropri-
ate for queries over sensors. We present the Fjords archi-
tecture for managing multiple queries over many sensors,
and show how it can be used to limit sensor resource de-
mands while maintaining high query throughput. We eval-
uate our architecture using traces from a network of traffic
sensors deployed on Interstate 80 near Berkeley and present
performance results that show how query throughput, com-
munication costs, and power consumption are necessarily
coupled in sensor environments.

1. Introduction
Over the past few years, a great deal of attention in the

networking and mobile-computing communities has been
directed towards building networks of ad-hoc collections of
sensors scattered throughout our environment. Researchers
at UC Berkeley [15] and other universities have embarked
on projects to produce small, wireless, battery powered sen-
sors and low level networking protocols. These projects
have brought us close to the the vision of ubiquitous com-
puting in which computers and sensors assist in every as-
pect of our lives. To fully realize this vision, however, it
will be necessary to combine and query the sensor readings
produced by these collections of sensors. Sensor networks
will produce very large amounts of data, which needs to be
combined and aggregated to analyze and react to the world.
Clearly, the ability to apply traditional data processing lan-
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guages and operators to this sensor data is highly desirable.
Unfortunately, standard DBMS assumptions about the char-
acteristics of data sources do not apply to sensors, so a sig-
nificantly different architecture is needed.

There are two primary differences between sensor based
data sources and standard database sources. First, sensors
typically deliver data in streams: they produce data contin-
uously, often at well defined time intervals, without hav-
ing been explicitly asked for that data. Queries over those
streams need to be processed in near real time, partly be-
cause it is often extremely expensive to save raw sensor
streams to disk, and partly because sensor streams represent
real world events, like traffic accidents and attempted net-
work break-ins, which need to be responded to. The second
major challenge with processing sensor data is that sensors
are fundamentally different from the over-engineered data
sources typical in a business DBMS. They do not deliver
data at reliable rates, the data is often garbled, and they have
limited processor and battery resources which the query en-
gine needs to conserve whenever possible.

Our contribution to the problem of querying sensor data
operates on two levels: First, we propose an enhanced query
plan data structure called Fjords (“Framework in Java for
Operators on Remote Data Streams”), which allows users
to pose queries that combine streaming, push-based sen-
sor sources with traditional pull-based sources. To execute
these queries, our system provides non-blocking and win-
dowed operators which are suited to streaming data. Sec-
ond, we propose power-sensitive Fjord operators called sen-
sor proxies which serve as mediators between the query pro-
cessing environment and the physical sensors.

Sensor data processing and the related area of query pro-
cessing over data streams have been the subject of increas-
ing attention recently. Systems groups around the coun-
try are providing key technology that will be necessary for
data intensive sensor based applications. Our work differs,
however, in that it is focused on providing the underlying
systems architecture for sensor data management. Thus,
our focus is on the efficient, adaptive, and power sensitive
infrastructure upon which these new query processing ap-
proaches can be built. To our knowledge, this is the first
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work addressing the low level database engine support re-
quired for sensor centric data-intensive systems. We ad-
dress related work in more detail in Section 6.

We now present an overview of the sensor query process-
ing environment and discuss the sensor testbed that we are
building. In the remaining sections, we present the specific
requirements of sensor query processing, propose our solu-
tions for satisfying those requirements, present some initial
performance results, discuss related work, and conclude.

2. Background
2.1. Sensor Environment

We focus on sensor processing environments in which
there are a large number of fairly simple sensors over which
users want to pose queries. For our purposes, a sensor con-
sists of a remote measurement device that provides data at
regular intervals. A sensor may have some limited process-
ing ability or configurability, or may simply output a raw
stream of measurements. Because sensors have at best lim-
ited capabilities, we do not ask them to parse queries or
keep track of which clients need to receive samples from
them: they simply sample data, aggregate that data into
larger packets, and route those packets to a data processing
node, which is a fixed, powered, and well connected server
or workstation with abundant disk and memory resources,
such as would be used in any conventional database system.

We call the node that receives sensor data the sensor’s
proxy, since it serves as that sensor’s interface into the rest
of the query processor. Typically, one machine is the proxy
for many sensors. The proxy is responsible for packaging
samples as tuples and routing those tuples to user queries as
needed. The general query environment is shown in Figure
1. Users issue queries to the server; the server processes the
query, instantiates operators and locates sensor proxies, and
starts the flow of tuples. Although sensors do not directly
participate in query processing, their proxy can adjust their
sample rate or ask them to perform simple aggregation be-
fore relaying data, which, as we will show, is an important
aspect of efficiently running queries over many sensors.

We are building this system as a part of the Telegraph
data flow processing engine [23]. We have extended this

system with our Fjords data flow architecture. In Telegraph,
users pose queries at a workstation on which they expect
results to appear. That workstation translates queries into
Fjords through a process analogous to normal query opti-
mization. Queries run continuously because streams never
terminate; queries are removed from the system only when
the user explicitly ends the query. Results are pushed from
the sensors out toward the user, and are delivered as soon as
they become available.

Information about available sensors in the world is stored
in a catalog, which is similar to a traditional database cat-
alog. The data that sensors provide is assumed to be divis-
ible into a typed schema, which users can query much as
they would any other relational data source. Sensors submit
samples, which are keyed by sample time and logically sep-
arated into fields; the proxy converts those fields into native
database tuples which local database operators understand.
In this way, sensors appear to be standard object-relational
tables; this is a technique proposed in the Cougar project
at Cornell[18], and is consistent with Telegraph’s view of
other non-traditional data sources, such as web pages, as
relational tables.

2.1.1. Traffic Sensor Testbed. We have recently begun
working with the Berkeley Highway Lab (BHL), which, in
conjunction with the California Department of Transporta-
tion (CalTrans), is deploying a sensor infrastructure on Bay
Area freeways to monitor traffic conditions. The query pro-
cessing system we present is being built to support this in-
frastructure. Thus, in this paper, we will use traffic scenar-
ios to motivate many of our examples and design decisions.

