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Goal

• Introduction to probabilistic databases

• Focus on an overview of:

• Different possible representations

• Challenges in using them



Probabilistic Data
• Traditional databases store solid “facts” that can be considered 

certain

• In many cases, we don’t know things precisely

• When storing beliefs etc

• Answering queries with vague predicates

• institute_name like “IITB”

• If you use probabilistic models for predicting some variables

• Or classification models

• Similarly, use statistical models to predict missing data

• I saw a bird, but not sure if it was a dove or a sparrow 

• Uncertain, incomplete data is becoming more and more 
common



Representing uncertainty

• A high-level classification can be made:

• Tuple-level uncertainty

• All attributes in a tuple are known precisely; existence of 
the tuple is uncertain

• Vague predicates: name approx like ‘iit’

• Tuple (“IIT Bombay”, ...) will be present in the answer 
with some uncertainty

• Attribute-level uncertainty

• Tuples (identified by keys) exist for certain; an attribute 
value is however uncertain

• Tomorrow temperature will be somewhere between 20C and 
30C



Classification

• Is this classification fundamental ?

• Can proper normalization solve this problem ?

• Probably yes.

• Tuple-level uncertainty can be converted into attribute-level by adding 
a boolean attribute

• Things will probably get messy

• Other way round is harder

• Continuous distributions on attributes are common

• Gaussian on temperature for tomorrow.



Classification

• Trying to create a general model that can represent 
everything is probably doomed to fail

• We will discuss two papers next:

• Simple tuple-level uncertainty model by Norbert Fuhr et 
al

• A not-too-complex attribute-level uncertainty model that 
we use in a sensor network application

• Intractability issues are encountered very soon



Roadmap
• Tuple-level uncertainty model originally proposed by Norbert 

Fuhr, and later work by Dalvi, Suciu

• Possible Worlds Semantics

• Intensional vs Extensional Semantics

• Query execution

• Attribute-level uncertainty model we used in a sensor 
network application

• Query execution

• An attempt to put other related work in this framework



Tuple-level Uncertainty

• Proposed by Fuhr et al, more work recently by 
Dalvi and Suciu

• The examples are from Dalvi, Suciu [VLDB04]

• With each tuple, a probability of existence is 
associated

cluding queries with joins, nested sub-queries, aggre-
gates, group-by, and existential/universal quantifiers2.
Queries have now a probabilistic semantics, which is
simple and easy to understand by both users and im-
plementors.

The main problem is query evaluation, and this is
the focus of our paper. Our approach is to represent
SQL queries in an algebra, and modify the operators to
compute the probabilities of each output tuple. This
is called extensional semantics in [13], and is quite effi-
cient. While this sounds simple, the problem is that it
doesn’t work: extensional evaluation ignores the com-
plex correlations present in the probabilities of the in-
termediate results and the probabilities computed this
way are wrong in most cases, and lead to incorrect
ranking. In [13], the workaround is to use an inten-
sional semantics 3, which is much more complex and,
as we show here, impractical. Our approach is dif-
ferent: we rewrite the query plans, searching for one
where the extensional evaluation is correct. We show
however that certain queries have a #P-complete data
complexity under probabilistic semantics, and hence
do not admit a correct extensional plan. However,
many queries that occur in practice do have a correct
extensional plan (8 out of the 10 TPC/H queries fall in
this category). For others, we describe two techniques
for evaluation: a heuristics to choose a plan that avoids
large errors, and a Monte-Carlo simulation algorithm,
which is more expensive but can guarantee arbitrarily
small errors.

Outline We give motivating examples in Sec. 2, de-
fine the problem in Sec. 3, and describe our techniques
in Sec. 4-8. Sec. 9 reports experiments and Sec. 10 de-
scribes related work. We conclude in Sec. 11.

2 Examples

We illustrate the main concepts and techniques of this
paper with two simple examples.

Probabilistic Database In a probabilistic
database each tuple has a certain probability of
belonging to the database. Figure 1 shows a proba-
bilistic database Dp with two tables, Sp and T p: the
tuples in Sp have probabilities 0.8 and 0.5, and the
unique tuple in T p has probability 0.6. We use the
superscript p to emphasize that a table or a database
is probabilistic. We assume in this example that the
tuples are independent probabilistic events, in which
case the database is called extensional [13].

