NiagaraCQ:
A Scalable Continuous Query
System for Internet Databases

M.L.Narasimham

Presentation Outline
What's NiagaraCQ

General strategy of incremental group optimization
Query split scheme with materialized intermediate files
Incremental grouping of selection and join operators

Experimental Details

Continuous Queries

* Atriple (Q, A, Stop)

* Example

Inform me when ever the price of Dell stock drops by
more than 5%

* A broad Classification
* Change Based
* Timer Based

NiagaraCQ

" A CQ system for the Internet

" Continuous Queries on XML data sets
= Scalable CQ processing

" Incremental group optimization

" Handles both change based and timer based queries
in a uniform way

NiagaraCQ command language

" Creating a CQ

Create CQ name

XML-QL query

Do action

{ START start_time} { EVERY time_interval}
{ EXPIRE expiration_time}

" Delete CQ name

Advantages of Grouping

" Group optimization has the following benefits:
" Grouped queries can share computations.

" Common execution plans of grouped queries can
reside in memory, significantly saving on I/O costs
compared to executing each query separately.

" Grouping makes it possible to test the “firing”
conditions of many continuous queries together,
avoiding unnecessary invocations.

Can this traditional grouping technique be
applied into Continuous Query directly?

NO!!!

Why not?

" Previous group optimization efforts focused on finding
an optimal plan for a small number of similar queries.

" Not applicable to a continuous query system for the
following reasons:
" Computationally too expensive to handle a large number of
queries.

" Not designed for an environment like the web where CQ s
are added or removed dynamically.

Incremental group optimization

" Expression Signature

" Query examples

Where <Quotes><Quote><Symbol>INTC</></></>
element_as $g in “http.//www.stock.com/quotes.xml”
construct $g

Where <Quotes><Quote><Symbol>MSFT</></></>
element_as $g in “http.//www.stock.com/quotes.xml”

construct $g

7

Quotes.Quote.Symbol
In quotes.xml constant

Query plans

Group

" Group Signature
Common Signature of all queries in the group

" Group constant table

Constant_value Destination_buffer

INTC Dest.i

MSFT Dest.|

Group plan

Symbol=Constant_value

g
|Constant Table|

Incremental Grouping Algorithm

When a new query is submitted
If the expression signature of the new query
maltches that of existing groups
Break the query plan into two parts
Remove the lower part
Add the upper part onto the group plan
else create a new group

query-split scheme

" Incremental group optimization scheme employs a
query-split scheme.

" After the signature of a new query is matched, the sub-plan
corresponding to the signature is replaced with a scan of the
output file produced by the matching group.

" Optimization process then continues with the remainder of
the query tree in a bottom-up fashion until the entire query
has been analyzed.

" If no group “matches” a signature of the new query, a new
query group for this signature is created in the system.

" Thus, each continuous query is split into several smaller
queries such that inputs of each of these queries are
monitored using the same techniques that are used for the
iInputs of user-defined continuous queries.

guery-split scheme (contd..)

" Advantages for query-split scheme:

" Main advantage is that it can be
Implemented using a general query engine
with only minor modifications.

" Anther advantage is that the approach is
very scalable.

Buffer design

" The destination buffer for the split
operator is needed.

" Pipelined scheme

" Intermediate scheme

Pipelined scheme

Disadvantage of pipeline

" Such a scheme doesn’t work for grouping timer-based
CQ’s. It’s difficult for a split operator to determine which
tuple;?ould be stored and how long they should be
stored for.

" A large portion of the query plan may not need to be
executed at each query invocation.

" One query may block many other queries.

Query Split with Materialized Intermediate Files

E | Filej |
T~ S

~_ \ 7/

Advantages of this design

" Every query is scheduled independently. Only the necessary
queries are executed.

" This approach handles intermediate files and original data files
uniformly.

" The potential bottleneck of pipelined approach is avoided.

Incremental grouping of Selection predicates

" Format: “Attribute op Constant”
" Attribute is a path expression without wildcards in it.

1] LR 11 LI 1 7

" Opincludes “=”, “<”, “>”, because these formats
dominate in the selection queries.

I Where <Quotes==Quote™ I
| <Change_Ratio=$c</></> ¢lement_as Sg </> |
| In “quotes.xml”, Sc = (.05 |
I Construct 5g I

Quotes. Quote.Change_Ratio constant
in ““quotes.xml”

Problem for range-query groups

" One potential problem for range-query groups
IS that the intermediate files may contain a
large number of duplicated tuples because

range predicate of the different queries might
overlap.

Solution: Virtual Intermediate Files

==

T\ /

Only one —

Incremental grouping of Join Operators

" Join operators are usually expensive, sharing common join
operations can significantly reduce the amount of computation.

| . -) , .
| W here <Quotes=<Quote=><Symbol=Ss</></> I
| element_as S5g </= in “quotes.xml”, |
I <Companies==Company=<Symbol=§s=/></> |

clement_as $t=/= 1n “companies.xml” |
| |
| construct Sg. St |

quotes.xm| companies.xml

l |
I

| Svimbol = Syimbol

| / yimbol = Syrmbe x I

| |

| |

Queries that contain both
join and selection

" Example query :
Where <Quotes><Quote><Symbol>$s</>
<Industry>"Computer Service” </></>
element_as $g </> in “quotes.xml”,
<Companies><Company><Symbol>$s</></>
element_as $t</> in “companies.xml”

construct $g, $t

" Where to place the selection operator ?

" Below the join
" Above the join

Join first”? Or selection first?

" Advantage
" Disadvantage

" Solution: choose a
better one based
on a cost model

Incremental Evaluation

" Incremental evaluation allows queries to be invoked
only on the changed data.

" For each file, on which CQ’s are defined, NiagaraCQ
keeps a “delta file” that contains recent changes.

" Queries are run over the delta files whenever
possible instead of their original files.

" A time stamp is added to each tuple in the delta file.
NiagaraCQ fetches only tuples that were added to
the delta file since the query’s last firing time.

Memory Caching

" Caching is used to obtain good
performance with a limited amount of
memory.

" Caches query plans, system data
structures, and data files for better
performance.

What should be cached?

" Grouped query plans. We assume that
the number of query groups is relatively
small.

" Recently accessed files, delta files.

" The event list for monitoring the timer-
based events. But it can be large, so we
keep only a “time window” of this list

e.g . events in next 24 hrs

Experimental Results

Example query :
Where <Quotes><Quote><Symbol>"INTC” </></>

element_as $g </> in “quotes.xml”, construct $g

500
e G r G e CA KR T

E 40 e - Grou pad R EET
— el Gt 13 it GG

ﬁ el e [5 1y - (B S 88 A 63
=

2

=

L |

i

o

;J—I.I

0 2000 4008 BO00 &000 10000
Number of (Jueries

Conclusion

" Incremental grouping methodology makes group
optimization more scalable

" Grouping method using query split scheme requires
minimal changes to general purpose query engine.

" Incremental evaluation and caching techniques make
NiagaraCQ more scalable.

Thank You..

