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Abstract 

A significant body of literature is available on distributed 
t,ransaction commit protocols. Surprisingly, however, the 
relative merits of these protocols have not been studied with 
respect to their qwntita,tive impact on transaction process- 
ing performance. In this paper, using a detailed simula- 
tion model of a distributed database system, we profile the 
t,ransaction throughput performance of a representative set 
of commit protocols. A new commit protocol, OPT, that 
allows transactions to “optimistically” borrow uncommitted 
dat,a in a controlled manner is also proposed and evaluated. 
The new protocol is easy to implement and incorporate in 
current systems, and can coexist with most other optimiza- 
tions proposed earlier. For example, OPT can be combined 
with current industry standard protocols such as Presumed 
Commit, and Presumed Abort. 

The experimental results show that distributed commit 
processing can have considerably more influence than dis- 
t,ribllt,ed d&a processing on the throughput performance and 
t,hat t,hr choicr of commit protocol clearly affects the mag- 
lllt,u(l(B of’ t,lL ~~~flue~~c:e. Among the protocols evaluated, the 
uwv optimistic commit protocol provides the best transac- 
t.mu t,hroughput, performance for a variety of workloads and 
syst,em configurations. In fact, OPT’s peak throughput is 
oft,cn close to the upper bound on achievable performance. 
Even more interestingly, a three-phase (i.e., non-blocking) 
version of OPT provides better peak throughput perfor- 
mance than all of the standard two-phase (i.e., blocking) 
prot,ocols evaluated in our study. 

1 Introduction 

Distributed database systems implement a transaction com- 
rrrrt protocol to ensure transaction atomicity. Over the last 
two decades. a variety of commit protocols have been pro- 
posed by database researchers [5, 211. These include the 
clAssica two &se commit (2PC) protocol [14, 181, its vari- 
atIons such as p~‘es~u.rned commit and presumed abort [17, 201, 
and t/&Tea phase unmrnit (3PC) [26]. To achieve their func- 
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tionality, these commit protocols typically require exchange 
of multiple messages, in multiple phases, between the par- 
ticipating sites where the distributed transaction executed. 
In addition, several log records are generated, some of which 
have to be “forced”, that is, flushed to disk immediately in a 
synchronous manner. Due to these costs, commit processing 
can result, in a significant increase in transaction execution 
times [17, 22, 251, making the choice of commit protocol an 
important design decision for distributed database systems. 

In light of the above discussion, it seems reasonable to 
expect that the results of detailed studies of commit pro- 
tocol performance would be available to assist distributed 
database system designers in making an informed choice (as 
is the case with, for example, distributed concurrency con- 
trol [8, 9, lo]). Surprisingly, however, most of the earlier per- 
formance studies of commit protocols (e.g., [l, 17, 20, 221) 
have been limited to comparing protocols based on the num- 
ber of messages and the number of forced-writes that they 
incur. Thorough quantitative performance evaluation with 
regard to overall transaction processing metrics such as 
mean response time or peak throughput has, however, re- 
ceived very little attention. This is a significant lacuna since 
transaction processing performance is usually a primary con- 
cern for database system designers. Hence we investigate the 
performance of commit protocols in this paper. (The results 
of a performance study of commit protocols are reported in 
[15], but in the context of a client-server type of DBMS 
environment. The scope and methodology of their study is 
also considerably different from ours as explained in [12]. In 
addition, we present and evaluate a new high-performance 
protocol (OPT) that is easy to implement and incorporate 
in current systems.) 

Performance Issues 

From a performance perspective, commit, protocols can be 
compared on the following three issues: 

Effect on Normal Processing: This refers to the extent 
to which the protocol affects the normal (no-failure) 
distributed transaction processing performance. That 
is, how expensive is it to provide atomic&y using this 
protocol? 

Resilience to Failures: A commit protocol is said to be 
non-blocking if, in the event, of a site failure, it permits 
transactions that had cohorts executing at the failed 
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sit,c to t,ermmate at, the operational sites without wait- 
ing for t-he failed sit,e to recover [21, 261. With blocking 
prot,ocols, there is a possibility of transaction process- 
ing grinding t,o a halt in the presence of failures (as ex- 
l>hmi~~tl in Section 2.4). Non-blocking protocols, on the 
other hand, are designed to ensure that such major dis- 
ruptions do not occur. To achieve their functionality, 
however, they usually incur additional messages and 
forced-writes than their “blocking” counterparts. In 
general, “two-phase” commit protocols are susceptible 
to blocking whereas “three-phase” commit protocols 
are non-blocking [6]. 

Speed of Recovery: This refers to the time required for 
the database to be recovered when the failed site comes 
back up after a crash. That is, how long does it take 
before t,ransaction processing can commence again in 
a recovering site? 

Of t,he t,hree issues highlighted above, we believe, from 
a performance perspective, that the first two issues (effect 
ou normal processing and resilience to failures) are of pri- 
mary importance since they directly affect ongoing trans- 
action processing. In comparison, the last issue (speed of 
recovery) appears less critical for two reasons: First, failure 
durations are usually orders of magnitude larger than re- 
covery times. Second, failures are usually rare enough that 
we do not, expect to see a difference in average performance 
among the protocols because of one commit protocol having 
a faster recovery t,ime than the other. With this viewpoint, 
we focus here on the ,m.echanasms required during normal 
opcrat,ion t,o provide for recoverability, rather than on the 
recovery pmcess itself. 

Contributions 

In this paper, we quantitatively investigate the performance 
implications of supporting distributed transaction atomicity. 
Our contributions are two-fold: 

1. Using a simulator based on a detailed closed queueing 
model of a distributed database system, we compare 
the throughput performance of a representative set of 
previously proposed commit protocols for a variety of 
tlist,ributed database workloads and system configura- 
bions. Both blocking (two-phase) commit protocols, 
and non-blocking (three-phase) commit protocols are 
iucluded in t,he scope of our study. 

To isolate and quantify the effects of supporting data 
distribution and achieving transaction atomicity on 
system performance, we use two baselines in the sim- 
ulations: (1) a centralized system, and (2) a system 
wherein data processing is distributed but commit pro- 
cessing is centralized. 

2. We propose and evaluate a new commit protocol, 
called OPT, that, in contrast to earlier commit pro- 
tocols. allows transactions to “optimistically” borrow 
clnt,v (Ilnc.oIrlnlitted) data. Although dirty reads are 
permitt,ed, there is no danger of mcurring cascading 
aborts [6] since the borrowing is done in a controlled 
manner. The protocol is easy to implement and to 
incorporate in current systems, and can be integrated 
wit,11 most, other optimizations proposed earlier. 

Salient, observations from our simulation experiments in- 
clude: 

Distributed commit processing can have considerably 
more effect than distributed data processing on the 
system performance. 