CalTrans has embedded thousands primitive sensors on
Bay Area highways over the past few decades. These sen-
sors consist of inductive loops that register whenever a ve-
hicle passes over them, and can be used to determine ag-
gregate flow and volume information on a stretch of road as
well as provide gross estimates of vehicle speed and length.
Typically these loops are used to monitor specific portions
of the highway by placing data collection hardware at sites
of interest. With several thousand sensors streaming data,
efficient techniques for executing queries over those streams
are crucial.

2.1.2. Next-Generation Traffic Sensors. Current research
on sensor devices is focused on producing very small sen-
sors that can be deployed in harsh environments (e.g. the
surface of a freeway.) Current sensor prototypes at UC
Berkeley, MIT, and UCLA share similar properties: they
are very small, wireless radio-driven, and battery powered,
with a size of about 10 cm � . The ultimate goal is to produce
devices in the 1 mm � range – about the size of a gnat [15].
We refer to such miniscule sensors as “motes”. Current
prototypes use 8bit microprocessors with small amounts of
RAM (less than 32kBytes) running from 1 to 16 MHz, with
a small radio capable of transmitting at tens of kilobits per



second with a range of a few hundred feet[12]. As sensors
become miniaturized, they will be small enough that they
could be scattered over the freeway such that they will not
interfere with cars running over them, or could fit easily
between the grooves in the roadway. Sensors could be con-
nected to existing inductive loops, or be augmented with
light or pressure sensors that could detect whenever a car
passed over them.

One key component of this new generation of sensors is
that they are capable of on board computation, which may
take the form of simple filtering or aggregation. This abil-
ity allows the computational burden on the server and the
communications burden on the motes to be reduced. For ex-
ample, rather than directly transmitting the voltage reading
from a light sensor many times a second, motes could trans-
mit a count of the number of cars which have passed over
them during some time interval. This aggregation reduces
the amount of communication required and saves work at
the central server. In an environment with tens of thousands
of sensors, the benefits of such reductions can be substan-
tial.

2.2. Requirements for Sensor Query Processing

In this section, we focus on the properties of sensors and
streaming data that must be taken into account when de-
signing the low level infrastructure needed to efficiently in-
tegrate streaming sensor data into a query processor. There
are other important issues in sensor stream processing, such
as query language and algebra design and the detailed se-
mantics of stream operators, which are not the focus of this
work. We discuss these in more detail in Section 6.

2.2.1. Limitations of Sensors. Limited resource avail-
ability is an inherent property of sensors. Scarce resources
include battery capacity, communications bandwidth, and
CPU cycles. Power is the defining limit: it is always possi-
ble to use a faster processor or a more powerful radio, but
these require more power which often is not available. Cur-
rent small battery technology provides about 100mAh of
capacity. This is enough to drive a small Atmel processor,
like the one used in several wireless sensor prototypes, at
full speed for only 3.5 hours. Similarly, the current TRM-
1000 radio, also used in many sensor prototypes, uses about
4 � J per bit of data transmitted: enough to send just 14MB
of data using such a battery. In practice, the power required
for sending data over the wireless radio is the dominant cost
[19], so it is often worth spending many CPU cycles to con-
serve just a few bytes of radio traffic.

2.2.2. Streaming Data. Another property of sensors is
that they produce continuous, never ending streams of data
(at least, until the sensors run out of battery power!). Any
sensor query processing system needs to be able to oper-
ate directly on such data streams. Because streams are infi-
nite, operators can never compute over an entire streaming

relation: i.e. they cannot be blocking. Many implementa-
tions of traditional operators, such as sorts, aggregates, and
some join algorithms therefore, cannot be used. Instead, the
query processor must include special operators which de-
liver results incrementally, processing streaming tuples one
at a time or in small blocks.

Streaming data also implies that sensors push data into
a query plan. Thus, the conventional pull-based iterator
model [8] does not map well onto sensor streams. Although
possible, implementing a strict iterator model-like interface
on sensors requires them to waste power and resources. To
do so, sensors must keep the receivers on their radios pow-
ered up at all times, listening for requests for data samples
from multiple user queries. Power, local storage, and com-
munications limitations make it much more natural for sen-
sors to deliver samples when those samples become avail-
able.

Since many sensors have wireless connections, data
streams may be delivered intermittently with significant
variability in available bandwidth. Even when connectiv-
ity is generally good, wireless sensor connections can be
interrupted by local sources of interference, such as mi-
crowaves. Any sensor database system needs to expect vari-
able latencies and dropped or garbled tuples, which tradi-
tional databases do not handle. Furthermore, because of
these high latencies, an operator looking for a sensor tuple
may be forced to block for some time if it attempts to pull
a tuple from the sensor. Thus, operators must process data
only when sensors make it available.

2.2.3. Processing Multiple Queries. Sensors pose ad-
ditional difficulties when processing complex or concurrent
queries. In many sensor scenarios, multiple users pose sim-
ilar queries over the same data streams. In the traffic sce-
nario, for example, commuters will want to know about
road conditions on the same sections of road, and so will
issue queries against the same sensors. Since streams are
append-only, there is no reason that a particular sensor read-
ing should not be shared across many queries. As our ex-
periments in Section 4.3 show, this sharing greatly improves
the ability of a sensor query system to handle many simul-
taneous queries.

Furthermore, the demands placed on individual sensors
vary based on time of day, current traffic conditions, and
user requirements. At any particular time users are very
interested in some sensors, and not at all interested in oth-
ers. A query processing system should be able to account
for this by dynamically turning down the sample and data
delivery rates for infrequently queried sensors.