The meaning of a probabilistic database is a proba-
bility distribution on all database instances, which we
call possible worlds, and denote pwd(Dp). Fig. 2 (a)
shows the eight possible instances with non-zero prob-
abilities, which are computed by simply multiplying

2In this paper we restrict our discussion to SQL queries whose
normal semantics is a set, not a bag or an ordered list.

3We define extensional and intensional semantics formally in
Sec. 4.

Sp =
A B

s1 ‘m’ 1 0.8
s2 ‘n’ 1 0.5

T p =
C D

t1 1 ‘p’ 0.6

Figure 1: A probabilistic database Dp

pwd(Dp) =

database instance probability
D1 = {s1, s2, t1} 0.24
D2 = {s1, t1} 0.24
D3 = {s2, t1} 0.06
D4 = {t1} 0.06
D5 = {s1, s2} 0.16
D6 = {s1} 0.16
D7 = {s2} 0.04
D8 = φ 0.04

(a)

q(u) : −Sp(x, y), T p(z, u), y = z

(b)

qpwd(Dp) =
answer probability
{′p′} 0.54
∅ 0.46

(c)

Figure 2: (a) The possible worlds for Dp in Figure 1,
(b) a query q, and (c) its possible answers.

the tuple probabilities, as we have assumed them to
be independent. For example, the probability of D2 is
0.8 ∗ (1− 0.5) ∗ 0.6 = 0.24, since the instance contains
the tuples s1 and t1 and does not contain s2.

We now illustrate query evaluation on probabilistic
databases. Consider the conjunctive query q in Fig. 2
(b). Its meaning on Dp is a set of possible answers,
shown in Fig. 2 (c). It is obtained by applying q to
each deterministic database in pwd(Dp), and adding
the probabilities of all instances that return the same
answer. In our example we have q(D1) = q(D2) =
q(D3) = {′p′}, and q(D4) = . . . = q(D8) = ∅. Thus,
the probability of the answer being {′p′} is 0.24+0.24+
0.06 = 0.54, while that of the answer ∅ is 0.46. This
defines the set of possible answers, denoted qpwd(Dp).
Notice that we have never used the structure of the
query explicitly, but only applied it to deterministic
databases taken from pwd(Dp). Thus, one can give
a similar semantics to any query q, no matter how
complex, because we only need to know its meaning
on deterministic databases.

The set of possible answers qpwd(Dp) may be very
large, and it is impractical to return it to the user.
Instead, we compute for each possible tuple t a prob-
ability rank that t belongs to any answer, and return
tuples sorted by this rank. We denote this qrank(Dp).
In our example this is:

qrank(Dp) = D Rank
’p’ 0.54



Tuple-level Uncertainty

• Lets assume that the tuple existence events 
are independent of each other

• So,  prob that Sp = {s1, s2} is 0.5 * 0.8 = 0.4

• Similarly prob that Tp = {} is empty is 0.4

• And prob that Sp = {s1, s2} and Tp = {} is 
0.4 * 0.4 = 0.16

• In fact, we can assign a probability to each 
such possibility



Possible Worlds
cluding queries with joins, nested sub-queries, aggre-
gates, group-by, and existential/universal quantifiers2.
Queries have now a probabilistic semantics, which is
simple and easy to understand by both users and im-
plementors.

The main problem is query evaluation, and this is
the focus of our paper. Our approach is to represent
SQL queries in an algebra, and modify the operators to
compute the probabilities of each output tuple. This
is called extensional semantics in [13], and is quite effi-
cient. While this sounds simple, the problem is that it
doesn’t work: extensional evaluation ignores the com-
plex correlations present in the probabilities of the in-
termediate results and the probabilities computed this
way are wrong in most cases, and lead to incorrect
ranking. In [13], the workaround is to use an inten-
sional semantics 3, which is much more complex and,
as we show here, impractical. Our approach is dif-
ferent: we rewrite the query plans, searching for one
where the extensional evaluation is correct. We show
however that certain queries have a #P-complete data
complexity under probabilistic semantics, and hence
do not admit a correct extensional plan. However,
many queries that occur in practice do have a correct
extensional plan (8 out of the 10 TPC/H queries fall in
this category). For others, we describe two techniques
for evaluation: a heuristics to choose a plan that avoids
large errors, and a Monte-Carlo simulation algorithm,
which is more expensive but can guarantee arbitrarily
small errors.
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scribes related work. We conclude in Sec. 11.
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the tuple probabilities, as we have assumed them to
be independent. For example, the probability of D2 is
0.8 ∗ (1− 0.5) ∗ 0.6 = 0.24, since the instance contains
the tuples s1 and t1 and does not contain s2.

