
Revisiting Commit Processing in Distributed Database Systems

Ramesh Gupta * Jayant Haritsa * Krithi Ramamritham t

* Supercomputer Education and Research Centre
Indian Institute of Science, Bangalore 560012, India

{ramesh, haritsa}@serc.iisc.ernet.in

t Department of Computer Science
Univ. of Massachusetts, Amherst 01003, U.S.A.

krithi@cs.umass.edu

Abstract

A significant body of literature is available on distributed
t,ransaction commit protocols. Surprisingly, however, the
relative merits of these protocols have not been studied with
respect to their qwntita,tive impact on transaction process-
ing performance. In this paper, using a detailed simula-
tion model of a distributed database system, we profile the
t,ransaction throughput performance of a representative set
of commit protocols. A new commit protocol, OPT, that
allows transactions to “optimistically” borrow uncommitted
dat,a in a controlled manner is also proposed and evaluated.
The new protocol is easy to implement and incorporate in
current systems, and can coexist with most other optimiza-
tions proposed earlier. For example, OPT can be combined
with current industry standard protocols such as Presumed
Commit, and Presumed Abort.

The experimental results show that distributed commit
processing can have considerably more influence than dis-
t,ribllt,ed d&a processing on the throughput performance and
t,hat t,hr choicr of commit protocol clearly affects the mag-
lllt,u(l(B of’ t,lL ~~~flue~~c:e. Among the protocols evaluated, the
uwv optimistic commit protocol provides the best transac-
t.mu t,hroughput, performance for a variety of workloads and
syst,em configurations. In fact, OPT’s peak throughput is
oft,cn close to the upper bound on achievable performance.
Even more interestingly, a three-phase (i.e., non-blocking)
version of OPT provides better peak throughput perfor-
mance than all of the standard two-phase (i.e., blocking)
prot,ocols evaluated in our study.

1 Introduction

Distributed database systems implement a transaction com-
rrrrt protocol to ensure transaction atomicity. Over the last
two decades. a variety of commit protocols have been pro-
posed by database researchers [5, 211. These include the
clAssica two &se commit (2PC) protocol [14, 181, its vari-
atIons such as p~‘es~u.rned commit and presumed abort [17, 201,
and t/&Tea phase unmrnit (3PC) [26]. To achieve their func-
Permission to make digital/hard copy of part or all this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage, the copyright notice, the title of the publication and its date
appear, and notice is given that copying is by permission of ACM,
Inc. To copy otherwise, to republish, to post on aervers, or to
redistribute to lists, requires prior specific permission and/or a fee,
SIGMOD ‘97 AZ,USA
0 1997 ACM 0-89791-911-4/97/0005...$3.50

tionality, these commit protocols typically require exchange
of multiple messages, in multiple phases, between the par-
ticipating sites where the distributed transaction executed.
In addition, several log records are generated, some of which
have to be “forced”, that is, flushed to disk immediately in a
synchronous manner. Due to these costs, commit processing
can result, in a significant increase in transaction execution
times [17, 22, 251, making the choice of commit protocol an
important design decision for distributed database systems.

In light of the above discussion, it seems reasonable to
expect that the results of detailed studies of commit pro-
tocol performance would be available to assist distributed
database system designers in making an informed choice (as
is the case with, for example, distributed concurrency con-
trol [8, 9, lo]). Surprisingly, however, most of the earlier per-
formance studies of commit protocols (e.g., [l, 17, 20, 221)
have been limited to comparing protocols based on the num-
ber of messages and the number of forced-writes that they
incur. Thorough quantitative performance evaluation with
regard to overall transaction processing metrics such as
mean response time or peak throughput has, however, re-
ceived very little attention. This is a significant lacuna since
transaction processing performance is usually a primary con-
cern for database system designers. Hence we investigate the
performance of commit protocols in this paper. (The results
of a performance study of commit protocols are reported in
[15], but in the context of a client-server type of DBMS
environment. The scope and methodology of their study is
also considerably different from ours as explained in [12]. In
addition, we present and evaluate a new high-performance
protocol (OPT) that is easy to implement and incorporate
in current systems.)

Performance Issues

From a performance perspective, commit, protocols can be
compared on the following three issues:

Effect on Normal Processing: This refers to the extent
to which the protocol affects the normal (no-failure)
distributed transaction processing performance. That
is, how expensive is it to provide atomic&y using this
protocol?

Resilience to Failures: A commit protocol is said to be
non-blocking if, in the event, of a site failure, it permits
transactions that had cohorts executing at the failed

486

sit,c to t,ermmate at, the operational sites without wait-
ing for t-he failed sit,e to recover [21, 261. With blocking
prot,ocols, there is a possibility of transaction process-
ing grinding t,o a halt in the presence of failures (as ex-
l>hmi~~tl in Section 2.4). Non-blocking protocols, on the
other hand, are designed to ensure that such major dis-
ruptions do not occur. To achieve their functionality,
however, they usually incur additional messages and
forced-writes than their “blocking” counterparts. In
general, “two-phase” commit protocols are susceptible
to blocking whereas “three-phase” commit protocols
are non-blocking [6].

Speed of Recovery: This refers to the time required for
the database to be recovered when the failed site comes
back up after a crash. That is, how long does it take
before t,ransaction processing can commence again in
a recovering site?

Of t,he t,hree issues highlighted above, we believe, from
a performance perspective, that the first two issues (effect
ou normal processing and resilience to failures) are of pri-
mary importance since they directly affect ongoing trans-
action processing. In comparison, the last issue (speed of
recovery) appears less critical for two reasons: First, failure
durations are usually orders of magnitude larger than re-
covery times. Second, failures are usually rare enough that
we do not, expect to see a difference in average performance
among the protocols because of one commit protocol having
a faster recovery t,ime than the other. With this viewpoint,
we focus here on the ,m.echanasms required during normal
opcrat,ion t,o provide for recoverability, rather than on the
recovery pmcess itself.

Contributions

In this paper, we quantitatively investigate the performance
implications of supporting distributed transaction atomicity.
Our contributions are two-fold:

1. Using a simulator based on a detailed closed queueing
model of a distributed database system, we compare
the throughput performance of a representative set of
previously proposed commit protocols for a variety of
tlist,ributed database workloads and system configura-
bions. Both blocking (two-phase) commit protocols,
and non-blocking (three-phase) commit protocols are
iucluded in t,he scope of our study.

To isolate and quantify the effects of supporting data
distribution and achieving transaction atomicity on
system performance, we use two baselines in the sim-
ulations: (1) a centralized system, and (2) a system
wherein data processing is distributed but commit pro-
cessing is centralized.

2. We propose and evaluate a new commit protocol,
called OPT, that, in contrast to earlier commit pro-
tocols. allows transactions to “optimistically” borrow
clnt,v (Ilnc.oIrlnlitted) data. Although dirty reads are
permitt,ed, there is no danger of mcurring cascading
aborts [6] since the borrowing is done in a controlled
manner. The protocol is easy to implement and to
incorporate in current systems, and can be integrated
wit,11 most, other optimizations proposed earlier.

Salient, observations from our simulation experiments in-
clude:

Distributed commit processing can have considerably
more effect than distributed data processing on the
system performance.

Among the commit protocols evaluated, the new OPT
protocol provided the best overall performance in our
experiments, doing considerably better than the clas-
sical protocols.’ In fact, OPT’s peak throughput per-
formance was often close to that obtained with the
“distributed processing, centralized commit” baseline
mentioned above, which in a sense represents an upper
bound on achievable performance.

