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ABSTRACT
The increased importance of XML as a data representation
format has led to several proposals for facilitating the devel-
opment of applications that operate on XML data. These
proposals range from runtime API-based interfaces to XML-
based programming languages. The subject of this paper is
XJ, a research language that proposes novel mechanisms
for the integration of XML as a first-class construct into
JavaTM. The design goals of XJ distinguish it from past
work on integrating XML support into programming lan-
guages — specifically, the XJ design adheres to the XML
Schema and XPath standards. Moreover, it supports in-
place updates of XML data thereby keeping with the imper-
ative nature of Java. We have built a prototype compiler
for XJ, and our preliminary experiments demonstrate that
the performance of XJ programs can approach that of tra-
ditional low-level API-based interfaces, while providing a
higher level of abstraction.

Categories and Subject Descriptors: D.3.3[Software]:
Programming Languages; I.7.2[Computing Methodologies]:
Document and Text Processing

General Terms: Languages, Design

Keywords: XML, Java, Language Design

1. INTRODUCTION
The desire to integrate applications with heterogeneous

data models on the Web has driven the development of
XML-based standards such as xhtml, XForms, Web Ser-
vices, etc. The development of applications that process
XML data, however, can be tedious and error-prone. Pro-
grammers use low-level APIs such as DOM [28] or SAX [22],
which provide minimal support for ensuring that programs
that process XML are correct with respect to the XML

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2005, May 10-14, 2005, Chiba, Japan.
ACM 1-59593-046-9/05/0005.

Schemas governing the XML data. Furthermore, the run-
time performance of XML processing has been a limitation
of XML. Runtime libraries do not take advantage of XML
Schema information or static analysis of programs to opti-
mize accesses to XML data.

Given the widespread use of XML, there have been sev-
eral efforts aimed at facilitating the development of XML
processing applications. XML-based languages for process-
ing and transforming data, for example, XSLT [27] and
XQuery [29], can simplify the development of certain classes
of XML processing applications. The drawback of these lan-
guages is that the interface between programming languages
used most commonly to develop applications, such as Java,
and these XML-based languages is low-level. Runtime li-
braries, such as XQJ [14], allow Java applications to invoke
XQuery or XSLT engines, where the invocation of an XPath
or XQuery expression is typically expressed by passing a
string to the engine. Since the Java compiler has no built-
in support for XML, an error in the string passed to the
XQuery engine cannot be caught at compile time, and may
not be caught at runtime either (due to the semantics of
XPath, a mistyped XPath expression may return no results
at runtime, rather than raise a runtime exception). More-
over, since XQuery has no built-in knowledge of the Java
data model, there is no clean mechanism by which XQuery
programs can utilize the wealth of Java libraries that exists.
Finally, since the interaction between Java and XQuery is
through runtime libraries, there is no means by which a com-
piler can optimize accesses to XML data in the context of
the Java application that performs these accesses.

Recognizing the need for better support for XML process-
ing in languages such as Java and C�, researchers have stud-
ied augmenting these languages with native XML support
— for example, Xtatic [10], Cω [4], and other languages [16,
17]. A drawback of these languages is that they define their
own type system for XML data. To develop applications
that interoperate with standards such as XML Schema, a
programmer is forced to understand the mapping (which is
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typically not isomorphic) between the internal type system
and XML Schema. A key advantage of XML — that stan-
dards such as XML Schema allow producers and consumers
to agree on the structure of data interchanged — is some-
what lost. A programmer is given a guarantee by the lan-
guage that data produced/consumed by programs respect
the internal type system’s view of the desired XML Schemas,
not the XML Schemas themselves. Another drawback of
previous approaches is their lack of support for updates of
XML data — a feature that is both expected and desired in
an imperative language such as Java.

The subject of this paper is XJ, a research language that
integrates XML as a first-class construct into Java. What
sets XJ apart from previous efforts on integrating XML data
into programming languages is its consistency with XML
standards such as XML Schema and XPath, and its support
for in-place updates of XML data. The focus of this paper is
on the design of XJ — how the type system of XML Schema
and the expression syntax of XPath can be integrated into
Java in a manner that is intuitive to both Java and XML
programmers. We have built a prototype compiler and a
runtime system for XJ. The current output of the XJ com-
piler is standard Java code that accesses XML data using
DOM. The XJ data model is defined independently of DOM
or any other runtime representation of XML, thus allowing
easy retargeting of the compiler to different runtime sys-
tems. We provide results of experiments that indicate that
the added flexibility of XJ over APIs such as DOM comes
with minimal overhead in performance. We also discuss op-
timizations that could further improve the performance of
XJ programs.

The contributions of the paper are the following:

1. A description of the XJ language, exploring the design
issues involved and rationale for the choices taken.

2. A detailed exploration of the issue of updating XML,
including a description of the challenges in integrating
the XML Schema type system with Java. Some of the
issues that we raise, such as covariant subtyping, are
applicable to any XML-based programming language,
for example, XQuery.

3. An overview of a static analysis framework that can
be used both for the static detection of type validation
errors and for optimizations.

4. Preliminary results with XJ that demonstrate that the
performance of XJ programs approaches that of tradi-
tional DOM-based programming.

In Section 2, we introduce XJ through a sample XJ ap-
plication. In Section 3, we examine XJ’s data model and
type system. We discuss XJ expressions in Section 4. Given
the importance of updates, we discuss assignment and up-
dates separately in Section 5. Section 6 gives an overview
of a static analysis framework that can be used to deter-
mine type errors statically and optimize XJ programs. In
Section 7, we describe the current implementation of the XJ
compiler. Section 8 provides preliminary experimental re-
sults. In Section 9, we discuss projects related to XJ and
the characteristics that distinguish XJ from these efforts.
We conclude in Section 10.