Among the commit protocols evaluated, the new OPT 
protocol provided the best overall performance in our 
experiments, doing considerably better than the clas- 
sical protocols.’ In fact, OPT’s peak throughput per- 
formance was often close to that obtained with the 
“distributed processing, centralized commit” baseline 
mentioned above, which in a sense represents an upper 
bound on achievable performance. 

Due perhaps to their increased overheads, non- 
blocking protocols such as three-phase commit (3PC) 
have not been used in real-world systems. However, 
our experiments show that, under conditions where 
there is sufficient contention in the system, a com- 
bination of OPT and 3PC provides better through- 
put performance than any of the 2PC-based standard 
blocking protocols. This suggests that it would be pos- 
sible for distributed database systems that are operat- 
ing in high contention situations and are currently us- 
ing 2PC-based protocols to switch over to OPT-3PC, 
thereby obtaining the superior performance of OPT 
during normal processing and, in addition, acquiring 
the highly desirable non-blocking feature of 3PC. This, 
in essence, is a “win-win” situation. 

OPT’s design is based on the assumption that trans- 
actions that lend their uncommitted data wiIl almost 
always commit. We have found, however, that the per- 
formance of OPT is robust in that, even if transactions 
abort in the commit phase (due to violation of integrity 
constraints, software errors, etc.), OPT maintains its 
superior performance as long as the probability of such 
aborts does not exceed fifteen percent, a level that is 
much higher than what might be expected in practice. 

2 Distributed Commit Protocols 

A common model’ of a distributed transaction is that there 
is one process, called the master, which is executed at the 
site where the transaction is submitted, and a set of other 
processes, called cohorts, which execute on behalf of the 
transaction at the various sites that are accessed by the 
transaction3 For this model, a variety of transaction com- 
mit protocols have been devised, most of which are based on 
the classical two phase commit (2PC) protocol [14]. In 
this section, we briefly describe the 2PC protocol and a few 
popular variations of this protocol - complete descriptions 
are available in [20, 261. 

2.1 Two Phase Commit Protocol 

In this protocol, the master, after receiving a WORKDONE 
message from all of its cohorts, initiates the first phase of 
the commit protocol by sending PREPARE (to commit) mes- 
sages in parallel to all the cohorts. Each cohort that is ready 
to commit first force-writes a prepare log record to its local 

‘A suitably modified version of OPT exhibited similar good per- 
formance characteristics in our recent research on commit processing 
in distributed real-time database systems [13]. 

*An alternative “peer-to-peer” model is discussed in [19, 221. 
31n the most general case, each of the cohorts may itself spawn 

off sub-transactions at other sites, leading to the “tree of processes” 
transaction structure of System R’ [16] - for simplicity, we only ron- 
sider a two-level tree here. 
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st.able st,orage and then sends a YES vote to the master. At 
t,his stage, the cohort has entered a prepared state wherein it 
cannot, unilaterally commit or abort the transaction but has 
t,o wait, for the final decision from the master. On the other 
ha.nd, each cohort that decides to abort force-writes an abort 
log record and sends a NO vote to the master. Since a NO 
vot,e acts like a veto, the cohort is permitted to unilaterally 
a.bort, the transaction without waiting for the final decision 
from the master. 

After the master receives the votes from all the cohorts, 
It initiates the second phase of the protocol. If all the votes 
US YES, it, moves to a committing state by force-writing a 
corrrrrrzt log record and sending COMMIT messages to all the 
c:ohorts. Each cohort after receiving a COMMIT message 
moves t,o t,lie com:mitting state, force-writes a commit log 
record, and sends an ACK message to the master. 

If the master receives even one NO vote, it moves to the 
aborting state by force-writing an abort log record and sends 
ABORT messages to those cohorts that are in the prepared 
state. These cohorts, after receiving the ABORT message, 
move to the aborting state, force-write an abort log record 
md send an ACK message to the master. 

Finally, the master, after receiving acknowledgements 
from all the prepared cohorts, writes an end log record and 
t,hen “forgets” the transaction. 

2.2 Presumed Abort 

.4 variant of the 2PC protocol, called presumed abort 
(PA) [20], tries to reduce the message and logging overheads 
by requiring all participants to follow - at failure recovery 
time - an “in case of doubt, abort” rule. That is, if after 
coming up from a failure a site queries the master about 
the final outcome of a transaction and finds no information 
a.vailable with the master, the transaction is (correctly) as- 
sumed to have been aborted. With this assumption, it is 
not, necessary for cohorts to (a) send acknowledgments for 
ABORT messages from the master, and (b) force-write the 
abort record to the log. It is also not necessary for the mas- 
ter to force-writ,? t,he abort log record or to write an end log 
I’(‘( tJI’t1 after iLbOl.t, 

In short,, t,hcl PA protocol behaves identically to 2PC for 
conlnnt.t,mt; transac:tions, but has reduced message and log- 
ging overheads for aborted transactions. 

2.3 Presumed Commit 

A vaiation of the presumed abort protocol is based on 
t,he observation that, in general, the number of commit- 
t,t!tl transactions is much more than the number of aborted 
t.ransactions. In this variation, called presumed commit 
(PC) [20], the overheads are reduced for committing trans- 
iL(.t,ions. rather than aborted transactions, by requiring all 
I)in’t.ic,ipant,s t,o follow at failure recovery time - an “in case 
01’ clolll)t,. commit,” rule. In this scheme, cohorts do not send 
ac.kIlowledgrllellts for the commzt global decision, and do not 
for.c.ct-\vvr.lt,cJ t.hp commzt log record. In addition, the master 
tlot~s not, write an end log record. However, the master is re- 
quired to force-write a collecting log record before initiating 
the two-phase protocol. This log record contains the names 
of all the cohorts involved in executing that transaction. 

The above optimizations of 2PC have been implemented 
in a number of database products and PA is, in fact, now 
part of the ISO-OS1 and X/OPEN distributed transaction 
processing standards [19, 221. 

2.4 Three Phase Commit 

A fundamental problem with all of the above protocols is 
that cohorts may become blocked in the event of a site fail- 
ure and remain blocked until the failed site recovers. For 
example, if the master fails after initiating the protocol but 
before conveying the decision to its cohorts, these cohorts 
will become blocked and remain so until the master recovers 
and informs them of the final decision. During the blocked 
period, the cohorts may continue to hold system resources 
such as locks on data items, making these unavailable to 
other transactions, which in turn become blocked waiting for 
the resources to be relinquished, that is, “cascading block- 
ing” results. It is easy to see that, if the duration of the 
blocked period is significant, it may result in major disrup- 
tion of transaction processing activity. 