Due perhaps to their increased overheads, non-
blocking protocols such as three-phase commit (3PC)
have not been used in real-world systems. However,
our experiments show that, under conditions where
there is sufficient contention in the system, a com-
bination of OPT and 3PC provides better through-
put performance than any of the 2PC-based standard
blocking protocols. This suggests that it would be pos-
sible for distributed database systems that are operat-
ing in high contention situations and are currently us-
ing 2PC-based protocols to switch over to OPT-3PC,
thereby obtaining the superior performance of OPT
during normal processing and, in addition, acquiring
the highly desirable non-blocking feature of 3PC. This,
in essence, is a “win-win” situation.

OPT’s design is based on the assumption that trans-
actions that lend their uncommitted data wiIl almost
always commit. We have found, however, that the per-
formance of OPT is robust in that, even if transactions
abort in the commit phase (due to violation of integrity
constraints, software errors, etc.), OPT maintains its
superior performance as long as the probability of such
aborts does not exceed fifteen percent, a level that is
much higher than what might be expected in practice.

2 Distributed Commit Protocols

A common model’ of a distributed transaction is that there
is one process, called the master, which is executed at the
site where the transaction is submitted, and a set of other
processes, called cohorts, which execute on behalf of the
transaction at the various sites that are accessed by the
transaction3 For this model, a variety of transaction com-
mit protocols have been devised, most of which are based on
the classical two phase commit (2PC) protocol [14]. In
this section, we briefly describe the 2PC protocol and a few
popular variations of this protocol - complete descriptions
are available in [20, 261.

2.1 Two Phase Commit Protocol

In this protocol, the master, after receiving a WORKDONE
message from all of its cohorts, initiates the first phase of
the commit protocol by sending PREPARE (to commit) mes-
sages in parallel to all the cohorts. Each cohort that is ready
to commit first force-writes a prepare log record to its local

‘A suitably modified version of OPT exhibited similar good per-
formance characteristics in our recent research on commit processing
in distributed real-time database systems [13].

*An alternative “peer-to-peer” model is discussed in [19, 221.
31n the most general case, each of the cohorts may itself spawn

off sub-transactions at other sites, leading to the “tree of processes”
transaction structure of System R’ [16] - for simplicity, we only ron-
sider a two-level tree here.

487

st.able st,orage and then sends a YES vote to the master. At
t,his stage, the cohort has entered a prepared state wherein it
cannot, unilaterally commit or abort the transaction but has
t,o wait, for the final decision from the master. On the other
ha.nd, each cohort that decides to abort force-writes an abort
log record and sends a NO vote to the master. Since a NO
vot,e acts like a veto, the cohort is permitted to unilaterally
a.bort, the transaction without waiting for the final decision
from the master.

After the master receives the votes from all the cohorts,
It initiates the second phase of the protocol. If all the votes
US YES, it, moves to a committing state by force-writing a
corrrrrrzt log record and sending COMMIT messages to all the
c:ohorts. Each cohort after receiving a COMMIT message
moves t,o t,lie com:mitting state, force-writes a commit log
record, and sends an ACK message to the master.

If the master receives even one NO vote, it moves to the
aborting state by force-writing an abort log record and sends
ABORT messages to those cohorts that are in the prepared
state. These cohorts, after receiving the ABORT message,
move to the aborting state, force-write an abort log record
md send an ACK message to the master.

Finally, the master, after receiving acknowledgements
from all the prepared cohorts, writes an end log record and
t,hen “forgets” the transaction.

2.2 Presumed Abort

.4 variant of the 2PC protocol, called presumed abort
(PA) [20], tries to reduce the message and logging overheads
by requiring all participants to follow - at failure recovery
time - an “in case of doubt, abort” rule. That is, if after
coming up from a failure a site queries the master about
the final outcome of a transaction and finds no information
a.vailable with the master, the transaction is (correctly) as-
sumed to have been aborted. With this assumption, it is
not, necessary for cohorts to (a) send acknowledgments for
ABORT messages from the master, and (b) force-write the
abort record to the log. It is also not necessary for the mas-
ter to force-writ,? t,he abort log record or to write an end log
I’(‘(tJI’t1 after iLbOl.t,

In short,, t,hcl PA protocol behaves identically to 2PC for
conlnnt.t,mt; transac:tions, but has reduced message and log-
ging overheads for aborted transactions.

2.3 Presumed Commit

A vaiation of the presumed abort protocol is based on
t,he observation that, in general, the number of commit-
t,t!tl transactions is much more than the number of aborted
t.ransactions. In this variation, called presumed commit
(PC) [20], the overheads are reduced for committing trans-
iL(.t,ions. rather than aborted transactions, by requiring all
I)in’t.ic,ipant,s t,o follow at failure recovery time - an “in case
01’ clolll)t,. commit,” rule. In this scheme, cohorts do not send
ac.kIlowledgrllellts for the commzt global decision, and do not
for.c.ct-\vvr.lt,cJ t.hp commzt log record. In addition, the master
tlot~s not, write an end log record. However, the master is re-
quired to force-write a collecting log record before initiating
the two-phase protocol. This log record contains the names
of all the cohorts involved in executing that transaction.

The above optimizations of 2PC have been implemented
in a number of database products and PA is, in fact, now
part of the ISO-OS1 and X/OPEN distributed transaction
processing standards [19, 221.

2.4 Three Phase Commit

A fundamental problem with all of the above protocols is
that cohorts may become blocked in the event of a site fail-
ure and remain blocked until the failed site recovers. For
example, if the master fails after initiating the protocol but
before conveying the decision to its cohorts, these cohorts
will become blocked and remain so until the master recovers
and informs them of the final decision. During the blocked
period, the cohorts may continue to hold system resources
such as locks on data items, making these unavailable to
other transactions, which in turn become blocked waiting for
the resources to be relinquished, that is, “cascading block-
ing” results. It is easy to see that, if the duration of the
blocked period is significant, it may result in major disrup-
tion of transaction processing activity.

To address the blocking problem, a three phase com-
mit (3PC) protocol was proposed in [26]. This proto-
col achieves a non-blocking capability by inserting an ex-
tra phase, called the “precommit phase”, in between the
two phases of the 2PC protocol. In the precommit phase,
a preliminary decision is reached regarding the fate of the
transaction. The information made available to the partic-
ipating sites as a result of this preliminary decision allows
a global decision to be made despite a subsequent failure of
the master. Note, however, that the price of gaining non-
blocking functionality is an increase in the communication
overheads since there is an extra round of message exchange
between the master and the cohorts. In addition, both the
master and the cohorts have to force-write additional log
records in the precommit phase.

2.5 Other Protocols

The above-mentioned protocols are well-established and
have received the most attention in the literature - we there-
fore concentrate on them in our study. It should be noted,
however, that a variety of other protocols have also been pro-
posed. These include linear 2PC [14], distributed 2PC [21],
Unsolicited Vote (UV) [27], Early Prepare (EP) and Coordi-
nator Log (CL) [23, 241 protocols. Very recently, the Implicit
Yes Vote (IYV) protocol [l] and the two-phase abort (2PA)
protocol [4] have been proposed for distributed database sys-
tems that are expected to be connected by extremely high
speed networks.