We now illustrate query evaluation on probabilistic
databases. Consider the conjunctive query q in Fig. 2
(b). Its meaning on Dp is a set of possible answers,
shown in Fig. 2 (c). It is obtained by applying q to
each deterministic database in pwd(Dp), and adding
the probabilities of all instances that return the same
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q(D3) = {′p′}, and q(D4) = . . . = q(D8) = ∅. Thus,
the probability of the answer being {′p′} is 0.24+0.24+
0.06 = 0.54, while that of the answer ∅ is 0.46. This
defines the set of possible answers, denoted qpwd(Dp).
Notice that we have never used the structure of the
query explicitly, but only applied it to deterministic
databases taken from pwd(Dp). Thus, one can give
a similar semantics to any query q, no matter how
complex, because we only need to know its meaning
on deterministic databases.

The set of possible answers qpwd(Dp) may be very
large, and it is impractical to return it to the user.
Instead, we compute for each possible tuple t a prob-
ability rank that t belongs to any answer, and return
tuples sorted by this rank. We denote this qrank(Dp).
In our example this is:

qrank(Dp) = D Rank
’p’ 0.54



Possible Worlds 
Semantics

• A probabilistic relation is simply a collection 
of different possible deterministic relations 
(worlds) with associated probabilities

• Probabilities add up to 1 



Query Evaluation

• Say you want to execute a query:

• S Join T on B = C, project on D

• Execute the query on each possible world 
separately

• The final result is a probabilistic relation that 
represents the end result



Aside 

• Selections:

• The result contains all tuples that match a specified 
predicate

• Joins:

• Given two relations, find pairs of matching tuples 
and concatenate

• Projection:

• Throw away all attributes except the ones specified



Query execution
• S Join T on B = C, project on D
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Query evaluation
• This evaluation is semantically correct

• But returning this answer is not practical

• Instead try to convert it to a probabilistic relation

• For each tuple, compute the probability it is in 
the answer

• By summing over all worlds which contain that 
tuple

• Called ‘rank’ (given the focus of the work)
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doesn’t work: extensional evaluation ignores the com-
plex correlations present in the probabilities of the in-
termediate results and the probabilities computed this
way are wrong in most cases, and lead to incorrect
ranking. In [13], the workaround is to use an inten-
sional semantics 3, which is much more complex and,
as we show here, impractical. Our approach is dif-
ferent: we rewrite the query plans, searching for one
where the extensional evaluation is correct. We show
however that certain queries have a #P-complete data
complexity under probabilistic semantics, and hence
do not admit a correct extensional plan. However,
many queries that occur in practice do have a correct
extensional plan (8 out of the 10 TPC/H queries fall in
this category). For others, we describe two techniques
for evaluation: a heuristics to choose a plan that avoids
large errors, and a Monte-Carlo simulation algorithm,
which is more expensive but can guarantee arbitrarily
small errors.

Outline We give motivating examples in Sec. 2, de-
fine the problem in Sec. 3, and describe our techniques
in Sec. 4-8. Sec. 9 reports experiments and Sec. 10 de-
scribes related work. We conclude in Sec. 11.

2 Examples

We illustrate the main concepts and techniques of this
paper with two simple examples.

Probabilistic Database In a probabilistic
database each tuple has a certain probability of
belonging to the database. Figure 1 shows a proba-
bilistic database Dp with two tables, Sp and T p: the
tuples in Sp have probabilities 0.8 and 0.5, and the
unique tuple in T p has probability 0.6. We use the
superscript p to emphasize that a table or a database
is probabilistic. We assume in this example that the
tuples are independent probabilistic events, in which
case the database is called extensional [13].

The meaning of a probabilistic database is a proba-
bility distribution on all database instances, which we
call possible worlds, and denote pwd(Dp). Fig. 2 (a)
shows the eight possible instances with non-zero prob-
abilities, which are computed by simply multiplying

2In this paper we restrict our discussion to SQL queries whose
normal semantics is a set, not a bag or an ordered list.