3. Solution

Having described the difficulties of integrating sensor
streams into a query processor, we now present our solu-
tion: Fjords and sensor proxies.



3.1. Fjords: Generalized Query Plans for Streams
A Fjord is a generalization of traditional approaches

to query plans: operators export an iterator-like interface
and are connected together via local pipes or wide area
queues. Fjords, however, also provide support for inte-
grating streaming data that is pushed into the system with
disk-based data which is pulled by traditional operators. As
we will show, Fjords also allow combining multiple queries
into a single plan and explicitly handle operators with mul-
tiple inputs and outputs.

Previous database architectures are not capable of com-
bining streaming and static data. They are either strictly
pull-based, as with the standard iterator model, or strictly
push based, as in parallel processing environments. We be-
lieve that the hybrid approach adopted by Fjords, whereby
streams can be combined with static sources in a way which
varies from query-to-query is an essential part of any data
processing system which claims to be able to compute over
streams.

Figure 2 shows a Fjord running across two machines,
with the left side detailing the modules running on a lo-
cal machine. Each machine involved in the query runs a
single controller in its own thread. This controller accepts
messages to instantiate operators, which include the set of
standard database modules – join, select, project, and so on.
The controller also connects local operators via queues to
other operators which may be running locally or remotely.
Queues export the same interface whether they connect two
local operators or two operators running on different ma-
chines, thus allowing operators to be ignorant of the nature
of their connection to remote machines. Each query running
on a machine is allocated its own thread, and that thread
is multiplexed between the local operators via procedure
calls (in a pull-based architecture) or via a special scheduler
module that directs operators to consume available inputs or
to produce outputs if they are not explicitly invoked by their
parents in the plan. The Fjord shown in Figure 2 was instan-
tiated by a message arriving at the local controller; it applies
two predicates to a stream of tuples generated by joining a
sensor stream with a remote disk source.

In the rest of this section, we discuss the specific archi-
tecture of operators and queues in Fjords.

3.1.1. Operators and Queues. Operators form the core
computational unit of Fjords. Each operator � has a set
of input queues, ��� and a set of output queues ��� . These
outputs route results of a single select or join, or an en-
tire query, to multiple upstream operators or end users. �
reads tuples in any order it chooses from ��� and outputs any
number of tuples to some or all of the queues in ��� . This
definition of operators is intentionally extremely general:
Fjords are a dataflow architecture that is suitable for build-
ing more than just traditional query plans. For instance, in
Section 4 we discuss folding multiple queries into a single
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Fjord; this is accomplished by creating operators with mul-
tiple outputs.

Queues are responsible for routing data from one oper-
ator (the input operator) to another (the output operator.)
Queues have only one input and one output and perform
no transformation on the data they carry. Like operators,
queues are a general structure. Specific instances of queues
can connect local operators or remote operators, behave in a
push or pull fashion, or offer transactional properties which
allow them to guarantee exactly once delivery.

Naturally, it is possible for a queue to fill. When this
happens, one has no choice but to discard some data: as
is the case with network routers and multimedia streams,
it is not possible to pause a stream of real-world data. The
choice of which data to discard is handled via an application
specific callback from the queue. For many sensors, the
correct scheme is to discard the oldest samples first, as they
are least relevant to the current state of the sensor.

3.1.2. Flexible Data Flow. The key advantage of Fjords
is that they allow distributed query plans to use a mixture
of push and pull connections between operators. Push or
pull is implemented by the queue: a push queue relies on its
input operator to �	��
 data into it which the output operator
can later ���
 . A pull queue actively requests that the input
operator produce data (by calling its 
�����������
������ method) in
response to a ���
 call on the part of the output operator.

Push queues make sensor streams feasible. When a sen-
sor tuple arrives at a sensor proxy, that proxy pushes those
tuples onto the input queues of the queries which use it as a
source. The operators draining those queues never actively
call the sensor proxy; they merely operate on sensor data as
it is pushed into them. With this high level view of Fjords



in mind, We now present a detailed view of the internals of
a Fjord operator.

3.1.3. State Based Execution Model. The programming
model for operators is based upon state machines: each op-
erator in the query plan represents a state in a transition di-
agram, and as such, an operator is required to implement
only a single method: ��� 
���������� 
������ � ��� ��� which, given
a current state � and some set of inputs � causes the opera-
tor to transition to a new state (or remain in the same state)
and possibly produce some set of output tuples � . Implicit
in this model of state programming is that operators do not
block: when an operator needs to poll for data, it checks
its input queue once per 
���� ������
������ call, and simply transi-
tions back to � until data becomes available. Alternatively,
some operators, such as Eddy [3] and XJoin [26] are de-
signed to pursue other computation (e.g. transition to states
other than � ) when no data is available on a particular input;
the Fjords programming model is naturally suited to such
adaptive query processing techniques.

Formulating query plan operators as a state machine
presents several interesting issues. It leads to operators
which are neither “push” nor “pull”: they simply look for
input and operate on that input when it is available. Tra-
ditional pull-based database semantics are implemented via
the queue between two operators: when an operator looks
for data on a pull-based input queue, that queue issues a
procedure call to the child operator asking it to produce data
and forces the caller to block until the child produces data.
This allows operators to be combined in arbitrary arrange-
ments of push and pull.

Figure 3 shows pseudocode for an example selection op-
erator (Figure 3a) and pull queue (Figure 3b.) The selec-
tion operator simply checks its queue to see if there is data
available; the queue may or may not actually return a tuple.
If that queue is an instance of a pull queue, the 
�����������
������
method of the operator below will be called until it produces
a tuple or an error.