1 import po.*; // Corresponds to ‘‘po.xsd’’
2 public class Discounter {
3 public void giveDiscount(int discQuantity){
4 purchaseOrder po =

new purchaseOrder(new java.io.File("po.xml"));
5

6 Sequence<item> bulkPurchases =
po[| /item[quantity > $discQuantity] |];

7 for (int i = 0; i < bulkPurchases.size(); i++){
8 item current = bulkPurchases.get(i);
9 current[| /USPrice |] *= 0.80; // Deduct 20%

10 }
11 po.serialize(System.out);
12 }
13 }

Figure 1: An XJ program that reduces the price of
certain items in a purchase order.

2. AN XJ EXAMPLE
We introduce the XJ language with the program listed in

Figure 1. The complete schema for this example is given in
Appendix A. The language features used by this program
are described in detail in Sections 3–5.

The import statement (Line 1) processes XML element
and type declarations from the specified XML Schema file.
Given an import declaration, the compiler first attempts to
find packages and types as would any Java compiler. If no
package or type is found, the compiler appends the exten-
sion “.xsd” (in this case “po.xsd”), and attempts to dis-
cover an XML Schema of this name using the CLASSPATH.
The compiler treats the declarations in this schema, such as
purchaseOrder and item, as classes in XJ. Line 4 loads an
XML document, validates it with respect to purchaseOrder,
and stores a reference to the root element in po.

Line 6 uses XPath notation to navigate the XML tree and
selects those item nodes for which more than the value of
the variable discQuantity were ordered; the XPath expres-
sion can refer to Java variables such as the formal parameter
discQuantity. At runtime, the value of discQuantity will
be substituted during the evaluation of the XPath expres-
sion. Suppose the XPath expression were mispelled, for ex-
ample, the programmer had mistyped po[| /items[. . .] |]

(that is, items instead of item). The compiler would detect
this as a static error because in the schema, purchaseOrder
does not contain any element named items. Contrast this
with DOM, where if a mistyped XPath expression were to be
passed to a runtime XPath library, the engine would silently
return no results.
Sequence<item> on Line 6 denotes an ordered list of zero

or more item elements. We use generic types introduced in
Java 5.0 for such collections. Line 9 uses XPath notation to
update the value of an atomic-typed element. Finally, Line
11 emits the document to an external file.

3. XJ DATA MODEL
We begin by outlining how XML Schema declarations are

integrated into the Java type system as logical XML classes.
We then describe how XML documents are represented as
well-typed XML values that are instances of these classes.
The key properties underlying the XJ data model are:

• The serialization of an XJ XML value that is an in-
stance of an XML class is valid (using XML Schema
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validation rules) according to the XML Schema decla-
ration corresponding to the XML class.

• An XML tree that is valid with respect to an XML
Schema declaration is converted into an instance of
the XML class corresponding to the declaration.

3.1 Logical XML Classes
XJ extends the Java type system to allow programmers

to declare variables, methods, and fields using types de-
rived from XML Schema declarations.1 All the built-in
atomic types defined by XML Schema as well as elements
and atomic types declared in imported XML Schemas are
available to an XJ developer. An element or atomic type
declaration in an XML Schema is represented in XJ as a
logical XML class, which is a subclass of a special XJ class
com.ibm.xj.XMLObject. These classes are logical in the
sense that there are no corresponding class files at com-
pile time. They may be used wherever a Java class type is
expected. In particular, instances of these classes may be
constructed using the new operator. Logical XML classes
are used for type declarations and for static type checking,
but are eventually converted into more appropriate runtime
classes during code generation, as will be described in Sec-
tion 7. At the moment, introspection and reflection are not
supported on these classes.

Logical XML classes support a notion of containment —
an instance of a logical XML class may contain an ordered
sequence of instances of other classes, where the contain-
ment relationship structure forms an ordered tree. Contain-
ment relationships cannot, however, be observed with con-
ventional Java mechanisms such as field access or method
calls. The only means of observing containment relation-
ships is through XPath expressions.

The derivation of logical XML classes from XML Schema
declarations is straightforward, complicated only by XML
Schema’s classification of declarations into element and type
declarations. An element declaration declares an element
name and its type. Type declarations declare what values an
element may contain. XJ uses element names for generating
logical XML class names. We use “e” as the logical XML
class name for a declaration of an element e.

We also derive logical classes for atomic types defined or
referred to in an XML Schema. Analogous to Java’s di-
chotomy of classes and primitive types, XJ supports the
use of logical classes derived from atomic types in addition
to those derived from the more structured element declara-
tions. Unlike the logical classes derived from element decla-
rations, for which we describe update semantics in Section 5,
instances of the logical classes corresponding to atomic types
are immutable. An XML Schema may also contain anony-
mous atomic type declarations. Since an XML Schema itself
is an XML document, which can be viewed as an ordered
tree, XJ orders type declarations in a canonical manner and
assigns generated names to each such type.

For example, using the declarations in the sample schema
in Appendix A, purchaseOrder is a logical class derived
from an element declaration, and anon1 and SKU are logical
classes derived from atomic type declarations. The anon1

1XJ supports all features of XML Schema, except for iden-
tity constraints and redefinition of declarations. Due to con-
flict with Java syntactic constructs, XJ currently does not
support XML element names with “.” or “-” in them.

class refers to the anonymous atomic type declaration in
the definition of quantity. XML namespaces can be used
to distinguish XJ logical class names, though, for the most
part, we ignore the issue of namespaces in this paper.