3We define extensional and intensional semantics formally in
Sec. 4.
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s1 ‘m’ 1 0.8
s2 ‘n’ 1 0.5

T p =
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t1 1 ‘p’ 0.6

Figure 1: A probabilistic database Dp

pwd(Dp) =

database instance probability
D1 = {s1, s2, t1} 0.24
D2 = {s1, t1} 0.24
D3 = {s2, t1} 0.06
D4 = {t1} 0.06
D5 = {s1, s2} 0.16
D6 = {s1} 0.16
D7 = {s2} 0.04
D8 = φ 0.04

(a)

q(u) : −Sp(x, y), T p(z, u), y = z

(b)

qpwd(Dp) =
answer probability
{′p′} 0.54
∅ 0.46

(c)

Figure 2: (a) The possible worlds for Dp in Figure 1,
(b) a query q, and (c) its possible answers.

the tuple probabilities, as we have assumed them to
be independent. For example, the probability of D2 is
0.8 ∗ (1− 0.5) ∗ 0.6 = 0.24, since the instance contains
the tuples s1 and t1 and does not contain s2.

We now illustrate query evaluation on probabilistic
databases. Consider the conjunctive query q in Fig. 2
(b). Its meaning on Dp is a set of possible answers,
shown in Fig. 2 (c). It is obtained by applying q to
each deterministic database in pwd(Dp), and adding
the probabilities of all instances that return the same
answer. In our example we have q(D1) = q(D2) =
q(D3) = {′p′}, and q(D4) = . . . = q(D8) = ∅. Thus,
the probability of the answer being {′p′} is 0.24+0.24+
0.06 = 0.54, while that of the answer ∅ is 0.46. This
defines the set of possible answers, denoted qpwd(Dp).
Notice that we have never used the structure of the
query explicitly, but only applied it to deterministic
databases taken from pwd(Dp). Thus, one can give
a similar semantics to any query q, no matter how
complex, because we only need to know its meaning
on deterministic databases.

The set of possible answers qpwd(Dp) may be very
large, and it is impractical to return it to the user.
Instead, we compute for each possible tuple t a prob-
ability rank that t belongs to any answer, and return
tuples sorted by this rank. We denote this qrank(Dp).
In our example this is:

qrank(Dp) = D Rank
’p’ 0.54
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large errors, and a Monte-Carlo simulation algorithm,
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the tuple probabilities, as we have assumed them to
be independent. For example, the probability of D2 is
0.8 ∗ (1− 0.5) ∗ 0.6 = 0.24, since the instance contains
the tuples s1 and t1 and does not contain s2.

We now illustrate query evaluation on probabilistic
databases. Consider the conjunctive query q in Fig. 2
(b). Its meaning on Dp is a set of possible answers,
shown in Fig. 2 (c). It is obtained by applying q to
each deterministic database in pwd(Dp), and adding
the probabilities of all instances that return the same
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defines the set of possible answers, denoted qpwd(Dp).
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a similar semantics to any query q, no matter how
complex, because we only need to know its meaning
on deterministic databases.
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large, and it is impractical to return it to the user.
Instead, we compute for each possible tuple t a prob-
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superscript p to emphasize that a table or a database
is probabilistic. We assume in this example that the
tuples are independent probabilistic events, in which
case the database is called extensional [13].
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bility distribution on all database instances, which we
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the tuple probabilities, as we have assumed them to
be independent. For example, the probability of D2 is
0.8 ∗ (1− 0.5) ∗ 0.6 = 0.24, since the instance contains
the tuples s1 and t1 and does not contain s2.

We now illustrate query evaluation on probabilistic
databases. Consider the conjunctive query q in Fig. 2
(b). Its meaning on Dp is a set of possible answers,
shown in Fig. 2 (c). It is obtained by applying q to
each deterministic database in pwd(Dp), and adding
the probabilities of all instances that return the same
answer. In our example we have q(D1) = q(D2) =
q(D3) = {′p′}, and q(D4) = . . . = q(D8) = ∅. Thus,
the probability of the answer being {′p′} is 0.24+0.24+
0.06 = 0.54, while that of the answer ∅ is 0.46. This
defines the set of possible answers, denoted qpwd(Dp).
Notice that we have never used the structure of the
query explicitly, but only applied it to deterministic
databases taken from pwd(Dp). Thus, one can give
a similar semantics to any query q, no matter how
complex, because we only need to know its meaning
on deterministic databases.