To address the blocking problem, a three phase com- 
mit (3PC) protocol was proposed in [26]. This proto- 
col achieves a non-blocking capability by inserting an ex- 
tra phase, called the “precommit phase”, in between the 
two phases of the 2PC protocol. In the precommit phase, 
a preliminary decision is reached regarding the fate of the 
transaction. The information made available to the partic- 
ipating sites as a result of this preliminary decision allows 
a global decision to be made despite a subsequent failure of 
the master. Note, however, that the price of gaining non- 
blocking functionality is an increase in the communication 
overheads since there is an extra round of message exchange 
between the master and the cohorts. In addition, both the 
master and the cohorts have to force-write additional log 
records in the precommit phase. 

2.5 Other Protocols 

The above-mentioned protocols are well-established and 
have received the most attention in the literature - we there- 
fore concentrate on them in our study. It should be noted, 
however, that a variety of other protocols have also been pro- 
posed. These include linear 2PC [14], distributed 2PC [21], 
Unsolicited Vote (UV) [27], Early Prepare (EP) and Coordi- 
nator Log (CL) [23, 241 protocols. Very recently, the Implicit 
Yes Vote (IYV) protocol [l] and the two-phase abort (2PA) 
protocol [4] have been proposed for distributed database sys- 
tems that are expected to be connected by extremely high 
speed networks. 

3 Optimistic Commit Processing 

In all of the protocols described in the previous section, a 
cohort that reaches the PREPARED state can release all of 
its read locks. However, it has to retain all its update locks 
until it receives the global decision from the master - this 
retention is fundamentally necessary to maintain atomicity. 
More importantly, the lock retention interval is not bounded 
since the time duration that a cohort is in the PREPARED 
state can be arbitrarily long (for example, due to network 
delays). If the retention period is large, it may have a signifi- 
cant negative effect on performance since other transactions 
that wish to access this (prepared) data are forced to block 
until the commit processing is over. It is important to note 
that this data blocking is orthogonal to the decision blocking 
(because of failures) thatlwas discussed in Section 2.4. That 
is, in all the commit protocols, including 3PC, transactions 
can be affected by prepared data blocking. Moreover, such 
data blocking occurs during normal processing whereas de- 
cision blocking only occurs during failure situations. 
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To ,~tltlress t,hc above issue of (prepared) data blocking, 
\v(’ Ilavcb tlesigned a new version of the 2PC protocol, in which 
I l~il.lls>l(~tl(~lls rrquest.ing data items held by other transac- 
t,lous iu the prepared state are allowed to access this data. 
That is. prepared cohorts lend uncommitted data to con- 
c,lurent,ly execut,ing transactions. Given such lending, two 
sit~uat,ions may arise: 

Lender Receives Decision First : 
Here, the lending cohort receives its global decision be- 
fore the borrowing cohort has completed its local exe- 
cution. If the global decision is to commit, the lending 
cohort completes its processing in the normal fashion. 
If the global decision is to abort, the lender is aborted 
in t,he normal fashion; in addition, the borrower is also 
aborted since it has utilized inconsistent data. 

Borrower Completes Execution First : 
Here, the borrowing cohort completes its execution be- 
fore the lending cohort has received its global decision. 
The borrower is now “put on the shelf”, that is, it is 
made to wait and not allowed to send a WORKDONE 
message to its master. This means that the borrower is 
not allowed to initiate the processing that could even- 
tually lead to its reaching the prepared state. Instead, 
it, has to wait until the lender receives its global deci- 
sion. If the lender commits, the borrower is “taken off 
the shelf” and allowed to send its WORKDONE mes- 
sage. However, if the lender aborts, the borrower is 
also abort,ed immediately since it has utilized incon- 
sist,ent data. 

In sur~~rmry, the protocol allows transactions to access un- 
committed data held by prepared transactions in the “opti- 
mistic” belief that this data will eventually be committed. 
We will hereafter refer to this protocol as OPT. 

3.1 Aborts in OPT do not Cascade 

An important point to note here is that OPT’s policy of 
using uncommitted data is generally not recommended in 
database syst.ems since this can potentially lead to the well- 
k~wwu problem of cascading aborts [6] if the transaction 
whose dirty data has been accessed is later aborted. How- 
t~v(:r. for the OPT protocol, this problem is alleviated due 
to t.wo reitsons: 

1. The lending transaction is typically expected to com- 
mit because (a) the lending cohort is in prepared state 
and cannot be aborted due to local data conflicts, and 
(b) the sibling cohorts are also expected to eventually 
vote to commit since they have survived all their data 
conflicts that occurred prior to the initiation of the 
commit, protocol. In fact, if we assume that a locking- 
based concurrency control mechanism such as 2PL [ll] 
is used, it is easy to verify that there is no possibility of 
sibling cohorts aborting, during the commit processing 
p(!riod, due to serializability considerations. There- 
fore, an abort vote can arise only due to other reasons 
such as, violation of integrity constraints, software er- 
rors, system failure, etc. We will hereafter use the term 
“surprise” aborts to refer to this type of aborts. 

2. Eve:n if the lending transaction does eventually abort, 
it only rrsult,s in the abort of the immediate borrower 
and does not. cascade beyond this point (since the bor- 
rower is not in t,he prepared state - the only situa- 
t,ion 111 which uncommitted data can be accessed). In 

short, the abort chain is bounded and is of length one 
(of course, if an aborting lender has lent to multiple 
borrowers, then all of them will be aborted, but the 
length of each abort chain is limited to one). 

3.2 Integrating Prior 2PC Optimizations with OPT 

Apart from the optimistic data access described above, the 
following features can also be included in the OPT protocol: 

Presumed Abort/Commit : The optimizations of Pre- 
sumed Commit or Presumed Abort discussed earlier 
for 2PC can also be used in conjunction with OPT 
to reduce the protocol overheads. We consider both 
options in our experiments. 

Nonblocking OPT : Our description of OPT above as- 
sumed a 2PC protocol as the basis. However, the OPT 
approach can be applied directly to the 3PC protocol 
as well. We evaluate the performance of this protocol 
also in our experiments. 

Other Optimizations : Apart from PA and PC, a variety 
of other optimizations have been proposed for the 2PC 
protocol. A comprehensive description and analysis of 
such optimizations is presented in [22]. Among these, 
the optimizations we have examined axe Read-Only 
(one phase commit for read-only transactions), Un- 
solicited Vote (cohorts enter prepared state and vote 
yes without waiting for a prepare request from coor- 
dinator), Long Locks (cohorts piggyback their commit 
acknowledgments onto subsequent messages), Shared 
Logs (cohorts share a common log with the master), 
GTOUP Commit (forced writes are batched together to 
save on disk I/O), and linear 2PC [14] (message over- 
heads are reduced by ordering the sites in a linear chain 
for communication purposes). 