The import of an XML Schema behaves similarly to a
type-import-on-demand declaration in Java. As with type-
import-on-demand declarations, imported types could have
names identical to names already used in the compilation
unit, or identical to other imported names. The rules for
disambiguating identical names when importing multiple
schemas are the same as with type-import-on-demand dec-
larations.

Within an XML Schema, element declarations may be
global or local in scope. Global element declarations appear
at the top level of the schema document. Local element
declarations appear within a complex type definition. For
the schema given in Appendix A, the declaration of element
purchaseOrder is global. A local declaration of a quantity

element occurs in the definition of the complex type Item.
Suppose the schema is altered so that a local declaration of
a quantity element, identical to the one in Item, also oc-
curs in the definition of POType. For a pair of local element
declarations of the same name, name disambiguation is re-
quired. Local element declarations are treated in a manner
analogous to nested classes in Java; such names are disam-
biguated by qualifying the names with the sequence of names
of containing elements, starting from any unambiguous ele-
ment name, where each name in the sequence is separated by
a “.”. The code sample below illustrates name disambigua-
tion. Unlike nested classes in Java, however, when the name
of local element declaration is unambiguous, the program-
mer need not qualify names with the enclosing element dec-
larations. In our example schema, the name productName is
unambiguous and a programmer may use productName in-
stead of purchaseOrder.item.productName where desired.

purchaseOrder po = new purchaseOrder

(new File("po.xml"));

purchaseOrder.quantity q1 = po[| /quantity |];

purchaseOrder.item.quantity q2 =

po [| /item/quantity |];

3.2 Subclassing
All logical XML classes are subclasses of XMLObject, which

itself is a subclass of java.lang.Object. Figure 2 depicts
how logical XML classes are integrated into the Java class
hierarchy. Each built-in atomic type is a subclass of the
XMLAtomic class, which serves as the supertype for all atomic
types. Atomic types declared or referred to in an imported
XML Schema are inserted into the hierarchy as appropriate,
as are element declarations.

Subclassing relationships between logical XML classes de-
rived from an XML Schema are implied by subtyping and
substitution group declarations in the schema. XML Schema
supports a powerful subtyping mechanism, where one type
may be declared to be a subtype of another type either by
extension or restriction. A subtype relationship between
atomic types imply a subclass relationship between the log-
ical XML classes corresponding to the types. Similarly, if
an element e′ is in the substitution group of element e, then
the logical XML class corresponding to e′ is a subclass of
the logical XML class corresponding to e.
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XMLAtomicXMLElement

java.lang.Object

xsd:string

com.ibm.xj.XMLObject

xsd:decimal xsd:integer ….
….

Other XML Schema built-in types
Schema-defined atomic types

Schema-defined elements

Figure 2: Class hierarchy visible to an XJ pro-
grammer. “Schema-defined” refers to element and
atomic type declarations in imported schemas. Ar-
rows depict inheritance relationships.

3.3 XJ Types
As mentioned previously, logical XML classes may be used

wherever Java classes are allowed, notably to declare types
and formal parameters and in the construction of new val-
ues. For better static typing of XPath expressions, XJ
supports generic types as specified in the Java 5.0 speci-
fication [24]. The standard mechanism in XJ for express-
ing the type of an ordered sequence of XML values is the
com.ibm.xj.Sequence<·> type. The type of an ordered se-
quence that contains items would be “Sequence<item>”.
Similarly, an atomic type in XML Schema corresponds ei-
ther to a subtype of XMLAtomic or, if it is a simple type, to
a Sequence of the appropriate subtype of XMLAtomic.

XML Schema supports a richer notion of types than Java,
based primarily on regular expressions. One alternative con-
sidered in the design of XJ was to allow programmers the
use of regular expression types in declarations. For exam-
ple, “Sequence<item+>” would refer to a list of one-or-more
items. Our position is that the declarations needed for regu-
lar expression types are too complex, with little added prac-
tical value in terms of typing. Our internal typing rules are
predicated on the stronger typing system of XML Schema.
We plan to use type inference to calculate richer types where
possible.

3.4 XJ XML Values
XJ XML values correspond to instances of the logical

XML classes defined previously, where these instances are
related to each other by containment as appropriate. An
XML value in XJ is an XML item, where each XML item
is either an atomic value or a node and is an instance of
a subclass of XMLObject. An atomic value is an instance of
an atomic logical class derived from an atomic XML Schema
type and stores a value from the set of values denoted by the
corresponding atomic type. A node is either an element node
or an attribute node. Element nodes are instances of the
appropriate logical XML class derived from an element dec-
laration. Each element node may contain a sequence of zero
or more XML items, and each attribute node may contain
a sequence of zero or more atomic values. In the XJ data
model, attribute nodes cannot occur independently, but are
always contained by an element node. XML data that are
untyped, that is, not associated with any XML Schema are
represented as instances of XMLElement or XMLAtomic, as ap-
propriate.

purchaseOrder

item

productName quantity USPrice partNum

456-CU

AEE E

E

E

cup 4.95

xsd:decimal

12

SKUanon1xsd:string

Figure 3: Example of an XJ XML value. E denotes
element nodes and A an attribute node. Atomic
values are shown with their logical classes in italics.