The set of possible answers qpwd(Dp) may be very
large, and it is impractical to return it to the user.
Instead, we compute for each possible tuple t a prob-
ability rank that t belongs to any answer, and return
tuples sorted by this rank. We denote this qrank(Dp).
In our example this is:

qrank(Dp) = D Rank
’p’ 0.54
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Figure 3: Evaluation of ΠD(Sp !B=C T p)

In this simple example qrank(Dp) contains a single
tuple and the distinction between qpwd and qrank is
blurred. To see this distinction clearer, consider an-
other query, q1(x) : −Sp(x, y), T p(z, y), y = z. Here
qpwd
1 and qrank

1 are given by:

qpwd
1 (Dp) =

answer probability
{′m′,′ n′} 0.24
{′m′} 0.24
{′n′} 0.06
∅ 0.46

qrank
1 (Dp) =

D Rank
’m’ 0.48
’n’ 0.30

For example, the rank probability of ′m′ is obtained
as Pr({′m′,′ n′}) + Pr({′m′}). In general, qpwd(Dp)
may be exponentially large, while qrank(Dp) is sim-
ply a set of tuples, which are sorted by Rank. The
problem in this paper is now to compute qrank(Dp)
efficiently.

Extensional Query Semantics A natural at-
tempt to compute qrank(Dp) is to represent q as a
query plan then compute the probabilities of all tuples
in all intermediate results. For the query q in Fig. 2
(b), such a plan is p = ΠD(Sp !B=C T p), and the cor-
responding probabilities are shown in Fig. 3. The for-
mulas for the probabilities assume tuple independence,
are taken from [13] and are rather straightforward (we
review them in Sec. 4). For example the probability
of a joined tuple s ! t is the product of the probabil-
ities of s and t. Clearly, this approach is much more
efficient than computing the possible worlds qpwd(Dp)
and then computing qrank(Dp), but it is wrong ! It’s
answer is 0.636, while it should be 0.54. The reason is
that the two tuples in Sp !B=C T p are not indepen-
dent events, hence the formula used in ΠD is wrong.

However, let us consider an alternative plan, p′ =
ΠD((ΠB(Sp)) !B=D T p). The extensional evaluation
of this expression is shown in Figure 4, and this time
we do get the correct answer. As we will show later,
this plan will always compute the correct answer to
q, on any probabilistic tables Sp, T p. In this paper
we show how to find automatically a plan whose ex-
tensional evaluation returns the correct answer to a
query q. Finding such a plan requires pushing projec-

B prob
1 (1 - (1 - 0.8)(1 - 0.5)) = 0.9

(a) ΠB(Sp)

B C D prob
1 1 ‘p’ 0.9 * 0.6 = 0.54

(b) ΠB(Sp) !B=C T p

D prob
‘p’ 0.54

(c) ΠD(ΠB(Sp) !B=C T p)

Figure 4: Evaluation of ΠD(ΠB(Sp) !B=C T p)

tions early (as shown in this example), join reordering,
and other kinds of rewritings.

Queries with uncertain matches While query
evaluation on probabilistic databases is an important
problem in itself, our motivation comes from answer-
ing SQL queries with uncertain matches, and ranking
their results. We illustrate here with a simple example
on the Stanford movie database[1].

SELECT DISTINCT F.title, F.year
FROM Director D, Films F
WHERE D.did = F.did

and D.name ≈ ’Copolla’
and F.title ≈ ’rain man’
and F.year ≈ 1995

The predicates on the director name and the movie
title and year are here uncertain.

Our approach is to translate the query into a regu-
lar query over a probabilistic databases. Each tuple in
the table Films is assigned a probability based on how
well it matches the predicates title ≈ ’rain man’
and year ≈ 1995. Several techniques for doing this
exist already, and in this paper we will adopt existing
ones: see Sec. 8. In all cases, the result is a probabilis-
tic table, denoted Filmsp. Similarly, the uncertain
predicate on Director generates a probabilistic ta-
ble Directorp. Then, we evaluate the following query:

SELECT DISTINCT F.title, F.year
FROM Directorp D, Filmsp F
WHERE D.did = F.did

This is similar to the query q considered earlier
(Figure 2 (b)), and the same extensional plan can be
used to evaluate it. Our system returns:
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belonging to the database. Figure 1 shows a proba-
bilistic database Dp with two tables, Sp and T p: the
tuples in Sp have probabilities 0.8 and 0.5, and the
unique tuple in T p has probability 0.6. We use the
superscript p to emphasize that a table or a database
is probabilistic. We assume in this example that the
tuples are independent probabilistic events, in which
case the database is called extensional [13].