OPT is especially attractive to integrate with protocols 
such as 3PC, GTOU~ Commit and linear 2PC, since 
they extend the period during which data is held in the 
prepared state. However, when combined with proto- 
cols such as Unsolicited Vote and IYV - which do not 
guarantee that a cohort which has unilaterally entered 
the prepared state will not be forced back later into 
an active state - OPT can lead to cascading aborts, 
long “on-the-shelf”-times for borrowers, deadlocks in- 
volving the lender and the borrower, etc. [12]. Barring 
these exceptions, virtually all of the above optimiza- 
tions can be integrated with an OPT implementation 
to produce enhanced performance. 

3.3 System Integration 

We now comment on the implementation issues related to 
the OPT protocol: 

1. The lock manager at each site must be modified to 
permit borrowing of data held by prepared cohorts. 

2. The lock manager must keep track of the cohorts that 
have borrowed prepared data so that, if the lender 
aborts, the borrowers can also be aborted. 

3. For a borrower cohort that finishes execution before 
its lenders have received their global decision, the lo- 
cal transaction manager must not send a WORKDONE 
message until the fate of its lenders is determined. 
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Thr above modifications do not appear difficult to in- 
corporate in current, database system software. Moreover, 
as slmam later in our experiments, the performance benefits 
that, can be derived from these changes suggest that it is 
worthwhile to make the effort of implementing them. 

4 Simulation Model 

To evaluate the performance of the various commit protocols 
rlcscribed in the previous sections, we developed a detailed 
simulator based on a closed queueing model of a distributed 
database S~SWIII. Our simulation model is similar to the one 
11sec1 III [8] t,o study distributed concurrency control proto- 
cols. A summary of the key model parameters is given in 
Table 1. 

The database is modeled as a collection of DBSize pages 
that are uniformly distributed across all the NumSites sites. 
.4t each site, the transaction multiprogramming level is spec- 
ified by the MPL parameter. Each transaction in the 
workload has the “single master - multiple cohort” struc- 
t,ure described in Section 2. The number of sites at which 
each transaction executes is specified by the DistDegree 
lnuameter. The master and one cohort reside at the site 
where the transaction is submitted whereas the remaining 
DistDec/,we - 1 cohorts are set up at different sites chosen 
at. random from the remaining NumSites - 1 sites. At each 
of’ the execution sites, the number of pages accessed by the 
t,ransaction’s cohort varies uniformly between 0.5 and 1.5 
t,imes CohortSize. These pages are chosen randomly from 
among the database pages located at that site. A page that 
is read is updated with probability UpdateProb. A transac- 
tion that is aborted is restarted after a delay and makes the 
same data accesses as its original incarnation. The length of 
the delay is equal to the average transaction response time 

this is the same heuristic as that used in most transaction 
managements studies [3, 8, 9, lo]. After a transaction com- 
plrtes, a IRW one is submitted immediately at its originating 
Gt,r 

Tin: physical resources at each site consist of NumCPUs 
l~ro~~~s~,i’s~ Str~rrDntnD~sks data disks, and NwnLogDisks 
log (hsks. The data disks store the data pages while the log 
disks store the transaction log records. There is a single 
common queue for the processors whereas each of the disks 
has its own queue. All queues are processed in an FCFS 
order except that message processing is given higher prior- 
ity than data processing at the CPUs. The PageCPU and 
PwgeDisk parameters capture the CPU and disk processing 
times per data page, respectively. For simplicity, we assume 
that all data is accessed from disk and buffer pool consider- 
ations are therefore ignored. 

The communication network is simply modeled as a 
switch t,liat, rout.es messages since we assume a local area 
network t,hat, has high bandwidth. However, the CPU over- 
Iir~ds of 111essage transfer, given by the MsgCPU param- 
(‘t(‘i. arc t,aken into account at, both the sending and the 
rc(.t:ivmg sit,es. This means that there are two classes of 
CPU requests - local data processing requests and message 
processing requests, and as noted above, message processing 
is given higher priority than data processing. 

4.1 Transaction Execution 

M’IIOII r\ transaction is initiated, it is assigned the set of sites 
where it, has to execute and the data pages that it has to 
access at. each of these sites. The master is then started 
111) at tlics originating sit,e, forks off a local cohort and sends 

Table 1: Simulation Model Parameters 

NumSites Number of sites in the database 
DBSize Number of pages in the database 
MPL Transaction multiprogramming level / site 
TransType Transaction Type (Sequential or Parallel) 
DistDegree Degree of Distribution (number of cohorts) 
CohortSize Average cohort size (in pages) 
UpdateProb Page update probability - ’ 
NumCPUs Number of processors per site 
NumDataDisks Number of data disks per site 
NumLogDzsks Number of log disks per site 
PageCPU CPU page processing time 
PageDisk Disk page access time 
MsgCPlJ Message send / receive time 

messages to initiate each of its cohorts at the remote par- 
ticipating sites. Transactions in a distributed system can 
execute in either sequential or parallel fashion. The distinc- 
tion is that cohorts in a sequential transaction execute one 
after another, whereas cohorts in a parallel transaction are 
started together and execute independently until commit 
time. We consider both types of transactions in our study. 

Each cohort makes a series of read and update accesses. 
A read access involves a concurrency control request to ob- 
tain access permission, followed by a disk I/O to read the 
page, followed by a period of CPU usage for processing the 
page. Update requests are handled similarly except for their 
disk I/O - the writing of the data pages takes place asyn- 
chronously after the transaction has committed. We assume 
sufficient buffer space to allow the retention of data updates 
until commit time. The commit protocol is initiated when 
the transaction has completed its data processing. 

4.2 Concurrency Control 

For transaction concurrency control (CC), we use the dis- 
tributed strict two-phase locking (2PL) protocol [6]. Trans- 
actions, through their cohorts, set read locks on pages that 
they read and update locks on pages that need to be up- 
dated. All locks are held until the receipt of the PREPARE 
message from the master. Subsequently, the cohort releases 
all its read locks but retains its update locks until it receives 
and implements the global decision from the master. For 
the new protocol, OPT, however, the lock manager at each 
site is modified to permit borrowing of updated data items 
held by prepared transactions. 

With respect to deadlocks, in our simulation implemen- 
tation, both global and local deadlock detection is immedi- 
ate, that is, a deadlock is detected as soon as a lock conflict 
occurs and a cycle is formed. The youngest transaction in 
the cycle is restarted to resolve the deadlock. We do not ex- 
plicitly model the overheads for detecting deadlocks or for 
concurrency control since (a) these costs would be similar 
across all the commit protocols, and (b) they are usually 
negligible compared to the overall cost of accessing data [8]. 