One important advantage of a state machine model is that
it reduces the number of threads. Traditional push based
schemes place each pushing operator in its own thread; that
operator produces data as fast as possible and enqueues it.
The problem with this approach is that operating system
threads packages often allow only very coarse control over
thread scheduling, and database systems may want to prior-
itize particular operators at a fine granularity rather than de-
voting nearly equal time slices to all operators. Our sched-
uler mechanism enables this kind of fine grain prioritization
by allowing Fjord builders to specify their own scheduler
which 
�������� ��
�������� some modules more frequently than
others. Furthermore, on some operating systems, threads
are quite heavyweight: they have a high memory and con-
text switch overhead [27]. Since all state machine operators
can run in a single thread, we never pay these penalties, re-

gardless of the operating system.

3.1.4. Sensor Sensitive Operators. Fjords can use stan-
dard database operators, but to be able to run queries over
streaming data, special operators that are aware of the in-
finite nature of streams are required. Some relational op-
erators, like selections and projections, work with streams
without modification. Others cannot be applied to a stream
of data: aggregates like average and count and sorts fall
under this category. Some join implementations, such as
sort-merge join, which require the entire outer relation also
fail. We use a variety of special operators in place of these
solutions.

First, non-blocking join operators can be used to allow
incremental joins over streams of data. Such operators have
been discussed in detail in adaptive query processing sys-
tems such as Xjoin [26], Tukwila [14], Eddy [3] and Ripple
Joins [9]. We have implemented an in memory symmetric
hash-join [28], which maintains a hashtable for each rela-
tion. When a tuple arrives, it is hashed into the appropri-
ate hash table, and the other relation’s table is probed for
matches.

It is also possible to define aggregate operators, like
count and average, which output results periodically; when-
ever a tuple arrives from the stream, the aggregate is up-
dated, and its revised value is forwarded to the user. Simi-
lar techniques were also developed in the context of adap-
tive databases, for instance, the CONTROL Project’s On-
line Aggregation algorithms [10] and the Niagara Internet
Query System [24].

If traditional (i.e., blocking) aggregates, sorts, or joins
must be used, a solution is to require that these operators
specify a subset of the stream which they operate over. This
subset is typically defined by upper and lower time bounds
or by a sample count. Defining such a subset effectively
converts an infinite stream into a relation which can be used
in any database operator. This approach is similar to pre-
vious work done on windows in sequence database systems
[22, 25].

By integrating these non-blocking operators into our sys-
tem, we can take full advantage of Fjords’ ability to mix
push and pull semantics within a query plan. Sensor data
can flow into Fjords, be filtered or joined by non-blocking
operators, or be combined with local sources via windowed
and traditional operators in a very flexible way.

3.2. Sensor Proxy
The second major component of our sensor query solu-

tion is the sensor proxy, which acts as an interface between
a single sensor and the Fjords querying that sensor. The
proxy serves a number of purposes. The most important
of these is to shield the sensor from having to deliver data
to hundreds of interested end-users. It accepts and services
queries on behalf on the sensor, using the sensor’s processor
to simplify this task when possible.



public class Select extends Module �
Predicate filter; //The selection predicate to apply
QueueIF inputQueue;
...
public TupleIF transition(StateIF state) �

MsgIF mesg;
TupleIF tuple = null;
//Look for data on input queue
mesg = inputQueue.get();
if (mesg != null) �

//If this is a tuple, check to see if it passes predicate
if (mesg instanceof TupleMsg &&

filter.apply(((TupleMsg)mesg).getTuple()))
tuple=((TupleMsg)mesg).getTuple();

else ... handle other kinds of messages ...�
... adjust state: Select is stateless, so nothing to do here ...
return tuple; //returning null means nothing to output�

�

(a)Selection Operator

public class PullQueue implements QueueIF �
//Modules this Queue connects
Module below, above;
StateIF bSt;
...
public MsgIF get() �

TupleIF tup=null;
//Loop, pulling from below
while (tup == null) �

tup=below.transition(bSt);
... check for errors, idle ...�

return new TupleMsg(tuple);�
�

(b)Pull Queue
Figure 3. Code Snippet For Selection Operator and Pull Queue

One function of the sensor proxy is to adjust the sam-
ple rate of the sensors, based on user demand. If users are
only interested in a few samples per second, there’s no rea-
son for sensors to sample at hundreds of hertz, since lower
sample rates are directly proportional to longer battery life.
Similarly, if there are no user queries over a sensor, the sen-
sor proxy can ask the sensor to power off for a long period,
coming online every few seconds to see if queries have been
issued.

An additional role of the proxy is to direct the sensor
to aggregate samples in predefined ways, or to download
a completely new program into the sensor if needed. For
instance, in our traffic scenario, the proxy can direct the
sensor to use one of several sampling algorithms depend-
ing on the amount of detail required by user queries. Or,
if the proxy observes that all of the current user queries are
interested only in samples with values within some range,
the proxy can instruct the sensor to not transmit samples
outside that range.

Also, we expect that in many cases there will be a num-
ber of users interested in data from a single sensor. As
we show in Section 4.3 below, the sensor proxy can dra-
matically increase the throughput of a Fjord by limiting the
number of copies of sensor tuples flowing through the query
processor to just one per sample, and having the user queries
share the same tuple data.

Sensor proxies are long running services that exist across
many user queries and route tuples to different query opera-
tors based on sample rates and filter predicates specified by
each query. When a new user query over a sensor stream is
created, the proxy for that sensor is located and the query
is installed. When the user stops the query, the proxy stops
relaying tuples for that query, but continues to monitor and
manage the sensor, even when no queries are being run.