3 Optimistic Commit Processing

In all of the protocols described in the previous section, a
cohort that reaches the PREPARED state can release all of
its read locks. However, it has to retain all its update locks
until it receives the global decision from the master - this
retention is fundamentally necessary to maintain atomicity.
More importantly, the lock retention interval is not bounded
since the time duration that a cohort is in the PREPARED
state can be arbitrarily long (for example, due to network
delays). If the retention period is large, it may have a signifi-
cant negative effect on performance since other transactions
that wish to access this (prepared) data are forced to block
until the commit processing is over. It is important to note
that this data blocking is orthogonal to the decision blocking
(because of failures) thatlwas discussed in Section 2.4. That
is, in all the commit protocols, including 3PC, transactions
can be affected by prepared data blocking. Moreover, such
data blocking occurs during normal processing whereas de-
cision blocking only occurs during failure situations.

488

To ,~tltlress t,hc above issue of (prepared) data blocking,
\v(’ Ilavcb tlesigned a new version of the 2PC protocol, in which
I l~il.lls>l(~tl(~lls rrquest.ing data items held by other transac-
t,lous iu the prepared state are allowed to access this data.
That is. prepared cohorts lend uncommitted data to con-
c,lurent,ly execut,ing transactions. Given such lending, two
sit~uat,ions may arise:

Lender Receives Decision First :
Here, the lending cohort receives its global decision be-
fore the borrowing cohort has completed its local exe-
cution. If the global decision is to commit, the lending
cohort completes its processing in the normal fashion.
If the global decision is to abort, the lender is aborted
in t,he normal fashion; in addition, the borrower is also
aborted since it has utilized inconsistent data.

Borrower Completes Execution First :
Here, the borrowing cohort completes its execution be-
fore the lending cohort has received its global decision.
The borrower is now “put on the shelf”, that is, it is
made to wait and not allowed to send a WORKDONE
message to its master. This means that the borrower is
not allowed to initiate the processing that could even-
tually lead to its reaching the prepared state. Instead,
it, has to wait until the lender receives its global deci-
sion. If the lender commits, the borrower is “taken off
the shelf” and allowed to send its WORKDONE mes-
sage. However, if the lender aborts, the borrower is
also abort,ed immediately since it has utilized incon-
sist,ent data.

In sur~~rmry, the protocol allows transactions to access un-
committed data held by prepared transactions in the “opti-
mistic” belief that this data will eventually be committed.
We will hereafter refer to this protocol as OPT.

3.1 Aborts in OPT do not Cascade

An important point to note here is that OPT’s policy of
using uncommitted data is generally not recommended in
database syst.ems since this can potentially lead to the well-
k~wwu problem of cascading aborts [6] if the transaction
whose dirty data has been accessed is later aborted. How-
t~v(:r. for the OPT protocol, this problem is alleviated due
to t.wo reitsons:

1. The lending transaction is typically expected to com-
mit because (a) the lending cohort is in prepared state
and cannot be aborted due to local data conflicts, and
(b) the sibling cohorts are also expected to eventually
vote to commit since they have survived all their data
conflicts that occurred prior to the initiation of the
commit, protocol. In fact, if we assume that a locking-
based concurrency control mechanism such as 2PL [ll]
is used, it is easy to verify that there is no possibility of
sibling cohorts aborting, during the commit processing
p(!riod, due to serializability considerations. There-
fore, an abort vote can arise only due to other reasons
such as, violation of integrity constraints, software er-
rors, system failure, etc. We will hereafter use the term
“surprise” aborts to refer to this type of aborts.

2. Eve:n if the lending transaction does eventually abort,
it only rrsult,s in the abort of the immediate borrower
and does not. cascade beyond this point (since the bor-
rower is not in t,he prepared state - the only situa-
t,ion 111 which uncommitted data can be accessed). In

short, the abort chain is bounded and is of length one
(of course, if an aborting lender has lent to multiple
borrowers, then all of them will be aborted, but the
length of each abort chain is limited to one).

3.2 Integrating Prior 2PC Optimizations with OPT

Apart from the optimistic data access described above, the
following features can also be included in the OPT protocol:

Presumed Abort/Commit : The optimizations of Pre-
sumed Commit or Presumed Abort discussed earlier
for 2PC can also be used in conjunction with OPT
to reduce the protocol overheads. We consider both
options in our experiments.

Nonblocking OPT : Our description of OPT above as-
sumed a 2PC protocol as the basis. However, the OPT
approach can be applied directly to the 3PC protocol
as well. We evaluate the performance of this protocol
also in our experiments.

Other Optimizations : Apart from PA and PC, a variety
of other optimizations have been proposed for the 2PC
protocol. A comprehensive description and analysis of
such optimizations is presented in [22]. Among these,
the optimizations we have examined axe Read-Only
(one phase commit for read-only transactions), Un-
solicited Vote (cohorts enter prepared state and vote
yes without waiting for a prepare request from coor-
dinator), Long Locks (cohorts piggyback their commit
acknowledgments onto subsequent messages), Shared
Logs (cohorts share a common log with the master),
GTOUP Commit (forced writes are batched together to
save on disk I/O), and linear 2PC [14] (message over-
heads are reduced by ordering the sites in a linear chain
for communication purposes).

OPT is especially attractive to integrate with protocols
such as 3PC, GTOU~ Commit and linear 2PC, since
they extend the period during which data is held in the
prepared state. However, when combined with proto-
cols such as Unsolicited Vote and IYV - which do not
guarantee that a cohort which has unilaterally entered
the prepared state will not be forced back later into
an active state - OPT can lead to cascading aborts,
long “on-the-shelf”-times for borrowers, deadlocks in-
volving the lender and the borrower, etc. [12]. Barring
these exceptions, virtually all of the above optimiza-
tions can be integrated with an OPT implementation
to produce enhanced performance.

3.3 System Integration

We now comment on the implementation issues related to
the OPT protocol:

1. The lock manager at each site must be modified to
permit borrowing of data held by prepared cohorts.

2. The lock manager must keep track of the cohorts that
have borrowed prepared data so that, if the lender
aborts, the borrowers can also be aborted.

3. For a borrower cohort that finishes execution before
its lenders have received their global decision, the lo-
cal transaction manager must not send a WORKDONE
message until the fate of its lenders is determined.

489

Thr above modifications do not appear difficult to in-
corporate in current, database system software. Moreover,
as slmam later in our experiments, the performance benefits
that, can be derived from these changes suggest that it is
worthwhile to make the effort of implementing them.

4 Simulation Model

To evaluate the performance of the various commit protocols
rlcscribed in the previous sections, we developed a detailed
simulator based on a closed queueing model of a distributed
database S~SWIII. Our simulation model is similar to the one
11sec1 III [8] t,o study distributed concurrency control proto-
cols. A summary of the key model parameters is given in
Table 1.