Another point to note here is that, as mentioned in Sec- 
tion 3.1, with this CC mechanism, there is no possibility of 
serializability-induced aborts occurring in the commit pro- 
cessing stage. 
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4.3 Logging 

With regartl t,o logging costs, we explicitly model only forced 
log writ,rs since they are done synchronously and suspend 
ti ansact,ion operat,iorl until their completion. The cost of 
each t’orc~td log write is the same as the cost of writing a 
clat,a page t,o t,he disk. 

5 Experiments and Results 

Using the dist.ributed database model described in the pre- 
\.iuris sec:t,ion, we conducted an extensive set of simulation 
exl)ernnent,s comparing the performance of the various com- 
lnit prot,o(,ols presented m Sections 2 and 3. Due to space 
hnntat~ionh. we discuss only a representative set of results 
here -- the complete details are available in [12]. 

The primary performance metric of our experiments is 
tl,cl,rr.sc~,ct%on througlipr~t. that is, the rate at which the sys- 
tem completes transactions.4 We also emphasize the peak 
throughput, that is achievable by each protocol since this 
represents the maximum attainable performance and by us- 
ing a suit,able admission control policy (for example, Half- 
al&Half [7]); the throughput can be maintained at this level 
m high-performance systems. All the throughput graphs of 
t Irib 1iape1’ show mean values that have relative half-widths 
alnnit, tjhr mean of less than 10 percent at the 90 percent 
(~onfiden(~e level, wit,11 each experiment having been run un- 
ril at least. 5(1000 transactions were processed by the system. 
Onlv st,e.tist,icallv significant differences are discussed here. 

5.1 Comparative Protocols 

To help isolat,e md underst,and the effects of distribution 
au(l atomicity on throughput performance, and to serve as 
a basis for comparison, we have also simulated the perfor- 
mance behavior of two additional scenarios: 

Centralized System : 
III t.his scenario. hereafter referred to as CENT, a cen- 
tr.o,lrzed database system that is equivalent (in terms of 
database size and physical resources) to the distributed 
tliit,al)ase svstem is modeled. Messages are obviously 
not, required here and commit processing only requires 
force-writing a single decision log record. Modeling 
this scenario helps to isolate the overall effect of dis- 
tribution on throughput. 

Distributed Processing, Centralized Commit : 
In t,his scenario, hereafter referred to as DPCC, data 
processing is executed in the normal distributed fash- 
ion, that is, involving messages. The commit process- 
ing, however, is like that of a centralized system, re- 
quirmg 0111,y t,he force-writing of the decision log record 
at the m>istjer. While this system is clearly artificial, 
modeling it helps to isolate the effect of distributed 
commit, processing on throughput (as opposed to the 
ccmralized scenario which eliminates the entire effect 
of dist,rihut,ed processing). 

5.2 Experiment 1: Resource and Data Contention 

The set,t.iugs of t,he workload parameters and system param- 
eters for oiu first experiment are listed in Table 2. These 

Table 2: Baseline Parameter Settings 

~1 

settings were chosen to ensure significant levels of both re- 
source contention (RC) and data contention (DC) in the 
system, thus helping to bring out the performance differ- 
ences between the various commit protocols. 

In this experiment, each transaction executes in a parallel 
fashion at three sites, accessing and updating an average of 
six pages at each site. Each site has a single CPU, two data 
disks and one log disk. The CPU and disk processing times 
are such that the system operates in an I/O-bound region. 
However, since it is not heavily I/O-bound, it is possible for 
message-related CPU costs to shift the system into a region 
of CPU-bound operation - this occurs, for example, in Ex- 
periment 4 where a higher degree of transaction distribution, 
and consequently more network activity, is modeled. 

For this experiment, Figure la presents the transaction 
throughput results as a function of the per-site multipro- 
gramming level. We first observe here that for all the pro- 
tocols, the throughput initially increases as the MPL is in- 
creased, and then it decreases. The initial increase is due to 
the fact that better performance is obtained when a site’s 
CPUs and disks are utilized in parallel. As the multipro- 
gramming level is increased beyond a certain level, however, 
the system starts thrashing due to data contention, resulting 
in degraded transaction throughput. 

Comparing the relative performance of the protocols in 
Figure la, we observe that the centralized system (CENT) 
performs the best, as expected, and that the performance of 
distributed processing/centralized commit (DPCC) is very 
close to that of CENT. In contrast, there is a noticeable dif- 
ference between the performance of these baseline systems 
and the performance of the classical commit protocols (2PC, 
PA, PC, 3PC) throughout the loading range. This demon- 
strates that distributed commit processing can have con- 
siderably more effect (difference between the performance 
of DPCC and 2PC) than distributed data processing (dif- 
ference between the performance of CENT and DPCC) on 
the throughput performance, as will be seen in our other 
experiments as well. 

Moving on to the relative performance of 2PC and 3PC, 
we observe that there is a clear difference in their perfor- 
mance. The difference arises from the additional message 
and logging overheads involved in 3PC, which are shown in 
Table 3 (for committing transactions). 

Table 3: Protocol Overheads (DistDegree = 3) 

Protocol Execution Commit 
Messages Forced-Writes Messages 

2PC 4 7 8 
PA 4 7 8 
PC 4 5 6 
3PC 4 11 12 
DPCC 4 1 0 
CENT 0 1 0 
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Shift,lng our focus t,o PC! we observe that it performs 
\Y’I\’ similarlv t,o 2PC. This is because of the following rea- 
sons: First,, while PC saves on the forced writes and acknowl- 
oclgrment,s at, each cohort, it incurs an additional collecting 
f’orc~l write at, t,he master. Second, the forced writes that 
PC saves were done in parallel at the cohorts by 2PC. There- 
fort, even though PC saves considerably on the overheads it 
fails to appreciably reduce the overall response time of the 
t,ransaction. Thus the gain in throughput for PC over 2PC 
is uot significant. 

There is no possibility of serializability-induced aborts in 
tllc> c.ommit phasr, as ment,ioned earlier in Section 4.2, due 
t,o uhiug tlistril)ut,c:d strict 2PL as the CC mechanism. In the 
,~l)h~ucc of’ my ot,her source of aborts, as in this experiment, 
l’.L\ reduces to 2PC and performs zdentically. We will there- 
torca defer further discussion of the performance of PA until 
Experiment, 6 where we model surprise transaction aborts 
in the commit. phase. 