3.4.1 Well-Typed Values
We restrict the set of XML values to those where the

content of a value satisfies appropriate XML Schema con-
straints. For example, an instance of a logical class corre-
sponding to an XML Schema element declaration must con-
tain a sequence of instances of logical XML classes such that
the sequence satisfies the content model of the corresponding
XML Schema declaration. Let toXML() be a function that
converts XJ XML values into canonical XML documents.
Given this function, we define well-typed XML values as
follows:

• An element node n that is an instance of a logical class
e of XML Schema type t is well typed if the content
of element e in n.toXML() can be validated success-
fully according to XML Schema rules with respect to
the XML Schema type t (ignoring key and keyref con-
straints) or any declared XML Schema subtype of t.

• An instance of a logical class derived from an atomic
type is well typed if it stores a value from the set of
values denoted by the corresponding atomic type.

• Any other instance of XMLObject, that is, an instance
of XMLAtomic or XMLElement is always well typed.

• An ordered sequence of XML values, l1, l2, ..., lk, is well
typed if each li, 1 ≤ i ≤ k, is well typed.

Updates, construction, and loading of XML values all
guarantee that the resulting XML values are well typed.

Every well-typed instance of a logical class is a well-typed
instance of any of its superclasses. This property is an out-
come of the fact that our subclassing mechanism is based
on that of XML Schema, and XML Schema ensures that a
XML tree valid according to a subtype of a type is also valid
with respect to the type.2

4. EXPRESSIONS
The major extension in XJ to Java expressions is the ad-

dition of XPath expressions. The semantics of XPath in XJ
is consistent with that of the XPath 1.0 specification. Let
the execution of an XPath expression on an XML document

2Strictly speaking, validating an instance of a subtype with
respect to a supertype requires the insertion of xsi:type
annotations in the XML document. It can be shown that
toXML() can place these annotations appropriately.
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result in a sequence of nodes S in the document. The execu-
tion of the same XPath expression on an instance of an XJ
XML class corresponding to the root of the XML document
results in a sequence of instances of XML classes correspond-
ing to the nodes in the sequence S. In addition to XPath
expressions, we discuss the construction of XML data in XJ.
Assignment and update are discussed in Section 5.

4.1 XPath Expressions
A programmer may use XPath 1.0 expressions wherever a

Java expression is expected and, as we describe in Section 5,
on the left-hand side of an assignment as well. The syntax
for an XJ XPath expression is

expr [| query |]

where expr is any XJ expression, and query is an arbitrary
relative XPath location path. For the expression to be valid,
the type of expr must be τ or Sequence<τ>, where τ is a
logical XML class. At runtime, the content of expr defines
the XPath context in which the query is evaluated.

The static typing rules for XPath expressions in XJ are
described in terms of those defined for XQuery [29]. We
briefly sketch a straightforward approach to typing XPath
expressions in XJ. Each XJ logical class τ can be mapped
to an XQuery item type σ. To determine the type of an XJ
XPath expression, the type of expr is first converted into
an XQuery type:

• If the type of expr is a logical class τ , the XQuery type
is σ?, where σ is the XQuery type corresponding to τ .

• If the type of expr is Sequence<τ>, the XQuery type
is σ∗, where σ is again the XQuery type for τ .

The static typing rules of XQuery are applied to the XPath
expression query (after populating XQuery’s static environ-
ment appropriately), and the result type is converted back
into an XJ type:

• If the result type is σ, σ?, σ∗ or σ+, where σ is an
XQuery item type, then the XJ type is Sequence<τ>.

• If the result type is (), which is XQuery’s empty se-
quence type, the result is a static type error in XJ.
Expressions that always return an empty result are
likely the result of programmer error.

• Otherwise, if XQuery returns a complex type such as a
sequence type, the XJ type is a conservative approxi-
mation of the complex type. For example, if the result
type is a sequence type σ1, σ2, where σ1 and σ2 are item
types, the XJ type is Sequence<τ>, where τ is the least
common supertype of the XJ types of σ1 and σ2 (the
least common supertype, τ , may be XMLObject).

The straightforward application of the XQuery type sys-
tem loses information in that complex types returned by
XQuery may be converted into Sequence<XMLObject>. To
obtain more precise typing, we plan to implement type prop-
agation in XJ so that these more complex types are pre-
served across expressions.

4.2 Construction of XML
XJ introduces two extensions of the new operator for con-

structing XML data. In all cases, if a value cannot be con-
structed because validation fails, an exception is raised.

First, one can construct XML data by loading an XML
document from an File using the new operator. For exam-
ple:

purchaseOrder p = new purchaseOrder(

new File("po.xml"));

One may also construct XML values by inlining XML
directly, that is “new τ( literal XML )”, where the lit-
eral following the new operator is a well-formed block of
XML. If τ is a logical class defined in one of the imported
schemas, the literal XML block will be checked for validity
with respect to that logical class. If τ is XMLElement, the
XML block is assumed to be untyped and an instance of
XMLElement is constructed without any validation. As in
XQuery, braces can be used within the XML block to de-
limit XJ expressions that will be evaluated at runtime to
provide values for the construction. For example, the fol-
lowing creates a new item element (Figure 3 depicts the XJ
XML value that is constructed as a result of this XJ code
fragment). Braces in this example delimit a reference to
the variable price, whose value will be substituted for the
enclosed expression at runtime:

USPrice price = new USPrice(<USPrice>4.95</USPrice>);
item cup order =

new item(<item partNum=’456-CU’>
<productName>cup</productName>
<quantity>12</quantity>
{price}

</item>);

5. UPDATES
Most of the difficult issues in the integration of XML into

Java revolve around the issue of assignment and updates. A
central question in defining the semantics of updates in XJ
is whether assignments copy values or references to values.
The semantics of updates in XQuery update proposals [25]
are copy-based. In some sense, copying values has cleaner
semantics, since it is easier to guarantee that values are al-
ways trees. With reference-based semantics, one must en-
sure that every value inserted into another does not already
have a parent. Otherwise, a node might have more than one
parent, and the semantics of XPath expressions (for exam-
ple, those using the ancestor axis) is unclear. On the other
hand, since assignment in Java is reference-based, assign-
ment by reference is more intuitive to a Java programmer.
Moreover, reference-based semantics simplify the preserva-
tion of node identity (since assignment does not change the
identity of nodes by copying them). We have chosen to be
consistent with Java’s reference semantics.