The database is modeled as a collection of DBSize pages
that are uniformly distributed across all the NumSites sites.
.4t each site, the transaction multiprogramming level is spec-
ified by the MPL parameter. Each transaction in the
workload has the “single master - multiple cohort” struc-
t,ure described in Section 2. The number of sites at which
each transaction executes is specified by the DistDegree
lnuameter. The master and one cohort reside at the site
where the transaction is submitted whereas the remaining
DistDec/,we - 1 cohorts are set up at different sites chosen
at. random from the remaining NumSites - 1 sites. At each
of’ the execution sites, the number of pages accessed by the
t,ransaction’s cohort varies uniformly between 0.5 and 1.5
t,imes CohortSize. These pages are chosen randomly from
among the database pages located at that site. A page that
is read is updated with probability UpdateProb. A transac-
tion that is aborted is restarted after a delay and makes the
same data accesses as its original incarnation. The length of
the delay is equal to the average transaction response time

this is the same heuristic as that used in most transaction
managements studies [3, 8, 9, lo]. After a transaction com-
plrtes, a IRW one is submitted immediately at its originating
Gt,r

Tin: physical resources at each site consist of NumCPUs
l~ro~~~s~,i’s~ Str~rrDntnD~sks data disks, and NwnLogDisks
log (hsks. The data disks store the data pages while the log
disks store the transaction log records. There is a single
common queue for the processors whereas each of the disks
has its own queue. All queues are processed in an FCFS
order except that message processing is given higher prior-
ity than data processing at the CPUs. The PageCPU and
PwgeDisk parameters capture the CPU and disk processing
times per data page, respectively. For simplicity, we assume
that all data is accessed from disk and buffer pool consider-
ations are therefore ignored.

The communication network is simply modeled as a
switch t,liat, rout.es messages since we assume a local area
network t,hat, has high bandwidth. However, the CPU over-
Iir~ds of 111essage transfer, given by the MsgCPU param-
(‘t(‘i. arc t,aken into account at, both the sending and the
rc(.t:ivmg sit,es. This means that there are two classes of
CPU requests - local data processing requests and message
processing requests, and as noted above, message processing
is given higher priority than data processing.

4.1 Transaction Execution

M’IIOII r\ transaction is initiated, it is assigned the set of sites
where it, has to execute and the data pages that it has to
access at. each of these sites. The master is then started
111) at tlics originating sit,e, forks off a local cohort and sends

Table 1: Simulation Model Parameters

NumSites Number of sites in the database
DBSize Number of pages in the database
MPL Transaction multiprogramming level / site
TransType Transaction Type (Sequential or Parallel)
DistDegree Degree of Distribution (number of cohorts)
CohortSize Average cohort size (in pages)
UpdateProb Page update probability - ’
NumCPUs Number of processors per site
NumDataDisks Number of data disks per site
NumLogDzsks Number of log disks per site
PageCPU CPU page processing time
PageDisk Disk page access time
MsgCPlJ Message send / receive time

messages to initiate each of its cohorts at the remote par-
ticipating sites. Transactions in a distributed system can
execute in either sequential or parallel fashion. The distinc-
tion is that cohorts in a sequential transaction execute one
after another, whereas cohorts in a parallel transaction are
started together and execute independently until commit
time. We consider both types of transactions in our study.

Each cohort makes a series of read and update accesses.
A read access involves a concurrency control request to ob-
tain access permission, followed by a disk I/O to read the
page, followed by a period of CPU usage for processing the
page. Update requests are handled similarly except for their
disk I/O - the writing of the data pages takes place asyn-
chronously after the transaction has committed. We assume
sufficient buffer space to allow the retention of data updates
until commit time. The commit protocol is initiated when
the transaction has completed its data processing.

4.2 Concurrency Control

For transaction concurrency control (CC), we use the dis-
tributed strict two-phase locking (2PL) protocol [6]. Trans-
actions, through their cohorts, set read locks on pages that
they read and update locks on pages that need to be up-
dated. All locks are held until the receipt of the PREPARE
message from the master. Subsequently, the cohort releases
all its read locks but retains its update locks until it receives
and implements the global decision from the master. For
the new protocol, OPT, however, the lock manager at each
site is modified to permit borrowing of updated data items
held by prepared transactions.

With respect to deadlocks, in our simulation implemen-
tation, both global and local deadlock detection is immedi-
ate, that is, a deadlock is detected as soon as a lock conflict
occurs and a cycle is formed. The youngest transaction in
the cycle is restarted to resolve the deadlock. We do not ex-
plicitly model the overheads for detecting deadlocks or for
concurrency control since (a) these costs would be similar
across all the commit protocols, and (b) they are usually
negligible compared to the overall cost of accessing data [8].

Another point to note here is that, as mentioned in Sec-
tion 3.1, with this CC mechanism, there is no possibility of
serializability-induced aborts occurring in the commit pro-
cessing stage.

490

4.3 Logging

With regartl t,o logging costs, we explicitly model only forced
log writ,rs since they are done synchronously and suspend
ti ansact,ion operat,iorl until their completion. The cost of
each t’orc~td log write is the same as the cost of writing a
clat,a page t,o t,he disk.

5 Experiments and Results

Using the dist.ributed database model described in the pre-
\.iuris sec:t,ion, we conducted an extensive set of simulation
exl)ernnent,s comparing the performance of the various com-
lnit prot,o(,ols presented m Sections 2 and 3. Due to space
hnntat~ionh. we discuss only a representative set of results
here -- the complete details are available in [12].

The primary performance metric of our experiments is
tl,cl,rr.sc~,ct%on througlipr~t. that is, the rate at which the sys-
tem completes transactions.4 We also emphasize the peak
throughput, that is achievable by each protocol since this
represents the maximum attainable performance and by us-
ing a suit,able admission control policy (for example, Half-
al&Half [7]); the throughput can be maintained at this level
m high-performance systems. All the throughput graphs of
t Irib 1iape1’ show mean values that have relative half-widths
alnnit, tjhr mean of less than 10 percent at the 90 percent
(~onfiden(~e level, wit,11 each experiment having been run un-
ril at least. 5(1000 transactions were processed by the system.
Onlv st,e.tist,icallv significant differences are discussed here.

5.1 Comparative Protocols

To help isolat,e md underst,and the effects of distribution
au(l atomicity on throughput performance, and to serve as
a basis for comparison, we have also simulated the perfor-
mance behavior of two additional scenarios:

Centralized System :
III t.his scenario. hereafter referred to as CENT, a cen-
tr.o,lrzed database system that is equivalent (in terms of
database size and physical resources) to the distributed
tliit,al)ase svstem is modeled. Messages are obviously
not, required here and commit processing only requires
force-writing a single decision log record. Modeling
this scenario helps to isolate the overall effect of dis-
tribution on throughput.

Distributed Processing, Centralized Commit :
In t,his scenario, hereafter referred to as DPCC, data
processing is executed in the normal distributed fash-
ion, that is, involving messages. The commit process-
ing, however, is like that of a centralized system, re-
quirmg 0111,y t,he force-writing of the decision log record
at the m>istjer. While this system is clearly artificial,
modeling it helps to isolate the effect of distributed
commit, processing on throughput (as opposed to the
ccmralized scenario which eliminates the entire effect
of dist,rihut,ed processing).

5.2 Experiment 1: Resource and Data Contention

The set,t.iugs of t,he workload parameters and system param-
eters for oiu first experiment are listed in Table 2. These

Table 2: Baseline Parameter Settings

~1

settings were chosen to ensure significant levels of both re-
source contention (RC) and data contention (DC) in the
system, thus helping to bring out the performance differ-
ences between the various commit protocols.

In this experiment, each transaction executes in a parallel
fashion at three sites, accessing and updating an average of
six pages at each site. Each site has a single CPU, two data
disks and one log disk. The CPU and disk processing times
are such that the system operates in an I/O-bound region.
However, since it is not heavily I/O-bound, it is possible for
message-related CPU costs to shift the system into a region
of CPU-bound operation - this occurs, for example, in Ex-
periment 4 where a higher degree of transaction distribution,
and consequently more network activity, is modeled.