3.3. Building A Fjord

Given Fjord operators and sensor proxies as the main
elements of our solution, it is straightforward to generate
a Fjord from a user query over a sensor. For this discus-

sion, we will make the simple assumption that queries con-
sist of a set of selections to be applied, a list of join pred-
icates, and an optional aggregation and grouping expres-
sion. We are not focused on a particular query language,
and believe Fjords are a useful architectural construct for
any query language – other research projects, such as Preda-
tor and Tribeca, have proposed useful languages for query-
ing streaming data, which we believe are readily adaptable
to our architecture [22, 25]. We do not allow joins of two
streams nor can we aggregate or sort a stream. Users are
allowed to define windows on streams which can be sorted,
aggregated, or joined. A single stream can be joined with
a stream window or a fixed data source if it is treated as
the outer relation of an index join or the probe relation of
a hash-join. Users can optionally specify a sample rate for
sensors, which is used to determine the rate at which tuples
are delivered for the query.

Building the Fjord from such a query works as follows:
for each base relation � , if � is a sensor, we locate the persis-
tently running sensor proxy for � . We then install our query
into � ’s proxy, asking it to deliver tuples at the user provided
sample rate and to apply any filters or aggregates which the
user has specified for the sensor stream. The proxy may
choose to fold those filters or aggregates into existing pred-
icates it has been asked to apply, or it may request that they
be managed by separate operators. For a relation ��� that
does not represent a sensor, we create a new scan operator
over � � . We then instantiate each selection operator, con-
necting it to a base relation scan or earlier selection operator
as appropriate. If the base relation is a sensor, we connect
the selection via a push-queue, meaning that the sensor will
push results into the selection. For non-sensor relations, we
use a pull queue, which will cause the selection to invoke
the scan when it looks for a tuple on its input queue.

We then connect join operators to these chains of scans
and selects, performing joins in the order indicated by a
standard static query optimizer. If neither of the joined re-
lations represents a sensor, we choose the join method rec-



ommended by the optimizer. If one relation is a sensor, we
use it as the probe relation of a hash join, hashing into the
static relation as each stream tuple is pushed into the join.
The output of a join is a push queue if one relation is from
a sensor, and a pull queue otherwise.

Sorts and aggregates are placed at the top of the query
plan. In the case where one (or both) of the relations is
from a sensor with a user specified window size, we treat
it as a non-sensor relation by interposing a filter operator
above the sensor proxy that passes only those tuples in the
specified window.

3.4. Multiple Queries in a Single Fjord
One way in which streaming data differs from traditional

data sources is that it is inseparably tied with the notion of
now. Queries over streams begin looking at the tuples pro-
duced starting at the instant the query is posed – the history
of the stream is not relevant. For this reason, it is possible
to share significant amounts of computation and memory
between several queries over the same set of data sources:
when a tuple is allocated from a particular data source, that
tuple can immediately be routed to all queries over that
source – effectively, all queries are reading from the same
location in the streaming data set. This means that stream-
ing tuples need only be placed in the query processor’s
memory once, and that selection operators over the same
source can apply multiple predicates at once. Fjords explic-
itly enable this sharing by instantiating streaming scan oper-
ators with multiple outputs that allocate only a single copy
of every streaming tuple; new queries over the same stream-
ing source are folded into an existing Fjord rather than being
placed in a separate Fjord. A complete discussion of how
this allocation and query folding works is beyond the scope
of this paper, but related ideas are presented in literature on
continuous queries [5]. We will, however, show how this
folding can be used to improve query performance in the
results section which follows.

4. Traffic Implementation and Results
We now present two performance studies to motivate the

architecture given above. The first study, given in this sec-
tion, covers the performance of Fjords. The second study,
given in Section 5, examines the interaction of sensor power
consumption and the sensor proxy and demonstrates several
approaches to traffic sensor programs which can dramati-
cally alter sensor lifetime.

4.1. Traffic Queries
We present here two sample queries which we will refer

to through the rest of the section, as given by the follow-
ing SQL excerpts. These queries are representative of the
types of queries commuters might realistically ask of a traf-
fic inquiry system. These queries are run over data from 32
of CalTrans’ inductive loops collected by an older genera-
tion of sensors equipped with wireless radio links that relay

data back to UC Berkeley. These sensors consist of sixteen
sets of two sensors (referred to as “upstream” and “down-
stream”), with one pair on either side of the freeway on eight
distinct segments of I-80 near UC Berkeley. The sensors are
386-class devices with Ricochet 19.2 kilobit modem links
to the Internet. They collect data at 60Hz and relay it back
to a Berkeley server, where it is aggregated into counts of
cars and average speeds or distributed to various database
sources (such as ours) via JDBC updates.
Query 1
SELECT AVG(s.speed, � )
FROM sensorReadings AS s
WHERE s.segment ���������	��
�������������

Query 1 selects the average speed over segments of the
road, using an average window interval of � seconds. These
queries can be evaluated using just the streaming data cur-
rently arriving into the system.They require no additional
data sources or access to historical information.
Query 2
SELECT AVG(s.speed, � ), i.description
FROM incidents as i,

sensorReadings as s
WHERE i.time >= now - �������������������
GROUP BY i.description
HAVING ��� �!����"$#&%'����# ��()� >

(SELECT AVG(s.speed, � )
FROM sensorReadings as s
WHERE i.segment = s.segment
AND s.segment �+*��������	��
���,���!�-����. )

Query 2 joins sensor readings from slow road seg-
ments the user is interested in to traffic incidents which are
known to have recently occurred in the Bay Area. Slow
road segments are those with an average speed less than
� � �0/-1�2 ����02	�&34/ . The set of segments the user is inter-
ested in is 5 � �0� �76 ���8 �� 
 � . “Recently” means since

��98 0: ���;/��0� seconds before the current time. The Cali-
fornia Highway Patrol maintains a web site of reported in-
cidents all over California, which we can use to build the
incidents relation [4]. Evaluating this query requires a join
between historical and streaming data, and is considerably
more complicated to evaluate than Query 1.