Finally. turning our attention to the new protocol, OPT, 
\VV ob~ervc~ t,hat, it,s performance is either the same or bet- 
t,or t1la.n that of all the standard algorithms over the full 
range of MPL. At low MPLs, when there is less data con- 
tent,ion, and consequently little opportunity for borrowing, 
OPT is virtually identical to 2PC and therefore performs at 
the sanw level. At higher MPLs, however, the performance 
of OPT is superior to that of 2PC, and in fact, becomes 
closc~ t,o that of DPCC. The reason for this is that in OPT, 
t,hr c.ohort,s in t,he PREPA RED state do not contribute to 
t,llcs da.t,a content,ion thus reducing the number of blocked 
t,rausactions. This is seen in Figure lb, which shows the 
t,ransaction “block ratio”, that is, the average fraction of 
transactions that are in the blocked state. Finally, in Figure 
lc, we graph the “borrow ratio” for OPT, that is, the aver- 
age number of data items (pages) borrowed per transaction. 
This graph clearly shows that borrowing comes into the pic- 
t,llre at, higher MPLs, resulting in improved performance for 
OPT 

5.3 Experiment 2: Pure Data Contention 

Thcs goal of our next, experiment, was to isolate the influence 
of do.ta corrte,ntion (DC) on the performance of the com- 
unt, protocols. For this experiment, the physical resources 
(CPUs ad disks) were made “infinite”, that is, there is no 
queueing for these resources [3]. The other parameter val- 
ues are t8he same as those used in Experiment 1. The results 
of t,his experiment, are shown in Figures 2a through 2c. In 
t,hesr figures, as in the previous experiment, CENT shows 
t,hr best, performance and the performance of DPCC is close 
t,o t,hat of CENT. The performance of the standard protocols 
relat,ive to the baselines is, however, markedly worse than 
I)t:fore. This is because in Experiment 1, the considerable 
difference in overheads between CENT and 2PC was largely 
submerged due to the resource and data contention in the 
syst,ern having a predominant effect on transaction response 
times. III t,he current experiment, however, where through- 
put is limit,ed only by data contention, although transaction 
response times are typically smaller than under RC+DC, the 
commit phase here occupies a bigger proportion of the over- 
all transaction response time and therefore the overheads of 
2PC are felt to a greater extent. Similarly, 3PC performs 
significantly worse than 2PC due to its considerable extra 
overheads. Finally, the performance of PC remains similar 
IO tliilt of 2PC, for t,he same reasons as those given in the 
previous experiment. 

Moving on to OPT, we observe that at low MPLs, it be- 

haves almost identically to 2PC since there are few oppor- 
tunities for borrowing. At higher MPLs, however, OPT’s 
performance is substantially better than that of 2PC. In 
fact, OPT’s peak throughput is close to that of DPCC. An 
interesting observation here is that 2PC, DPCC and CENT 
all achieve their peak throughput at an MPL of 4, while 
for OPT, the corresponding MPL value is 5. This is ex- 
plained by considering Figure 2b, which shows the transac- 
tion block ratio, where we see that this ratio is significantly 
lower for OPT than the other protocols for the same mul- 
tiprogramming level due to the elimination of blocking for 
prepared data. Thus for a given data contention level, OPT 
allows more concurrency in the system than standard pro- 
tocols. Finally, Figure 2c presents the transaction borrow 
ratio, again showing that borrowing increases almost linearly 
with MPL. 

In summary, this experiment indicates that under high 
data contention, OPT’s performance can be substantially 
superior to that of the standard protocols. 

5.4 Experiment 3: Fast Network Interface 

In the previous experiments, the cost for sending and re- 
ceiving messages modeled a system with a relatively slow 
network interface (MsgCpu = 5 ms). We conducted an- 
other experiment wherein the network interface was faster 
by a factor of five, that is, MsgCpu = 1 ms. The experi- 
ment was conducted for both resource-cum-data contention 
(RC+DC) and pure data contention (DC) scenarios.5 For 
brevity, we only discuss the results of this experiment here - 
the graphs are available in [12]: First, the performance of all 
the protocols becomes closer to that of CENT as compared 
to the previous experiments, and in fact, DPCC and CENT 
are virtually indistinguishable. This improved behavior of 
the protocols is only to be expected since low message costs 
effectively eliminate the effect of a significant fraction of the 
overheads involved in each protocol. Under pure DC, how- 
ever, the remaining overheads of forced-writes are signifi- 
cant enough to point out clear differences between the per- 
formances of DPCC and 2PC and those of 2PC and 3PC. 
Second, OPT’s peak throughput performance is again close 
to that of DPCC in both the RC+DC and pure DC cases. 

This experiment shows that adopting the OPT principle 
can be of value even with very high-speed network inter- 
faces because faster message processing does not necessarily 
eliminate the data contention bottleneck. 

5.5 Experiment 4: Higher Degree of Distribution 

In the experiments described so far, each transaction exe- 
cuted on three sites. To investigate the impact of having 
a higher degree of distribution, we performed an experi- 
ment wherein each transaction executed on six sites. The 
CohortSize in this experiment was reduced from 6 pages 
to 3 pages in order to keep the average transaction length 
equal to that of the previous experiments. For this environ- 
ment, the overheads of the protocols are shown in Table 4 
(for committing transactions). 

For this experiment, Figures 3a and 3b present the trans- 
action throughput results under RC+DC and under pure 
DC, respectively. In Figure 3a, we observe that the perfor- 
mance of the baselines, CENT and DPCC, is virtually in- 
distinguishable although the message processing overheads 

sThe default parameter settings for the RC+DC and pure DC 
scenarios in this experiment, as well as in the following experiments, 
are the same as those used in Expt. 1 and Expt. 2, respectively. 
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Table 4: Protocol Overheads (DistDegree = 6) 

Prot~ocol Execution Commit 
Messages Forced-Writes Messages 

2PC 10 13 20 
PA 10 13 20 
PC 10 8 15 
3l’C’ 10 20 30 
DPCC 10 1 0 
CENT 0 1 0 

of’ DPCC art> significantly more. The reason for this is that 
even with these additional overheads, the CPU is still not 
the bottleneck for DPCC, resulting in its performance being 
similar to that of CENT (as in Experiment 1). 

For the standard protocols, however, the increase in the 
ulessage overheads is sufficiently large (Table 4) that the 
system now operates in a heavily CPU-bound region. As 
a result, the performance differences between the baselines 
and these protocols are visibly more than those seen for the 
limited distribution workload of Experiment 1 (Figure la). 

.411 iuteresting feature of Figure 3a is that, for the first 
t,imc, we observe a significant difference between the perfor- 
mance of PC ant1 that of 2PC. In fact, PC exhibits better 
I)~‘~t’~)rlllall(:( t,han 2PC across the entire MPL range. The 
IXV~SI~I for t,hi.s behavior is t,he heavily CPU-bound nature of 
t,llcs workload. In this environment,, PC’s reduced overheads 
result, in its performing better than 2PC. This is further con- 
firmed in the results of Figure 3b, where in the absence of 
resource contention, PC again performs almost identically 
to 2PC. 