For this experiment, Figure la presents the transaction
throughput results as a function of the per-site multipro-
gramming level. We first observe here that for all the pro-
tocols, the throughput initially increases as the MPL is in-
creased, and then it decreases. The initial increase is due to
the fact that better performance is obtained when a site’s
CPUs and disks are utilized in parallel. As the multipro-
gramming level is increased beyond a certain level, however,
the system starts thrashing due to data contention, resulting
in degraded transaction throughput.

Comparing the relative performance of the protocols in
Figure la, we observe that the centralized system (CENT)
performs the best, as expected, and that the performance of
distributed processing/centralized commit (DPCC) is very
close to that of CENT. In contrast, there is a noticeable dif-
ference between the performance of these baseline systems
and the performance of the classical commit protocols (2PC,
PA, PC, 3PC) throughout the loading range. This demon-
strates that distributed commit processing can have con-
siderably more effect (difference between the performance
of DPCC and 2PC) than distributed data processing (dif-
ference between the performance of CENT and DPCC) on
the throughput performance, as will be seen in our other
experiments as well.

Moving on to the relative performance of 2PC and 3PC,
we observe that there is a clear difference in their perfor-
mance. The difference arises from the additional message
and logging overheads involved in 3PC, which are shown in
Table 3 (for committing transactions).

Table 3: Protocol Overheads (DistDegree = 3)

Protocol Execution Commit
Messages Forced-Writes Messages

2PC 4 7 8
PA 4 7 8
PC 4 5 6
3PC 4 11 12
DPCC 4 1 0
CENT 0 1 0

491

j *---CENT - 2PC x- .. -X PA - OPT
+ + DPCC x- - -X3PC t--+pc

Fig la : Throughput (RC+DC)

0 1
0 2 4 6 8 10

MPUSite --->

Fig 1 b : Block Ratio (RC+DC)
l- A

I
$ 0.8.

c
5 0.6.

6
m 0.4
z
s
‘E 0.2.
22
LL

0
0 2 4 6 8 10

MPUSite --->

2

I

Fig ic : Borrow Ratio (RC+DC)

0’
0 2 4 6 8 10

MPUSite --->

Fig 2a : Throughput (DC)
100r

0’
0 2 4 6 8 10

MPUSite --->

Fig 2b : Block Ratio (DC)

A lr
I

2 0.8.

c
-a
2

0.6.

B
m
‘ij

0.4 -

5
‘Z 0.2.
2
LL

0’
0 2 4 6 8 10

MPUSite --->

Fig 2c : Borrow Ratio (DC)

0
0 2 4 6 8 10

MPUSite --->

492

Shift,lng our focus t,o PC! we observe that it performs
\Y’I\’ similarlv t,o 2PC. This is because of the following rea-
sons: First,, while PC saves on the forced writes and acknowl-
oclgrment,s at, each cohort, it incurs an additional collecting
f’orc~l write at, t,he master. Second, the forced writes that
PC saves were done in parallel at the cohorts by 2PC. There-
fort, even though PC saves considerably on the overheads it
fails to appreciably reduce the overall response time of the
t,ransaction. Thus the gain in throughput for PC over 2PC
is uot significant.

There is no possibility of serializability-induced aborts in
tllc> c.ommit phasr, as ment,ioned earlier in Section 4.2, due
t,o uhiug tlistril)ut,c:d strict 2PL as the CC mechanism. In the
,~l)h~ucc of’ my ot,her source of aborts, as in this experiment,
l’.L\ reduces to 2PC and performs zdentically. We will there-
torca defer further discussion of the performance of PA until
Experiment, 6 where we model surprise transaction aborts
in the commit. phase.

Finally. turning our attention to the new protocol, OPT,
\VV ob~ervc~ t,hat, it,s performance is either the same or bet-
t,or t1la.n that of all the standard algorithms over the full
range of MPL. At low MPLs, when there is less data con-
tent,ion, and consequently little opportunity for borrowing,
OPT is virtually identical to 2PC and therefore performs at
the sanw level. At higher MPLs, however, the performance
of OPT is superior to that of 2PC, and in fact, becomes
closc~ t,o that of DPCC. The reason for this is that in OPT,
t,hr c.ohort,s in t,he PREPA RED state do not contribute to
t,llcs da.t,a content,ion thus reducing the number of blocked
t,rausactions. This is seen in Figure lb, which shows the
t,ransaction “block ratio”, that is, the average fraction of
transactions that are in the blocked state. Finally, in Figure
lc, we graph the “borrow ratio” for OPT, that is, the aver-
age number of data items (pages) borrowed per transaction.
This graph clearly shows that borrowing comes into the pic-
t,llre at, higher MPLs, resulting in improved performance for
OPT

5.3 Experiment 2: Pure Data Contention

Thcs goal of our next, experiment, was to isolate the influence
of do.ta corrte,ntion (DC) on the performance of the com-
unt, protocols. For this experiment, the physical resources
(CPUs ad disks) were made “infinite”, that is, there is no
queueing for these resources [3]. The other parameter val-
ues are t8he same as those used in Experiment 1. The results
of t,his experiment, are shown in Figures 2a through 2c. In
t,hesr figures, as in the previous experiment, CENT shows
t,hr best, performance and the performance of DPCC is close
t,o t,hat of CENT. The performance of the standard protocols
relat,ive to the baselines is, however, markedly worse than
I)t:fore. This is because in Experiment 1, the considerable
difference in overheads between CENT and 2PC was largely
submerged due to the resource and data contention in the
syst,ern having a predominant effect on transaction response
times. III t,he current experiment, however, where through-
put is limit,ed only by data contention, although transaction
response times are typically smaller than under RC+DC, the
commit phase here occupies a bigger proportion of the over-
all transaction response time and therefore the overheads of
2PC are felt to a greater extent. Similarly, 3PC performs
significantly worse than 2PC due to its considerable extra
overheads. Finally, the performance of PC remains similar
IO tliilt of 2PC, for t,he same reasons as those given in the
previous experiment.

Moving on to OPT, we observe that at low MPLs, it be-

haves almost identically to 2PC since there are few oppor-
tunities for borrowing. At higher MPLs, however, OPT’s
performance is substantially better than that of 2PC. In
fact, OPT’s peak throughput is close to that of DPCC. An
interesting observation here is that 2PC, DPCC and CENT
all achieve their peak throughput at an MPL of 4, while
for OPT, the corresponding MPL value is 5. This is ex-
plained by considering Figure 2b, which shows the transac-
tion block ratio, where we see that this ratio is significantly
lower for OPT than the other protocols for the same mul-
tiprogramming level due to the elimination of blocking for
prepared data. Thus for a given data contention level, OPT
allows more concurrency in the system than standard pro-
tocols. Finally, Figure 2c presents the transaction borrow
ratio, again showing that borrowing increases almost linearly
with MPL.

In summary, this experiment indicates that under high
data contention, OPT’s performance can be substantially
superior to that of the standard protocols.