4.2. Traffic Fjords
In this section, we show two alternative Fjords which

correspond to Query 1 above. Space limitations preclude us
from including similar diagrams for Query 2; we will dis-
cuss the performance of Query 2 briefly at the end of this
section. Figure 4 shows a Fjord that corresponds to Query
1. Like the query, it is quite simple: tuples are routed first
from the BHL server to a sensor proxy operator, which uses
a JDBC input queue to accept incoming tuples. This proxy
collects streaming data from various sensors, averages the
speeds over some time interval, and then routes those ag-
gregates to the multiplex operator, which forwards tuples to
both a save-to-disk operator and a filter operator. The save-
to-disk operator acts as a logging mechanism: users may
later wish to recall historical information over which they
previously posed queries. The filter operator selects tuples
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Figure 4. Fjord Corresponding to Query 1

based on the user query, and delivers to the user a stream of
current speeds for the relevant road segment.

Notice that the data flow in this query is completely push
driven: as data arrives from the sensors, it flows through the
system. Also note that user queries are continuous: data is
delivered periodically until the user aborts the query. The
fact that data is pushed from sensors eliminates problems
that such a system could experience as a result of delayed
or missing sensor data: since the sensor is driving the flow
of tuples, no data will be output for offline sensors, but data
from other sensors flowing through the same Fjord will not
be blocked while the query processor waits for those offline
sources.

Figure 4 works well for a single query, but what about
the case where multiple users pose queries of the same type
as Query 1, but with different filter predicates for the seg-
ments of interest? The naive approach would be to generate
multiple Fjords, one per query, each of which aggregates
and filters the data independently. This is clearly a bad idea,
as the allocation and aggregation of tuples performed in the
query is identical in each case. The ability to dynamically
combine such queries is a key aspect of the Fjords archi-
tecture. A Fjord which corresponds to the combination of
three queries similar to Query 1 is illustrated in Figure 5.

4.3. Fjords for Performance

We now present two experiments related to Fjords: In the
first, we demonstrate the performance advantage of com-
bining related queries into a single Fjord. In the second, we
demonstrate that the Fjords architecture allows us to scale
to a large number of simultaneous queries.

We implemented the described Fjords architecture, using
join and selection operators which had already been built as
a part of the Telegraph dataflow project. All queries were
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Figure 5. Fjord for Multiple Instances of Query 1

run on a single, unloaded Pentium III 933Mhz with a single
EIDE drive running Linux 2.2.18 using Sun’s Java Hotspot
1.3 JDK. To drive the experiments we use traces obtained
from the BHL traffic sensors. These traces are stored in a
file, which is read once into a buffer at the beginning of each
experiment so that tests with multiple queries over a single
sensor are not penalized for multiple simultaneous disk IOs
on a single machine.

For the particular queries discussed here, sample window
size is not important, so we generate traces with 30-second
windows. The trace file contained 10767 30-byte records
corresponding to traffic flow at a single sensor during June
’00.

In the first experiment, we compare two approaches
to running multiple queries over a single streaming data
source. For both approaches, some set of � user queries,
� , is submitted. Each query consists of a predicate to be
evaluated against the data streaming from a single sensor.
The first approach, called the multi-Fjord approach allo-
cates a separate Fjord (such as the one shown in Figure 4)
for each query ��� � . In the second approach, called the
single Fjord approach, just one Fjord is created for all of
the queries. This Fjord contains a filter operator for each
of the � queries (as shown in Figure 5.) Thus, in the first
case, � threads are created, each running a Fjord with a sin-
gle filter operator, while in the second case, only a single
thread is running, but the Fjord has � filter operators. In or-
der to isolate the cost of evaluating filters, we also present
results for both of these architectures when used with no fil-
ter operator (e.g. the sensor proxy outputs directly to the
user queue), and with a null operator that simply forwards
tuples from the sensor proxy to the end user.

Figure 6 shows the total time per query for these two ap-
proaches as the number of concurrent queries is increased
from 1 to 10. All experiments were run with 150 MB of
RAM allocated to the JVM and with a 4MB tuple pool allo-
cated to each Fjord. Notice that the single Fjord version
handily outperforms the multi-Fjord version in all cases,
but that the cost of the selection and null filter is the same
in both cases (300 and 600 milliseconds per query, respec-
tively). This behavior is due to several reasons: First, there
is substantial cost for laying out additional tuples in the
buffer pools of each of the Fjords in the multi-Fjord case.
In the single Fjord case, each tuple is read once from disk,
placed in the buffer pool, and never again copied. Second,
there is some overhead due to context switching between
multiple Fjord threads.

Figure 6 reflects the direct benefit of sharing the sensor
proxy: additional queries in the single Fjord version are less
expensive than the first query, whereas they continue to be
about the same amount of work as a single query in the
multi-fjord version. The spike in the multi-fjords lines at
two queries in 6 is due to queries building up very long
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queues of output tuples, which are drained by a separate
thread. Our queues become slower when there are more
than a few thousand elements on them. This does not occur
for more simultaneous queries because each Fjord thread
runs for less time, and thus each output queue is shorter and
performs better. This is the same reason the slope of the
single fjord lines in Figure 6 drops off: all queries share a
single output queue, which becomes very long for lots of
queries.

Having shown the advantage of combining similar user
queries into a single Fjord, we present a second experiment
that shows this solution scaling to a large number of user
queries. In these tests, we created � user queries, each of
which applied a simple filter to the same sensor stream, in
the style of Query 1 in Section 4.1. We instantiated a Fjord
with a single sensor proxy, plus one selection operator per
query. We allocated 150MB of RAM to the query engine
and gave the Fjord a 4MB tuple pool. We used the same
data file as in the previous section. Figure 7 shows the the
aggregate number of tuples processed by the system as the
number of queries is increased. The number of tuples per
second per query is the limit of the rate at which sensors can
deliver tuples to all users and still stay ahead of process-
ing. Notice that total tuple throughput climbs up to about
20 queries, and then remains fairly constant, without de-
creasing. This leveling off happens as the processor load
becomes maximized due to evaluation of the select clauses
and enqueuing and dequeuing of tuples.