In this section, we describe the syntax and semantics of as-
signments in XJ. We detail various complications that arise
and describe how they are handled in XJ. These complica-
tions, which include covariant subtyping, could arise in any
XML language based on the XML Schema type system, such
as XQuery, but to our knowledge, have not been addressed
yet elsewhere.

5.1 Syntax and Semantics
XJ supports three kinds of updates: simple assignments,

bulk assignments, and complex updates. The syntax and the
semantics for simple assignment to XML types is essentially
as that of Java. The type of the left-hand side must be a
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reference to a logical class that is a supertype of the type of
the right-hand side of the assignment. As in Java, when the
left-hand side of an assignment is a subtype of the right-hand
side, a cast is required. As mentioned previously, XPath
expressions can be used in the left-hand side of assignment
operations. So, for example, the following updates an item

element in place:

item[| /productName |] = "Widgets";

In addition to simple assignment, XJ provides a bulk
assignment operation, “:=”. Bulk updates allow for effi-
cient updates by searching and modifying many portions of
an XML value within one traversal. A bulk assignment is
valid if the left-hand side is an XPath expression with type
Sequence<τ> and the type of the right-hand side is compat-
ible with the logical class τ . A bulk update operation expr

[| /query |] := y is semantically equivalent to:

τ tmp = y;

for (int i = 0; i < ( expr[| /query |].size();

i++) {
expr[| /query[$i] |] = tmp;

}

For example, the following statement deducts 20% from
the price of all items.

po[| /item/USPrice |] *:= 0.80;

For structural changes, such as inserting a new subtree,
we provide methods, such as insertAfter, insertBefore,
insertAsFirst, insertAsLast, etc., that are defined on ev-
ery logical class. To delete a subtree, a detach method is
provided. The execution of the detach method on an in-
stance of a logical class n removes n from the parent node
of n. detach has no effect when n has no parent. Each
update using one of these commands executes as an atomic
operation, and after the execution of the update, the value
being updated must remain a tree and remain well typed.
The methods provided by XJ for complex structural changes
are similar in feature to those proposed for XQuery. The
key distinction is that XJ’s semantics are in-place updates,
whereas XQuery’s semantics are copy-based. As an example
of a complex update, consider the code sequence:
1 purchaseOrder po = . . .
2 Sequence<items> purchases = po[| /items |];
3

4 item newitem = . . .;
5 item current = purchases.get(0);
6 current.insertAfter(newitem);

Line 6 uses insertAfter to insert a new item after the cur-
rent (in this case, the first) item in the list of items.

5.2 Issues with Updates
In this section, we discuss issues related to updates that

arose in the design of XJ.

5.2.1 Duplicate Parents and Acyclicity
When constructing or updating an XML value, one must

ensure that a value inserted into another value does not
already have a parent. Allowing an XML value to be con-
tained within more than one XML value would imply that
the XML value is no longer a tree. When XML values are

not trees, the dynamic semantics of XPath expressions is
unclear, for example, if axes such as parent are used.

In XJ, an update that results in an instance of a logi-
cal class having more than one parent results in a runtime
exception. A programmer may avoid such exceptions by
performing detach (or alternatively, cloning it) on an XML
value before attempting to insert it into another value. In
many cases, we can determine statically whether a detach()

operation is necessary. For example, the results of most
XPath expressions must be detached before they can be used
as the argument to an insert function.

To ensure that cycles do not arise in XML values, one
must verify that the root of an XML value is never inserted
into one of its descendants. Again, a runtime check raises
an exception if this were to occur.

5.2.2 Complex Type Updates
After an insertion into or deletion from an XML value

with a complex type, one must ensure that the value is still
well typed; we must verify that the content of the value still
satisfies the content model of the type. In general, static
type checking of this property is impractical. For example,
XML Schema allows one to state that an element a should
contain 2 to 7 instances of element b. Statically, it is impos-
sible to determine for an instance of a that is created from
a File how many b children a would have.

One approach to this issue is to disallow updates where
statically it cannot be proven to be safe at runtime. We feel,
however, that this solution is too pessimistic. Our solution
is to allow updates that cannot be typechecked statically,
with the caveat that such updates may cause a dynamic
type error. A check is inserted at compile time to ensure
the validity of the update. The check is relatively inexpen-
sive in that all that must be verified is that the resulting
content of a value satisfies a regular expression. Incremen-
tal validation techniques [21] can be used to perform these
checks efficiently. In Section 6, we propose a preliminary
static analysis framework that can be used to obviate some
runtime checks for complex updates.

5.2.3 Covariant Subtyping
XML Schema allows one to declare a subtype of another

type by restriction, where the values denoted by the sub-
type form a subset of the values denoted by the supertype.
Suppose that in an XML Schema, an element S is in the
substitution group of an element E, where the type of S is a
subtype of the type of E by restriction.