5.4 Experiment 3: Fast Network Interface

In the previous experiments, the cost for sending and re-
ceiving messages modeled a system with a relatively slow
network interface (MsgCpu = 5 ms). We conducted an-
other experiment wherein the network interface was faster
by a factor of five, that is, MsgCpu = 1 ms. The experi-
ment was conducted for both resource-cum-data contention
(RC+DC) and pure data contention (DC) scenarios.5 For
brevity, we only discuss the results of this experiment here -
the graphs are available in [12]: First, the performance of all
the protocols becomes closer to that of CENT as compared
to the previous experiments, and in fact, DPCC and CENT
are virtually indistinguishable. This improved behavior of
the protocols is only to be expected since low message costs
effectively eliminate the effect of a significant fraction of the
overheads involved in each protocol. Under pure DC, how-
ever, the remaining overheads of forced-writes are signifi-
cant enough to point out clear differences between the per-
formances of DPCC and 2PC and those of 2PC and 3PC.
Second, OPT’s peak throughput performance is again close
to that of DPCC in both the RC+DC and pure DC cases.

This experiment shows that adopting the OPT principle
can be of value even with very high-speed network inter-
faces because faster message processing does not necessarily
eliminate the data contention bottleneck.

5.5 Experiment 4: Higher Degree of Distribution

In the experiments described so far, each transaction exe-
cuted on three sites. To investigate the impact of having
a higher degree of distribution, we performed an experi-
ment wherein each transaction executed on six sites. The
CohortSize in this experiment was reduced from 6 pages
to 3 pages in order to keep the average transaction length
equal to that of the previous experiments. For this environ-
ment, the overheads of the protocols are shown in Table 4
(for committing transactions).

For this experiment, Figures 3a and 3b present the trans-
action throughput results under RC+DC and under pure
DC, respectively. In Figure 3a, we observe that the perfor-
mance of the baselines, CENT and DPCC, is virtually in-
distinguishable although the message processing overheads

sThe default parameter settings for the RC+DC and pure DC
scenarios in this experiment, as well as in the following experiments,
are the same as those used in Expt. 1 and Expt. 2, respectively.

493

Table 4: Protocol Overheads (DistDegree = 6)

Prot~ocol Execution Commit
Messages Forced-Writes Messages

2PC 10 13 20
PA 10 13 20
PC 10 8 15
3l’C’ 10 20 30
DPCC 10 1 0
CENT 0 1 0

of’ DPCC art> significantly more. The reason for this is that
even with these additional overheads, the CPU is still not
the bottleneck for DPCC, resulting in its performance being
similar to that of CENT (as in Experiment 1).

For the standard protocols, however, the increase in the
ulessage overheads is sufficiently large (Table 4) that the
system now operates in a heavily CPU-bound region. As
a result, the performance differences between the baselines
and these protocols are visibly more than those seen for the
limited distribution workload of Experiment 1 (Figure la).

.411 iuteresting feature of Figure 3a is that, for the first
t,imc, we observe a significant difference between the perfor-
mance of PC ant1 that of 2PC. In fact, PC exhibits better
I)~‘~t’~)rlllall(:(t,han 2PC across the entire MPL range. The
IXV~SI~I for t,hi.s behavior is t,he heavily CPU-bound nature of
t,llcs workload. In this environment,, PC’s reduced overheads
result, in its performing better than 2PC. This is further con-
firmed in the results of Figure 3b, where in the absence of
resource contention, PC again performs almost identically
to 2PC.

Turning our attention to OPT, we observe that un-
tlrr RC+DC (Figure 3a), the performance of OPT is only
ularginally better than that of 2PC. This is due to two fac-
tors: (i) the CPU-bound nature of the workload, and (ii)
message processing has higher priority over data process-
ing. As a result of these factors, the increase in execution
ph;tse lengt,h is much larger than the increase in commit,
phitsts IrngtJi, resulting in a smaller “commit-execution ra-
t.lo”. Siuce OPT’s impact, is felt only during the commit
ph;lsfs, t,hr drcreasc> in this ratio causes reduced performance
improvement, as compared to Experiment 1. These results
may seem to suggest that OPT may not be the best ap-
proach for workloads of the type considered in this exper-
iment,. Note, however! that we can now bring into play
the ability of OPT to “peacefully and usefully coexist” with
other optimizations by combining OPT and PC to form an
OPT-PC protocol. The performance of this protocol is also
shown in Figure 3a, wherein it provides the best overall per-
formance duo to deriving the benefits of both the OPT and
PC optimizations.

I:ntler pure data contention (Figure 3b), note that the
I)(trfornlaucc, difference between CENT and DPCC is more
a.5 (.on11)a,red t,o earlier experiments. This is because the av-
~rage t.ransac:tion response time is reduced due to the height-
c:ned degree of distribution. As a result,, message delays now
form a significant, fraction of the response time. We also
observe in Figure 3b that the difference between the perfor-
mance of DPCC and that of 2PC is now very large (the peak
throughput, of DPCC is more than tvlice that of 2PC). This
again clearly demonstrates that distributed commit process-
ing can affect performance to a significantly greater degree
t,han dist,ributed data processing.

As mentioned earlier, PC performs almost the same as

2PC in Figure 3b. The performance of OPT continues to
be superior to 2PC, but in contrast to what was seen in
Figure 3a, we now observe that the performance of OPT-
PC is no better than that of OPT at low MPLs and slightly
worse at higher MPLs. This is because the effect of OPT-
PC is to increase the length of the execution phase of the
transaction (by introducing collecting forced write) and at
the same time to reduce the commit phase length (by saving
on forced writes at cohorts), thus decreasing the commit-
execution ratio and diminishing the utility of the optimistic
feature.

5.6 Experiment 5: Non-Blocking OPT

In the previous experiments, we observed that OPT, which
is based on 2PC, performed significantly better than the
standard protocols. This motivated us to evaluate the effect
of incorporating the same optimizations in the 3PC pro-
tocol. We refer to this protocol as OPT-3PC and for this
experiment, Figures 4a and 4b present the throughput re-
sults under RC+DC and pure DC, respectively. In Figure
4a we observe that the performance of OPT-3PC is sim-
ilar to that of 3PC at lower MPLs. However, at higher
MPLs, OPT-3PC not only performs better than 3PC, but
also achieves a peak throughput that is comparable to that
of 2PC. These observations show up more vividly in Fig-
ure 4b, where the peak throughput of OPT-3PC actually
significantly surpasses that of 2PC.

An important point to note here is that the optimistic
feature has potentially more impact in the 3PC context than
in the 2PC context. This is because the length of the pre-
pared state is significantly longer in 3PC (due to the extra
phase), thereby increasing the benefits of borrowing.

In summary, these results indicate that by using the OPT
approach, we can simultaneously obtain both the highly de-
sirable non-blocking functionality and better peak through-
put performance than the classical blocking protocols. This,
in essence, is a “win-win” situation.

5.7 Experiment 6: Surprise Aborts

In all of the experiments discussed earlier, there was no po-
tential for serializability-induced aborts in the commit pro-
cessing stage, as explained in Section 4.2. It is for this reason
that no difference was possible in the relative performance
of PA and 2PC. In practice, however, aborts may arise in
the commit phase due to other reasons such as violation
of integrity constraints, software errors, system failure, etc.
We therefore conducted an experiment where such “surprise
abort” situations were modeled and evaluated their impact
on protocol performance. The important point to note here
is that these situations are fundamentally biased against
OPT since its underlying assumption that transactions will
usually commit may not hold under surprise aborts.