We also ran similar experiments from Query 2 (Section
4.1). Due to space limitations, we do not present these re-
sults in detail. The results of this experiments were simi-
lar to the Query 1 results: the sensor proxy amortizes the
cost of stream buffering and tuple allocation across all the
queries. With Query 2, the cost of the join is sufficiently
high that the benefit of this amortization is less dramatic:
50 simultaneous queries have a per query cost which is only
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Figure 7. Total Tuples Per Second vs. No. of Queries

seven percent less than the cost of a single query. In [16],
we discuss techniques for combining joins to overcome this
limitation.

5. Controlling Power Consumption via Proxies
The experiments in the previous section demonstrated

the ability of Fjords to efficiently handle many queries over
streaming data. We now turn our attention to another key as-
pect of sensor query processing, the impact of sample rate
on both sensor lifetime and the ability of Fjords to process
sensor data. We focus on sensors that are similar to the
wireless sensors motes described in Section 2.1 above.

5.1. Motes for Traffic
In this section, we assume that motes are placed or can

self organize into pairs of sensors less than a car’s length
apart and in the same lane. We call these sensors 6�� , the
upstream sensor, and 6�� , the downstream sensor. We as-
sume that through radio telemetry with fixed basestations
and each other, of the sort described in [20], it is possible
for the sensors to determine that their separation along the
axis of the road is / feet. These sensors are equipped with
light or infrared detectors that tell them when a car is pass-
ing overhead.

Traffic engineers are interested in deducing the speed and
length of vehicles traveling down the freeway; this is done
via four time readings: 
�� , the time the vehicle covers 6 � ;

�� , the time the vehicle completely covers both 6 � and 6 �
; 
�� , the time the vehicle ceases to cover 6 � , and 
 � , the
time the vehicle no longer covers either sensor. These states
are shown in Figure 8. Notice that the collection of these
times can be done independently by the sensors, if the query
processor knows how they are placed: 6�� collects 
 � and 
 � ,
while 6	� collects 
 � and 
 � . Given that the sensors are /
feet apart, the speed of a vehicle is then /


�� 
 �� 
 ����� 
 
 ���� ,
since 
 �� 
 � is the amount of time it takes for the front
of the vehicle to travel from one sensor to the other to the
other. The length of the vehicle is just � � �0/�� � 
 �� 
 ��� ,
since 
 �� 
 � is the time it takes for both the front and back
of the car to pass the 6 � .
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Figure 8. Vehicle moving across sensors 6�� and 6��
at times 
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These values are important because they indicate how
accurate the timing measurements from the sensors need to
be; we omit specific calculations due to space limitations,
but a sample rate of about 180Hz is needed to compute ve-
hicle lengths to an accuracy of one foot when vehicles are
traveling 60mph.

Sensors relay readings to base stations placed regularly
along the freeway. These base stations have wired Internet
connections or high power wireless radios which can relay
information back to central servers for processing. Such
base stations are elevated, to overcome propagation prob-
lems that result between sensors that are on or embedded in
a low reflectivity surface like the roadway. Sensors transmit
samples along with time-stamps, which can be generated
via techniques such as those proposed in [6].

The results described in this section were produced via
simulation. Processor counts were obtained by implement-
ing the described algorithms on an Atmel simulator, power
consumption figures were drawn from the Atmel 8515
datasheet [2], and communication costs were drawn from
the TinyOS results in [12], which uses the RFM TR100 916
Mhz [21] radio transceiver. Table 1 summarizes the com-
munication and processor costs used to model power con-
sumption in this section.

We present three sensor scenarios, as shown in Figure 9.
In each scenario, the vehicle speed and length computation
presented above is performed. By choosing to perform that
computation in the network, rather than on the host PC, we
will show a performance benefit of two orders of magnitude.

In the first scenario, sensors relay data back to the host

Table 1. Sensor Parameters. Power Parameters for
Atmel 8515 Processor and RFM TR100 Radio.

Parameter Value
Radio Xmit Energy Cost ��� ���	��
���������
Processor Voltage �	�
Processor Current (Active) �����
Processor Current (Idle) �	�����
Processor Speed ���! �"
A-to-D Current � ����
A-to-D Latch Time �	����#
Battery Capacity �$�	��&%' 

PC at their sample rate, performing no aggregation or pro-
cessing, and transmitting raw voltages. The code is ex-
tremely simple: the sensor reads from its A-to-D input,
transmits the sample, then sleeps until the next sample pe-
riod arrives. In this naive approach, power consumption
is dominated by communication costs. Figure 9(a) illus-
trates this; the idle cost, computation cost, and A-to-D costs
are all so small as to be nearly invisible. For the baseline
sample rate of 180Hz, the power draw comes to 13mW or
2.6mA/h, enough for our sensor pairs to power themselves
for about a day and a half: clearly this approach does not
produce low maintenance road sensors. Furthermore, this
approach places a burden on the database system: as Figure
9(a) shows, at 180 samples/per second a Fjord is limited to
about 50 simultaneous simple queries, if the entire sample
stream is routed through each query. In practice, of course,
not all of the queries are interested in the entire data stream,
so the sensor proxy can aggregate the samples into identi-
fied vehicles or vehicle counts.