Turning our attention to OPT, we observe that un- 
tlrr RC+DC (Figure 3a), the performance of OPT is only 
ularginally better than that of 2PC. This is due to two fac- 
tors: (i) the CPU-bound nature of the workload, and (ii) 
message processing has higher priority over data process- 
ing. As a result of these factors, the increase in execution 
ph;tse lengt,h is much larger than the increase in commit, 
phitsts IrngtJi, resulting in a smaller “commit-execution ra- 
t.lo”. Siuce OPT’s impact, is felt only during the commit 
ph;lsfs, t,hr drcreasc> in this ratio causes reduced performance 
improvement, as compared to Experiment 1. These results 
may seem to suggest that OPT may not be the best ap- 
proach for workloads of the type considered in this exper- 
iment,. Note, however! that we can now bring into play 
the ability of OPT to “peacefully and usefully coexist” with 
other optimizations by combining OPT and PC to form an 
OPT-PC protocol. The performance of this protocol is also 
shown in Figure 3a, wherein it provides the best overall per- 
formance duo to deriving the benefits of both the OPT and 
PC optimizations. 

I:ntler pure data contention (Figure 3b), note that the 
I)(trfornlaucc, difference between CENT and DPCC is more 
a.5 (.on11)a,red t,o earlier experiments. This is because the av- 
~rage t.ransac:tion response time is reduced due to the height- 
c:ned degree of distribution. As a result,, message delays now 
form a significant, fraction of the response time. We also 
observe in Figure 3b that the difference between the perfor- 
mance of DPCC and that of 2PC is now very large (the peak 
throughput, of DPCC is more than tvlice that of 2PC). This 
again clearly demonstrates that distributed commit process- 
ing can affect performance to a significantly greater degree 
t,han dist,ributed data processing. 

As mentioned earlier, PC performs almost the same as 

2PC in Figure 3b. The performance of OPT continues to 
be superior to 2PC, but in contrast to what was seen in 
Figure 3a, we now observe that the performance of OPT- 
PC is no better than that of OPT at low MPLs and slightly 
worse at higher MPLs. This is because the effect of OPT- 
PC is to increase the length of the execution phase of the 
transaction (by introducing collecting forced write) and at 
the same time to reduce the commit phase length (by saving 
on forced writes at cohorts), thus decreasing the commit- 
execution ratio and diminishing the utility of the optimistic 
feature. 

5.6 Experiment 5: Non-Blocking OPT 

In the previous experiments, we observed that OPT, which 
is based on 2PC, performed significantly better than the 
standard protocols. This motivated us to evaluate the effect 
of incorporating the same optimizations in the 3PC pro- 
tocol. We refer to this protocol as OPT-3PC and for this 
experiment, Figures 4a and 4b present the throughput re- 
sults under RC+DC and pure DC, respectively. In Figure 
4a we observe that the performance of OPT-3PC is sim- 
ilar to that of 3PC at lower MPLs. However, at higher 
MPLs, OPT-3PC not only performs better than 3PC, but 
also achieves a peak throughput that is comparable to that 
of 2PC. These observations show up more vividly in Fig- 
ure 4b, where the peak throughput of OPT-3PC actually 
significantly surpasses that of 2PC. 

An important point to note here is that the optimistic 
feature has potentially more impact in the 3PC context than 
in the 2PC context. This is because the length of the pre- 
pared state is significantly longer in 3PC (due to the extra 
phase), thereby increasing the benefits of borrowing. 

In summary, these results indicate that by using the OPT 
approach, we can simultaneously obtain both the highly de- 
sirable non-blocking functionality and better peak through- 
put performance than the classical blocking protocols. This, 
in essence, is a “win-win” situation. 

5.7 Experiment 6: Surprise Aborts 

In all of the experiments discussed earlier, there was no po- 
tential for serializability-induced aborts in the commit pro- 
cessing stage, as explained in Section 4.2. It is for this reason 
that no difference was possible in the relative performance 
of PA and 2PC. In practice, however, aborts may arise in 
the commit phase due to other reasons such as violation 
of integrity constraints, software errors, system failure, etc. 
We therefore conducted an experiment where such “surprise 
abort” situations were modeled and evaluated their impact 
on protocol performance. The important point to note here 
is that these situations are fundamentally biased against 
OPT since its underlying assumption that transactions will 
usually commit may not hold under surprise aborts. 

In this experiment, each cohort, on receiving the PRE- 
PARE message from the master, instead of always voting 
YES, randomly votes NO with a certain probability. We 
consider three different cases, where the probability of a 
cohort aborting arbitrarily is 1 percent, 5 percent and 10 
percent,, respectively. Since each transaction is composed 
of three cohorts, these cohort abort probabilities translate 
to overall transaction abort probabilities of approximately 3 
percent, 15 percent and 27 percent, respectively. Note that 
the latter two cases model abort probabilities that appear 
artificially high as compared to what might be expected in 
practice. Modeling these high abort levels, however, helped 
us determine the extent to which OPT was robust. 
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Tht) r.esult,s of this experiment under RC+DC and under 
~)III’(’ DC’ are presented in Figures 5a and 5b, respectively. 
\\‘(s ol)sc!rvc~ here that. OPT’s peak throughput performance 
is c~omparable to that of 2PC even when 15 percent of the 
trimsac~tions are aborting and it is only when the abort level 
15 111 VX:~SS of this value that we begin to see an appreciable 
difference III performance. At these high abort levels, the 
opt,lmiam of borrowing transactions proves to be misplaced 
smce they are often aborted due to the abort of their lenders. 

We also observe in these figures that, in spite of having 
a large: fraction of aborts, PA which is designed to do well in 
the abort case, shows only marginal improvement over 2PC. 
This is hoc:;tuscd although PA saves on the forced writes and 
~I~~liIlO~~l~d~~lIl~lltS, these savings itre small in comparison 
t.L, tllct totc~,il overheads of commit processing. For example, 
II) thr 27 percent transaction abort probability case, 2PC 
1n(.,1rh ill)ollt, 8.8 forced writes and 2.5 acknowledgements 
,>er c~ornmittetl t,ransaction, whereas the corresponding val- 
,l(‘h t’or PA are 7.7 and 2, respectively. When the system is 
not, heavily resource-bound, these savings do not affect the 
t~hroughput~ performance significantly. To investigate this 
furt,ltrr; we conducted the same experiment with a higher 
degree of distribution (D&Degree = 6), which results in a 
heavily CPU-bound environment, as in Experiment 4. In 
this sit,uation, we found that the savings by PA were suffi- 
cirnt, t,o make it perform clearly better than 2PC. 