In this experiment, each cohort, on receiving the PRE-
PARE message from the master, instead of always voting
YES, randomly votes NO with a certain probability. We
consider three different cases, where the probability of a
cohort aborting arbitrarily is 1 percent, 5 percent and 10
percent,, respectively. Since each transaction is composed
of three cohorts, these cohort abort probabilities translate
to overall transaction abort probabilities of approximately 3
percent, 15 percent and 27 percent, respectively. Note that
the latter two cases model abort probabilities that appear
artificially high as compared to what might be expected in
practice. Modeling these high abort levels, however, helped
us determine the extent to which OPT was robust.

494

~...__ -__~~-
I w----CENT - 2PC - OPl-

+ + DPCC x- --x3PC - : - t---t--cc Q- - -0 OPT-PC

Fig 3a : Distribution = 6 (RC+DC) Fig 3b : Distribution = 6 (DC)
25- 150-

O- 0 0 2 4 6 8 10 0 2 4 6 8 10
MPLlSite --> MPUSite --->

- 2PC
x- - --x 3PC

- OPT

a-. - --o OPT-3PC

Fig 4a : Non-Blocking (RC+DC)
100

aI
si). 20
cn

3 1 0 0 2 4 6 a 10 0 2 4 6 8 10
MPUSite --> MPUSite --->

Fig 4b : Non-Blocking (DC)

I
/ ::

2PC x PA

OPT + OPT-PA

Fig 5a : Surprise Aborts (RC+DC)
20

r

- Abort 3% Abort 27%

- - Abort 15%

Fig 5b : Surprise Aborts (DC)
100

1

0’ 2 4 6 8 10 0 2 4 6 a 10
MPUSite ---> MPUSite --->

495

Tht) r.esult,s of this experiment under RC+DC and under
~)III’(’ DC’ are presented in Figures 5a and 5b, respectively.
\\‘(s ol)sc!rvc~ here that. OPT’s peak throughput performance
is c~omparable to that of 2PC even when 15 percent of the
trimsac~tions are aborting and it is only when the abort level
15 111 VX:~SS of this value that we begin to see an appreciable
difference III performance. At these high abort levels, the
opt,lmiam of borrowing transactions proves to be misplaced
smce they are often aborted due to the abort of their lenders.

We also observe in these figures that, in spite of having
a large: fraction of aborts, PA which is designed to do well in
the abort case, shows only marginal improvement over 2PC.
This is hoc:;tuscd although PA saves on the forced writes and
~I~~liIlO~~l~d~~lIl~lltS, these savings itre small in comparison
t.L, tllct totc~,il overheads of commit processing. For example,
II) thr 27 percent transaction abort probability case, 2PC
1n(.,1rh ill)ollt, 8.8 forced writes and 2.5 acknowledgements
,>er c~ornmittetl t,ransaction, whereas the corresponding val-
,l(‘h t’or PA are 7.7 and 2, respectively. When the system is
not, heavily resource-bound, these savings do not affect the
t~hroughput~ performance significantly. To investigate this
furt,ltrr; we conducted the same experiment with a higher
degree of distribution (D&Degree = 6), which results in a
heavily CPU-bound environment, as in Experiment 4. In
this sit,uation, we found that the savings by PA were suffi-
cirnt, t,o make it perform clearly better than 2PC.

Thcl important point to note here is that OPT can also
tlerlve these performance benefits of PA by combining with
it t,o form OPT-PA -- the performance of this combined al-
gol,it,hm is also present,ed in Figures 5a and 5b and shows
t,hr expected outcome.

.4nothcr interesting feature in Figures 5a and 5b is that,
;lt high MPLs, the performance of the OPT and 2PC proto-
cols in a system with higher probability of surprise aborts is
I)rt,ter than their performance in a system with lower prob-
ability of aborts, that is, there is a performance cTossoveT.
The reason for the crossover is the following: In our model,
i1.s 111 earlier transaction management studies (for exam-
ple, [3]), aborted transactions are delayed before restarting
with t,kw tle1a.y period being equal to the average response
t,nnc This de1a.y effectively becomes a crude way of control-
11ng t,llcl data c:out,ention in the system. At high MPLs, this
resu1t.s in the syst,em with higher transaction abort prob-
al)ilitich having less data contention than the system with
lower Cransaction abort, probabilities and therefore perform-
ing bet,t,c+r, resulting in the crossover. Note, however, that
the peak throughput is significantly smaller for the system
wit,11 higher t,ransaction abort probabilities than the one with
Iowt’r abort, probabilities.

5.8 Other Experiments

We conducted several other experiments to explore various
regions of the workload space. These included workloads
with sequential transactions, reduced update probabilities,
hlnall database sizes: etc. The relative performance of the
l)rotoc:ols in these additional experiments remained quali-
t,at,ively similar to that seen in the experiments described
here (see [12] for details), with the performance improve-
ment delivered by OPT being dependent on the level of data
c,ont,ent,ioii in the system.

One interesting feature that we noticed in the sequential
t,ransaction experiments is that the performance differences
bct~wern the prot,ocols decreased as compared to carrying
ollt t,hcs S~IIIP c~xp(~rilnent, with parallel transactions. This is
I)c~r.usc~ t,he length of the execution phase is more for sequen-

tial transactions as compared to their parallel counterparts.
The length of the commit phase, however, is the same for
both types of transactions. Hence, the commit-execution
ratio is significantly smaller in the case of sequential trans-
actions (this effect was confirmed by measuring these values
in our experiments), resulting in OPT having lesser impact
on the throughput.

6 Conclusions

In this paper, we have quantitatively investigated the per-
formance implications of supporting distributed transaction
atomicity. Using a detailed simulation model of a dis-
tributed database system, we evaluated the throughput per-
formance of a variety of standard commit protocols, includ-
ing 2PC, PA, PC and 3PC, apart from two baseline proto-
cols, CENT and DPCC. We also developed and evaluated a
new commit protocol, OPT, that was designed specifically
to reduce the blocking arising out of locks held on prepared
data. To the best of our knowledge, these are the first quan-
titative results on commit processing in a fully-distributed
DBMS with respect to end-user performance metrics.

Our experiments demonstrated the following:

Distributed commit processing can have considerably
more effect than distributed data processing on the
system performance. This highlights the need for de-
veloping high-performance commit protocols.

The PA and PC variants of 2PC, which reduce pro-
tocol overheads, have been incorporated in a number
of database products and transaction processing stan-
dards. In our experiments, however, we found that
these protocols provide tangible benefits over 2PC only
in a few restricted situations. PC performed well only
when the degree of distribution was high - in current
applications, however, the degree of distribution is usu-
ally quite low 1221. PA, on the other hand, performed
only marginally better than 2PC even when the prob-
ability of surprise aborts was close to thirty percent -
in practice, surprise aborts occur only occasionally.

We caution the reader here that the above conclusion
is limited to the completely update transaction work-
loads considered here - PA and PC have additional
optimizations for fully or partially read-only transac-
tions [20] that may have a significant impact in work-
loads having a large fraction of these kinds of transac-
tions.

Use of the new protocol, OPT, either by itself, or in
conjunction with other standard optimizations, leads
to significantly improved performance over the stan-
dard algorithms for all the workloads and system con-
figurations considered in this paper. Its good perfor-
mance is attained primarily due to its reduction of the
blocking arising out of locks held on prepared data.
A feature of the OPT protocol design is that it limits
the abort chain to one, thereby preventing cascading
aborts. This is achieved by allowing only prepared
transactions to lend their data and ensuring that bor-
rowers cannot enter the prepared state until their bor-
rowing is terminated.