In the second scenario (shown in Figure 9(b)), we use a
small amount of processor time to dramatically reduce com-
munication costs. Instead of relaying raw voltages, the sen-
sors observe when a car passes over them, and transmit the( 
 � � 
��*) or

( 
�� � 
 � ) tuples needed for the host computer to
reconstruct the speed and length of the vehicle. The sensors
still sample internally at a fast sample rate, but relay only a
few samples per second – in this case, we assume no more
than five vehicle pass in any particular second. In this sce-
nario, for higher sample rates, power consumption is dom-
inated by the processor and A-to-D converter; communica-
tion is nearly negligible. At 180Hz, the total power draw has
fallen to 1.1mW, or .22mA/h, still not ideal for a long lived
sensor, but enough to power our traffic sensors for a more
reasonable two and a half weeks. Also, by aggregating and
decreasing the rate at which samples are fed into the query
processor, the sensors contribute to the processing of the
query and require fewer tuples to be routed through Fjords.
Although this may seem like a trivial savings in computa-
tion for a single sensor, in an environment with hundreds or
thousands of traffic sensors, it is non-negligible.

In the final scenario, we further reduce the power de-
mands by no longer transmitting a sample per car. In-
stead, we only relay a count of the number of vehicles that
passed in the previous second, bringing communications
costs down further for only a small additional number of
processor instructions per sample. This is shown in Fig-
ure 9(c); the power draw at 180Hz is now only .38mW, a
threefold reduction over the second scenario and nearly two
orders of magnitude better than the naive approach. Notice
that the length and speed of vehicles can no longer be re-
constructed; only the number of vehicles passing over each
sensor per second is given. Thus, this scenario is an exam-
ple of a technique that a properly programmed sensor proxy
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Figure 9. Power consumption for different sensor implementations

could initiate when it determines that all current user queries
are interested only in vehicle counts.

To summarize, for this particular sensor application,
there are several possible approaches to sampling sensors.
For traffic sensors, we gave three simple sampling alterna-
tives which varied in power consumption by nearly two or-
ders of magnitude. Lowering the sample rate increases sen-
sor lifetime but reduces the accuracy of the sensor’s model.
Aggregating multiple samples in memory increases proces-
sor and CPU burden but reduces communication cost. Thus,
a sensor proxy which can actively monitor sensors, weigh-
ing user needs and current power conditions, and can ap-
propriately program and control sensors is necessary for
achieving acceptable sensor battery life and performance.

6. Related Work

Having presented our solutions for queries over stream
sensor data, we now discuss related projects in the sensor
and database domains.

The work most closely related to ours is the Cougar
project at Cornell [18], which is also intended for query pro-
cessing over sensors. Their research, however, is more fo-
cused on modeling streams as persistent, virtual relations
and enabling user queries over sensors via abstract data
types. Their published work to date does not focus on the
power or resource limitations of sensors, because it has been
geared toward larger, powered sensors. They do not discuss
the push based nature of sensor streams. Our work is com-
plementary to theirs in the sense that they are more focused
on modeling sensor streams, whereas we are interested in
the practical issues involved in efficiently running queries
over streams.

There has been significant work in the database commu-
nity focused on the language and operator design issues for
querying data streams. Early work sought to design op-
erators for streams in the context of functional program-
ming languages like Lisp and ML [17], or for specialized

regimes like network router log analysis [25]. Seshadri, et.
al. [22] brought this work fully into the domain of relational
databases by describing extensions to SQL for stream query
processing via windowed and incremental operators.

More recent research on streams continues to extend re-
lational databases with complex operators for combining
and mining data streams. For instance, [7] showed single
pass algorithms to compute complex, correlated aggregates
over sets of streams.

The CONTROL project [11] discusses the possibility of
user interfaces for the incrementally sorting and aggregat-
ing very large data sets which is also applicable to streams.
Shanmugasundaram et. al, [24] discuss techniques for per-
colating partial aggregates to end users which also apply.

Existing work on continuous queries provides some in-
teresting techniques for simultaneously processing many
queries over a variety of data sources. These systems pro-
vide an important starting point for our work but are not di-
rectly applicable as they are focused on continuous queries
over traditional database sources or web sites and thus don’t
deal with issues specific to streaming sensor data.

The NiagaraCQ project [5] is the most recent work fo-
cused on providing continuous queries over changing web
sites. Users install queries, which consist of an XML-
QL query as well as a duration and re-evaluation interval.
Queries are evaluated periodically based on whether the
sites have changed since the query was last run. The system
is geared toward running very large numbers of queries over
diverse data sources. The system is able to perform well by
grouping similar queries, extracting the common portion of
those queries, and then evaluating the common portion only
once. We expect that this technique will apply to streaming
sensor queries as well: there will be many queries over a
particular stream which share common subexpressions.

The XFilter system [1] is another example of a contin-
uous query system. It indexes XML queries to enable ef-
ficient routing of streaming XML documents to users; this



index could form the basis of an efficient implementation
of query processing over XML data streaming from sensor
networks.

In the remote sensing community, there are a number of
systems and architecture projects focused on building sen-
sor networks where data-processing is performed in a dis-
tributed fashion by the sensors themselves. In these scenar-
ios, sensors are programmed to be application aware, and
operate by forwarding their readings to nearby sensors and
collecting incoming readings to produce a locally consis-
tent view of what is happening around them. An example
of such a design is Directed Diffusion from researchers at
USC [13].

7. Conclusions

The large scale deployment of tiny, low power networks
of radio-driven sensors, raises the need for power sensitive
techniques for querying the data they collect.

Our solution addresses the low level infrastructure issues
in a sensor stream query processor via two techniques: First,
the Fjords architecture combines proxies, non-blocking op-
erators and conventional query plans. This combination al-
lows streaming data to be pushed through operators that pull
from traditional data sources, efficiently merging streams
and local data as samples flow past and enabling sharing
of work between queries. Second, sensor proxies serve
as intermediaries between sensors and query plans, using
sensors to facilitate query processing while being sensi-
tive to their power, processor, and communications limita-
tions. These solutions are an important part of the Tele-
graph Query Processing System, which seeks to extend tra-
ditional query processing capabilities to a variety of non-
traditional data sources. Telegraph, when enhanced with
our sensor stream processing techniques, enables query pro-
cessing over networks of wireless, battery powered devices
that can not be queried via traditional means.
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