Now consider the following code segment:

E x1;

S x2 = new S(<S>...</S>);

...

x1 = x2;

Since S is a subclass of E in XJ, the assignment x1 = x2 is
safe statically. A subsequent update of x1, however, may
cause a problem. The update may be valid with respect
to E, but not with respect to S. This situation is similar to
that of covariant subtyping [18] where an assignment that
appears type-safe statically may be unsafe at runtime.

The problem of covariant subtyping already exists in Java
for arrays, where at runtime, type errors may occur. Im-
proper use of subtypes by restriction may result in similar
type errors at runtime. This issue is not isolated to XJ, but
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would arise in any language that supports updates on XML
Schema types, for example, XQuery.

6. STATIC ANALYSIS
In this section, we present a brief overview of issues related

to performing static analyses specific to XML in the context
of an imperative language.

6.1 XPath Normalization
The first step in our static analysis is XPath normaliza-

tion. To normalize XPath expressions, we remove syntac-
tic distinctions that are semantically irrelevant. For exam-
ple, for a variable a of type purchaseOrder, the expres-
sion a[| //quantity[parent::item] |] is equivalent se-
mantically to a[| //item/quantity |]. We use a construct
called an XDAG, which was introduced in the Xaos sys-
tem [2]. An XDAG is a directed, acyclic graph where ver-
tices are labeled, and edges between vertices are labeled as
either child edges or descendant edges (all references to
backward axes such as parent are eliminated). Further-
more, the only vertex with no incoming edge is a distin-
guished vertex labeled root. Having removed all occurrences
of backward axes, we perform further normalization by us-
ing XML Schema information to rewrite XDAGs. Specif-
ically, we convert occurrences of the descendant axis into
uses of the child axis. For example, a[| //item/quantity

|] is equivalent to a[| /item/quantity |] for the schema
of Appendix A.

Given normalized XPath expressions and an XJ program
in SSA form [7], we infer a conservative approximation of
the structure of the XML data used in the program and
relations between variables in the program. This approx-
imation is itself an XDAG, where the vertices are labeled
with logical class names. This inference is guided by both
schema information and abstract interpretation of the nor-
malized XPath expressions. For example, for an assignment
q = a [|/item/quantity|], we infer that q will point to the
quantity descendant of the node pointed to by a. Moreover,
using schema information, we infer that q will have a sibling
node labeled USPrice.

6.2 Static Type Checking
In many circumstances, an XML Schema provides suffi-

cient information for detecting type errors statically. Sup-
pose q and u were of type quantity. It is clear that an
update of the form q.insertAfter(u) would be illegal ac-
cording to the XML Schema of Appendix A; each quantity

must be followed by a USPrice. Schema information, how-
ever, may not be sufficient. Assume that in the content
model of item, quantity were replaced by quantity+. The
update, q.detach(), is valid if q is not the only quantity

child of its parent, and invalid otherwise. To detect such
errors statically, one must infer more refined information
about the state of a variable than can be determined from
its type. One might be able to infer that while the content
model of item specifies quantity+, at the program point
where the detach statement is executed, q would be the
only quantity child of its parent and an error would occur.

An analogous problem arises for assignments to XML types.
In XML Schema type definitions, a simple type modifies its
base type by applying facets, such as length, enumeration,
and minInclusive, to restrict its values. One would like to
ensure that updates to instances of such simple types will re-

spect the constraints of their facets and that dynamic casts
to simple types are feasible at runtime. It is again necessary
to infer information about a variable that is a refinement of
the information provided by the variable’s type.

In our points-to framework, a reference variable can point
to a static instance of an XML document, in which case
the points-to information is augmented by an XPath expres-
sion. We also augment each such abstract heap location with
a formula, which is a conservative encoding of the current
state of that location, including its type constraints. For
most locations that correspond to instances of simple types,
the constraints associated with a location can be represented
as a regular expression (most facets in XML Schema can be
represented in this manner). For locations corresponding
to complex types, again, a regular expression represents the
current knowledge about the content of the location. For ex-
ample, for a statement using inline XML construction, one
can statically obtain an accurate description of the struc-
ture of the value, unless the statement contains a delimited
XJ expression that will be evaluated at runtime. This de-
scription can be used to check that future updates on the
constructed value are valid according to the XML Schema.

6.3 Partial Redundancy Elimination
When multiple XPath expressions are evaluated over a

document, and each expression is evaluated independently,
there can be significant overhead in redundant traversals
of portions of the document. If two XPath expressions x =

p[|/b/c/d|] and y = p[|/b/c|] that share common traver-
sals occur on the same control path, it is possible to compute
the XPath expression y and use the results to partially op-
timize or strength reduce the computation of x.

The normalization of XPath expressions can identify many
cases where such common subexpressions occur. More in-
stances of redundant traversals can be determined using the
XDAG. For example, given q[|/c/d|], where the XDAG
shows that q points to the b child of p, we can determine
that the traversal of c/d from q is redundant.

7. IMPLEMENTATION
We have built a prototype compiler for XJ that generates

Java source from XJ source programs.3 The compiler is im-
plemented with Polyglot [19], which provides a framework
for parsing and type checking Java source code and imple-
menting extensions to Java. XML Schemas imported by XJ
programs are parsed using the XML Schema Infoset Model
plugin for Eclipse [8].

The type checking of XJ programs relies on the XAEL
engine [9]. The inputs to XAEL are an XPath expression,
an XML Schema, and the type of the context node for the
XPath expression. XAEL uses abstract evaluation of the
XPath expression on the XML Schema to infer the least
type such that the result of evaluating the XPath expression
on any document conforming to the XML Schema would
be an instance of that type. Given this information, our
algorithm for type checking XJ expressions and constructors
is straightforward. We do not yet perform static analysis to
eliminate runtime tests or for other optimizations.