Thcl important point to note here is that OPT can also 
tlerlve these performance benefits of PA by combining with 
it t,o form OPT-PA -- the performance of this combined al- 
gol,it,hm is also present,ed in Figures 5a and 5b and shows 
t,hr expected outcome. 

.4nothcr interesting feature in Figures 5a and 5b is that, 
;lt high MPLs, the performance of the OPT and 2PC proto- 
cols in a system with higher probability of surprise aborts is 
I)rt,ter than their performance in a system with lower prob- 
ability of aborts, that is, there is a performance cTossoveT. 
The reason for the crossover is the following: In our model, 
i1.s 111 earlier transaction management studies (for exam- 
ple, [3]), aborted transactions are delayed before restarting 
with t,kw tle1a.y period being equal to the average response 
t,nnc This de1a.y effectively becomes a crude way of control- 
11ng t,llcl data c:out,ention in the system. At high MPLs, this 
resu1t.s in the syst,em with higher transaction abort prob- 
al)ilitich having less data contention than the system with 
lower Cransaction abort, probabilities and therefore perform- 
ing bet,t,c+r, resulting in the crossover. Note, however, that 
the peak throughput is significantly smaller for the system 
wit,11 higher t,ransaction abort probabilities than the one with 
Iowt’r abort, probabilities. 

5.8 Other Experiments 

We conducted several other experiments to explore various 
regions of the workload space. These included workloads 
with sequential transactions, reduced update probabilities, 
hlnall database sizes: etc. The relative performance of the 
l)rotoc:ols in these additional experiments remained quali- 
t,at,ively similar to that seen in the experiments described 
here (see [12] for details), with the performance improve- 
ment delivered by OPT being dependent on the level of data 
c,ont,ent,ioii in the system. 

One interesting feature that we noticed in the sequential 
t,ransaction experiments is that the performance differences 
bct~wern the prot,ocols decreased as compared to carrying 
ollt t,hcs S~IIIP c~xp(~rilnent, with parallel transactions. This is 
I)c~r.usc~ t,he length of the execution phase is more for sequen- 

tial transactions as compared to their parallel counterparts. 
The length of the commit phase, however, is the same for 
both types of transactions. Hence, the commit-execution 
ratio is significantly smaller in the case of sequential trans- 
actions (this effect was confirmed by measuring these values 
in our experiments), resulting in OPT having lesser impact 
on the throughput. 

6 Conclusions 

In this paper, we have quantitatively investigated the per- 
formance implications of supporting distributed transaction 
atomicity. Using a detailed simulation model of a dis- 
tributed database system, we evaluated the throughput per- 
formance of a variety of standard commit protocols, includ- 
ing 2PC, PA, PC and 3PC, apart from two baseline proto- 
cols, CENT and DPCC. We also developed and evaluated a 
new commit protocol, OPT, that was designed specifically 
to reduce the blocking arising out of locks held on prepared 
data. To the best of our knowledge, these are the first quan- 
titative results on commit processing in a fully-distributed 
DBMS with respect to end-user performance metrics. 

Our experiments demonstrated the following: 

Distributed commit processing can have considerably 
more effect than distributed data processing on the 
system performance. This highlights the need for de- 
veloping high-performance commit protocols. 

The PA and PC variants of 2PC, which reduce pro- 
tocol overheads, have been incorporated in a number 
of database products and transaction processing stan- 
dards. In our experiments, however, we found that 
these protocols provide tangible benefits over 2PC only 
in a few restricted situations. PC performed well only 
when the degree of distribution was high - in current 
applications, however, the degree of distribution is usu- 
ally quite low 1221. PA, on the other hand, performed 
only marginally better than 2PC even when the prob- 
ability of surprise aborts was close to thirty percent - 
in practice, surprise aborts occur only occasionally. 

We caution the reader here that the above conclusion 
is limited to the completely update transaction work- 
loads considered here - PA and PC have additional 
optimizations for fully or partially read-only transac- 
tions [20] that may have a significant impact in work- 
loads having a large fraction of these kinds of transac- 
tions. 

Use of the new protocol, OPT, either by itself, or in 
conjunction with other standard optimizations, leads 
to significantly improved performance over the stan- 
dard algorithms for all the workloads and system con- 
figurations considered in this paper. Its good perfor- 
mance is attained primarily due to its reduction of the 
blocking arising out of locks held on prepared data. 
A feature of the OPT protocol design is that it limits 
the abort chain to one, thereby preventing cascading 
aborts. This is achieved by allowing only prepared 
transactions to lend their data and ensuring that bor- 
rowers cannot enter the prepared state until their bor- 
rowing is terminated. 

The power of the optimistic access feature is substan- 
tial enough that OPT’s throughput performance was 
often close to that obtained with the DPCC baseline, 
which represents an upper bound on achievable per- 
formance. 
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1. .&I att,ractive feature of OPT is that it can be in- 
tegrat,ed, of’tm synergistically, with most other opti- 
mixations proposed earlier. In particular, in the few 
experiments wherein PC or PA performed noticeably 
bet,ter than 2PC, using OPT-PC or OPT-PA resulted 
iu the best, performance. The only exception wherein 
OPT does not appear to combine well is with protocols 
that. allow cohorts to enter the prepared state unilat- 
erally and therefore run the risk of having to revert to 
au active state in case the master subsequently sends 
additional work to the cohort (for example, the Unso- 
licited Vote protocol of distributed Ingres [27]). 

5. OPT’s design is based on the assumption that trans- 
actious that lend their uncommitted data will almost 
always commit. However, OPT is reasonably robust 
in that it maintains its superior performance until the 
probability of surprise transaction aborts in the com- 
mit, phase exceeds as high a value as fifteen percent. 
Beyond this level, its performance becomes progres- 
sively worse than that of the classical protocols. 

G. Under conditions where there is sufficient contention 
iu the system, a combination of OPT and 3PC pro- 
vides better throughput performance than the stan- 
dard ZPC-based blocking protocols. This suggests that 
it, would be possible for distributed database systems 
that, are operating in high contention situations and 
currently using 2PC-based protocols to switch over 
to OPT-3PC, thereby obtaining the superior perfor- 
rnance of OPT during normal processing and, in addi- 
tion, acquiring the highly desirable non-blocking fea- 
ture of 3PC. 

III summuy. we suggest that distributed database systems 
( urr(:ut.ly using the 2PC, PA or PC commit protocols may 
find it beneficial to switch over to using the correspond- 
ing OPT algorithm, that is, OPT, OPT-PA or OPT-PC. 
It’ having non-blocking functionality is important but 3PC 
hits uot been used due to its excessive overheads resulting in 
poor performance, then OPT-3PC appears to be an attrac- 
tive choice since it provides a peak throughput that exceeds 
t,hose of the standard 2PC protocols. 
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