The power of the optimistic access feature is substan-
tial enough that OPT’s throughput performance was
often close to that obtained with the DPCC baseline,
which represents an upper bound on achievable per-
formance.

496

1. .&I att,ractive feature of OPT is that it can be in-
tegrat,ed, of’tm synergistically, with most other opti-
mixations proposed earlier. In particular, in the few
experiments wherein PC or PA performed noticeably
bet,ter than 2PC, using OPT-PC or OPT-PA resulted
iu the best, performance. The only exception wherein
OPT does not appear to combine well is with protocols
that. allow cohorts to enter the prepared state unilat-
erally and therefore run the risk of having to revert to
au active state in case the master subsequently sends
additional work to the cohort (for example, the Unso-
licited Vote protocol of distributed Ingres [27]).

5. OPT’s design is based on the assumption that trans-
actious that lend their uncommitted data will almost
always commit. However, OPT is reasonably robust
in that it maintains its superior performance until the
probability of surprise transaction aborts in the com-
mit, phase exceeds as high a value as fifteen percent.
Beyond this level, its performance becomes progres-
sively worse than that of the classical protocols.

G. Under conditions where there is sufficient contention
iu the system, a combination of OPT and 3PC pro-
vides better throughput performance than the stan-
dard ZPC-based blocking protocols. This suggests that
it, would be possible for distributed database systems
that, are operating in high contention situations and
currently using 2PC-based protocols to switch over
to OPT-3PC, thereby obtaining the superior perfor-
rnance of OPT during normal processing and, in addi-
tion, acquiring the highly desirable non-blocking fea-
ture of 3PC.

III summuy. we suggest that distributed database systems
(urr(:ut.ly using the 2PC, PA or PC commit protocols may
find it beneficial to switch over to using the correspond-
ing OPT algorithm, that is, OPT, OPT-PA or OPT-PC.
It’ having non-blocking functionality is important but 3PC
hits uot been used due to its excessive overheads resulting in
poor performance, then OPT-3PC appears to be an attrac-
tive choice since it provides a peak throughput that exceeds
t,hose of the standard 2PC protocols.

Acknowledgements

‘I‘llis work was supported in part by research grants from the
Dep.. of Science alld Technology, Govt. of India and from the
Nat,iotlal Sciewe Foundation of the United States under grant IRI
!J:< 14376.

References

Y. Al-Hournaily and P. Chrysanthis, “Two-Phase Commit
in Gigabit-Networked Distributed Databases”, Proc. of 8th
Intl. Conj. on Parallel and Distributed Computing Systems,
September 1995.

R.. Agrawal, M. Carey and M. Livny, “Concurrency Con-
rrol Performance Modeling: Alternatives and Implications”,
ACM Trans. on Database Systems, 12(4), 1987.

S. Banerjee and P. Chrysanthis, “A Fast and Robust Fail-
ure Recovery Scheme for Shared-Nothing Gigabit-Networked
Dat,abases”, Proc. of 9th Intl. Conf. on Parallel and Dis-
~r.r/~~rtc:rl Gmuymtrng Systems, September 1996.

H. Bhargava. (editor), Concurrsncy and Reliability in Dis-
~&rr/.srl Dntc~hc~se Systems, Van Nostrand Reinhold, 1987.

I’. Bernstein, V. Hadzilacos and N. Goodman, Concurrency
Control and Recovery in Database Systems, Addison-Wesley,
1987.

PI

[71

PI

PI

WI

WI

P21

P31

P41

(151

P71

P-31

P91

PO1

WI

I221

[231

P41

P51

1261

M. Carey, S. Krishnamurthi and M. Livny, “Load Control
for Locking: The ‘Half-and-Half’ Approach”, Proc. of 9th
Symp. on Principles of Database Systems, April 1990.

M. Carey and M. Livny, “Distributed Concurrency Con-
trol Performance: A Study of Algorithms, Distribution, and
Replication”, Proc. of 14th Intl. Conf. on Verv Lame Data
Baies, August 1988. -

” 1

M. Carey and M. Livny, “Parallelism and Concurrency Con-
trol Performance in Distributed Database Machines”, Proc.
of ACM SIGMOD Conf., June 1989.

M. Carey and M. Livny, “Conflict Detection Tradeoffs for
Replicated Data”, ACM Zkans. on Database Systems, 16(4),
1991.

K. Eswaran et al, “The Notions of Consistency and Predi-
cate Locks in a Database Systems”, Comm. of A CM, 19(ll),
1976.

R. Gupta, J. Haritsa and K. Ramamritham, “Revisiting
Commit Processing in Distributed Database Systems”, TR-
97-01, DSL/SERC, Indian Institute of Science, 1997.

R. Gupta, J. Haritsa, K. Ramamritham and S. Seshadri,
“Commit Processing in Distributed Real-Time Database
Systems”, Proc. of 17th IEEE Real-Time Systems Sympo-
sium, December 1996.
J. Gray, “Notes on Database Operating Systems”, Operating
Systems: An Advanced Course, Lecture Notes in Computer
Science, 60, 1978

M. Liu, D. Agrawal and A. El Abbadi, “The Performance of
Two-Phase Commit Protocols in the Presence of Site Fail-
ures”, Proc. of 24th Intl. Symp. on Fault-Tolerant Comput-
ing, June 1994.

B. Lindsay et al, “Computation and Communication in R’:
A Distributed Database Manager”, ACM lkuns. on Com-
puter Systems, 2(l), 1984.

B. Lampson and D. Lomet, “A New Presumed Commit Op-
timization for Two Phase Commit”, Pruc. of 19th Intl. Conf.
on Very Large Data Bases, August 1993.

B. Lampson and H. Sturgis, “Crash Recovery in a Dis-
tributed Data Storage System”, Tech. Report, Xerox Palo
Alto Research Center, 1976.

C. Mohan and D. Dievendorff, “Recent Work on Distributed
Commit Protocols, and Recoverable Messaging and Queu-
ing” Data Engineering Bulletin, 17(l), 1994.

C. Mohan, B. Lindsay and R. Obermarck, “Transaction
Management in the R’ Distributed Database Management
System”, ACM lYans. on Database Systems, 11(4), 1986.

M. Ozsu and P. Valduriea, Principles of Distributed
Database Systems, Prentice-Hall, 1991.

G. Samaras, K. Britton, A. Citron and C. Mohan,
“Two-Phase Commit Optimizations in a Commercial Dis-
tributed Environment”, Journal of Distributed and Parallel
Databases, 3(4), 1995 (also in Proc. of 9th IEEE Intl.
Conf. on Data Engineering, April 1993).

J. Stamos and F. Cristian, “A Low-Cost Atomic Commit
Protocol”, Proc. of 9th Symp. on Reliable Distributed Sys-
tems, October 1990.

J. Stamos and F. Cristian, “Coordinator Log Transaction
Execution Protocol”, Journal of Distributed and Pamllel
Databases, l(4), 1993.

P. Spiro, A. Joshi and T. Rengarajan, “Designing an Op-
timized Transaction Commit Protocol”, Digital Technical
Journal, 3(l), 1991.

D. Skeen, “Nonblocking Commit Protocols”, Proc. of ACM
SIGMOD Conf., June 1981.

M. Stonebraker, “Concurrency Control and Consistency of
Multiple Copies of Data in Distributed INGRES”, IEEE
tins. on Software Engg., 5(3), 1979.

497