Once an XJ program has passed static type checking, the
XJ compiler emits Java code where the syntactic constructs

3The XJ compiler and runtime system will be released on
Alphaworks (http://alphaworks.ibm.com) in early 2005.
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introduced by XJ are converted to appropriate calls to the
XJ runtime system. For example, all references to logical
classes are converted to the appropriate DOM type or List.

The compilation of XPath expressions has varying de-
grees of sophistication. The straightforward compilation
of XPath expressions translates the expressions into invo-
cations of the Xalan XPath engine. We have also imple-
mented an optimized code generator, XJdirect, that gener-
ates direct DOM traversals for XPath traversals that in-
volve only child and attribute axes. Finally, we have im-
plemented a version of the compiler, XJrewrite, that uses
XAEL to rewrite complex XPath expressions into simple
XPath expressions. XAEL uses schema information to con-
vert complex XPath expressions involving descendant axis
into those using only child axis where possible. For exam-
ple, given the schema of Appendix A, the XPath expres-
sion, purchaseOrder//productName can be translated into
the XPath expressions purchaseOrder/item/productName.
This rewriting enables us to apply XJdirect to more XPath
expressions than we would otherwise.

Currently, separate compilation of XJ classes is not sup-
ported since in the generated code, that is, the Java classes,
all references to logical XML classes are removed and re-
placed with runtime system types (for example, a logical
XML class corresponding to an element is replaced with
org.w3c.dom.Element). Separate compilation of another
XJ source file with respect to the generated Java class file
will not succeed since the signatures of methods and fields
in the generated Java class will have the wrong types (the
runtime types). We are investigating mechanisms by which
information about the logical XML class may be embed-
ded in the Java class files using Java’s metadata annotation
mechanism so as to support separate compilation.

8. EXPERIMENTS
We provide results of experiments using the prototype

XJ compiler and runtime system on the XMark benchmark
set [23]. We have rewritten the 20 XQuery benchmarks pro-
vided in the XMark set into XJ. The translation is fairly
straightforward — for loops in XQuery can be translated
readily into corresponding for loops in Java, and so on.

We compare the performance of the XJ compiler with
handwritten DOM code. The DOM code represents code
that a normal programmer with knowledge of the XML
Schema may write. We compare the performance of the
handwritten DOM code with the three versions of the XJ
compiler : XJunopt, where all XPath expressions are evalu-
ated by invoking the Xalan XPath engine; XJdirect, where
the compiler generates direct DOM navigations to evalu-
ate simple XPath expressions; and XJrewrite, where XML
Schema information is used to rewrite XPath expressions
involving the descendant axis into those using the child

axis (where possible). In XJrewrite, after the rewrite step,
the compiler again emits direct DOM navigation code to
evaluate simple XPath expressions.

For each XMark query, the numbers reported are an aver-
age of 100 consecutive runs on a 10MB document generated
using the XMark generator. The results for other document
sizes are similar. We ran our tests using Xerces version 2.5.0
for XML parsing [1], Xalan version 2.3.1 for runtime XPath
processing with caching, and IBM’s Java 1.4.1 virtual ma-
chine on a 1.6 GHz Pentium 4 with 512 megabytes of RAM.
Each test was run repeatedly so that we could obtain per-
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Figure 4: Comparison of performance of DOM
handwritten code with XJrewrite. All times in mil-
liseconds on a 10 MB XMark document.

formance measurements after the Java virtual machine had
warmed up. We excluded parsing times from the numbers
provided because all cases use the Xerces parser, and the
parsing time was the same in all versions.

As can be seen from Figure 4, the optimized XJ com-
piler, XJrewrite, is on average 10% slower than the hand-
written DOM version. On certain benchmarks involving the
descendant axis, XJ does better than the handwritten DOM
code. For these benchmarks, the handwritten code uses the
DOM getElementsByTagName function to search the descen-
dants of a node, while the XJ compiler used schema infor-
mation to generate more efficient child axis DOM naviga-
tions automatically. On other benchmarks, where a query
has some XPath expressions that cannot be rewritten by
the compiler into direct DOM navigations, the XJ gener-
ated code performs worse than DOM. In this case, the XJ
compiler generates a call to the Xalan XPath engine, which
has a much higher overhead than handwritten DOM code.

The cost of invoking Xalan for XPath evaluation is more
visible in Figure 5. In this figure, we compare the perfor-
mance of the three levels of XJ compilation. As expected,
the XJrewrite option outperforms XJdirect for those queries
with descendant axes that can be rewritten into child axes
using schema information. For other queries, there is little
difference between the two. On some queries, for exam-
ple Query 7, XJrewrite does worse than XJdirect. Here the
rewriter converts an XPath expression in these queries into a
complex XPath expression involving unions, which XJ does
not compile into direct DOM navigation. The cost of evalu-
ating this complex XPath expression using Xalan is higher
than the cost of evaluating the original XPath expression.
The cost of unoptimized XJ code, that is, using Xalan for
all XPath evaluations is extremely high. This performance
corresponds to what a DOM programmer may obtain if one
were to use the XPath API provided with DOM.

9. RELATED WORK
The approaches for integrating XML into programming

languages can be divided into three areas: XML-based pro-
gramming languages, extensions to object-oriented languages,
and data-binding approaches.
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XML-Based Programming Languages: XQuery [29] is
a functional language designed to facilitate processing of
XML data. The reader familiar with XQuery will notice sim-
ilarities between the XJ data model and the XQuery data
model. This similarity is intentional. Both data models, in
a sense, define XML values as ordered trees where nodes of
the tree contain type information and/or labels (in XJ, the
label of an instance of class is e and its type is defined by the
corresponding schema declaration). Both XJ and XQuery
also support subtyping based on XML Schema’s subtyp-
ing and substitution group mechanisms. It is straightfor-
ward to map XJ values into XQuery values and XJ logi-
cal classes into XQuery item types. The existence of these
mappings is used to ensure that the semantics of XPath ex-
pressions in XJ is consistent with that of XQuery. Unlike
XJ, XQuery currently does not support updates. The in-
tegration of XML into an existing language such as Java
raises challenges, especially in the support for updates, in
that the abstractions must be intuitive to both XML and
Java programmers. Other XML processing languages, such
as XSLT [27], have been designed to allow for easy expres-
sion of certain patterns of XML processing, but are difficult
to use as general-purpose programming languages.

Extensions to OO languages The languages most similar
to XJ in design are Cω [4], Xtatic [10], and XOBE [16], each
of which integrate XML as a data type into an imperative
object-oriented language. Cω integrates XML types deeply
into C� so that every class may be considered an XML type
and vice-versa. This deep integration, however, requires sac-
rifices to the XML Schema type system — the semantics of
XML types in Cω do not match those of XML Schema, but
are based on it. Moreover, XML Schema subtyping by name
and full XPath navigation are not supported. XJ is more
faithful to standards such as XML Schema and XPath by
encapsulating XML types as logical XML classes.

Xtatic is an extension of C� based on ideas developed
in the design of XDuce [12, 13]. It is functional and the
data model and the semantics of XML types and values do
not correspond exactly to those of standards such as XML
Schema. For example, in Xtatic, types correspond to non-

deterministic top-down regular tree automata and subtyp-
ing is structural, whereas XML Schema types correspond
(in some sense) to deterministic top-down regular tree au-
tomata and subtyping is defined by name through restric-
tions and extensions. Navigation of XML values in Xtatic
is accomplished by pattern matching, which has different
characteristics than those of XPath expressions. XOBE is
an extension of Java, which does support XPath expressions,
but subtyping is structural. CDuce [3], and Scala [20] are
functional languages for writing programs that operate on
XML. Updates in these languages are generally functional,
and not in the imperative style of languages such as Java.

JWIG [6] is a Java extension designed to support web
services by dynamically producing well-typed XML (and
XHTML), based on a “gap filling” technique. JWIG en-
sures at compile time that no run-time errors will occur
while constructing documents and that constructed doc-
uments will conform to their XHTML DTD. JWIG uses
Document Structure Description 2.0 as its schema language.
JWIG is geared more towards the generation of XML (espe-
cially, XHTML) data than full-scale XML-Java integration.
A similar “gap filling” approach is exhibited by Xact, a
Java library [17] developed in the context of JWIG. Xact
provides various operations for creating and filling “named
holes” as well as extracting XML fragments. Xact uses
static typing to check for DTD output conformance. While
Xact is a powerful XML transformation tool, it is not as
tightly integrated with Java as XJ is.

Data-Binding Approaches: Frameworks for Java-XML
bindings [5, 15] generate Java classes statically from XML
Schemas. JAXB [15] covers most of XML Schema and it
supports (in theory) evaluation of XPath expressions over
the represented objects. An application may modify the
in-memory object tree through interfaces generated by the
JAXB binding compiler. Due to differences between the
Java and XML Schema data models, the generated Java
classes do not correspond exactly to the source XML Schema,
especially when complex content models are involved. A
programmer must understand the mapping rules used by
the engine in order to use the generated Java classes as prox-
ies for the XML data. Another drawback is that the pro-
grammer is bound to a particular framework — switching
to another framework may require drastic changes to appli-
cations since the mapping rules may change. In contrast, a
programming language such as XJ allows the programmer
to develop applications natively in XML — the runtime im-
plementation, which may use a framework such as JAXB,
is hidden from the programmer. This allows applications
to be more portable since switching to another framework
requires only a one-time reengineering of the compiler.

10. CONCLUSIONS
We have designed a new language, XJ, that integrates

XML into Java. The distinguishing characteristics of XJ
are its support for in-place updates and its consistency with
XML standards such as XQuery and XML Schema. We have
built a prototype compiler for XJ, structured as a source-to-
source translator that uses DOM to access XML data in the
compiled code. Our experiments indicate that XJ allows one
the flexibility of developing applications using the high-level
XPath syntax, while obtaining performance close to that of
handwritten DOM code.
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A. APPENDIX
This schema, derived from that in the XML Schema spec-

ification [26], is used for the examples in this paper.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="purchaseOrder" type="POType"/>
<xsd:complexType name="POType">
<xsd:sequence>
<xsd:element name="item" type="Item" minOccurs="0"
maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="Item">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="productName" type="xsd:string"/>
<xsd:element name="quantity">
<xsd:simpleType>
<xsd:restriction base="xsd:positiveInteger">
<xsd:maxExclusive value="100"/>

</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="USPrice" type="xsd:decimal"/>
</xsd:sequence>
<xsd:attribute name="partNum" type="SKU"

use="required"/>
</xsd:complexType>

<xsd:simpleType name="SKU">
<xsd:restriction base="xsd:string">
<xsd:pattern value="\d{3}-[A-Z]{2}"/>
</xsd:restriction>

</xsd:simpleType>
</xsd:schema>
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