The meaning of a probabilistic database is a proba-
bility distribution on all database instances, which we
call possible worlds, and denote pwd(Dp). Fig. 2 (a)
shows the eight possible instances with non-zero prob-
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the tuple probabilities, as we have assumed them to
be independent. For example, the probability of D2 is
0.8 ∗ (1− 0.5) ∗ 0.6 = 0.24, since the instance contains
the tuples s1 and t1 and does not contain s2.

We now illustrate query evaluation on probabilistic
databases. Consider the conjunctive query q in Fig. 2
(b). Its meaning on Dp is a set of possible answers,
shown in Fig. 2 (c). It is obtained by applying q to
each deterministic database in pwd(Dp), and adding
the probabilities of all instances that return the same
answer. In our example we have q(D1) = q(D2) =
q(D3) = {′p′}, and q(D4) = . . . = q(D8) = ∅. Thus,
the probability of the answer being {′p′} is 0.24+0.24+
0.06 = 0.54, while that of the answer ∅ is 0.46. This
defines the set of possible answers, denoted qpwd(Dp).
Notice that we have never used the structure of the
query explicitly, but only applied it to deterministic
databases taken from pwd(Dp). Thus, one can give
a similar semantics to any query q, no matter how
complex, because we only need to know its meaning
on deterministic databases.

The set of possible answers qpwd(Dp) may be very
large, and it is impractical to return it to the user.
Instead, we compute for each possible tuple t a prob-
ability rank that t belongs to any answer, and return
tuples sorted by this rank. We denote this qrank(Dp).
In our example this is:
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In this simple example qrank(Dp) contains a single
tuple and the distinction between qpwd and qrank is
blurred. To see this distinction clearer, consider an-
other query, q1(x) : −Sp(x, y), T p(z, y), y = z. Here
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For example, the rank probability of ′m′ is obtained
as Pr({′m′,′ n′}) + Pr({′m′}). In general, qpwd(Dp)
may be exponentially large, while qrank(Dp) is sim-
ply a set of tuples, which are sorted by Rank. The
problem in this paper is now to compute qrank(Dp)
efficiently.

Extensional Query Semantics A natural at-
tempt to compute qrank(Dp) is to represent q as a
query plan then compute the probabilities of all tuples
in all intermediate results. For the query q in Fig. 2
(b), such a plan is p = ΠD(Sp !B=C T p), and the cor-
responding probabilities are shown in Fig. 3. The for-
mulas for the probabilities assume tuple independence,
are taken from [13] and are rather straightforward (we
review them in Sec. 4). For example the probability
of a joined tuple s ! t is the product of the probabil-
ities of s and t. Clearly, this approach is much more
efficient than computing the possible worlds qpwd(Dp)
and then computing qrank(Dp), but it is wrong ! It’s
answer is 0.636, while it should be 0.54. The reason is
that the two tuples in Sp !B=C T p are not indepen-
dent events, hence the formula used in ΠD is wrong.

However, let us consider an alternative plan, p′ =
ΠD((ΠB(Sp)) !B=D T p). The extensional evaluation
of this expression is shown in Figure 4, and this time
we do get the correct answer. As we will show later,
this plan will always compute the correct answer to
q, on any probabilistic tables Sp, T p. In this paper
we show how to find automatically a plan whose ex-
tensional evaluation returns the correct answer to a
query q. Finding such a plan requires pushing projec-
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tions early (as shown in this example), join reordering,
and other kinds of rewritings.

Queries with uncertain matches While query
evaluation on probabilistic databases is an important
problem in itself, our motivation comes from answer-
ing SQL queries with uncertain matches, and ranking
their results. We illustrate here with a simple example
on the Stanford movie database[1].

SELECT DISTINCT F.title, F.year
FROM Director D, Films F
WHERE D.did = F.did

and D.name ≈ ’Copolla’
and F.title ≈ ’rain man’
and F.year ≈ 1995

The predicates on the director name and the movie
title and year are here uncertain.

Our approach is to translate the query into a regu-
lar query over a probabilistic databases. Each tuple in
the table Films is assigned a probability based on how
well it matches the predicates title ≈ ’rain man’
and year ≈ 1995. Several techniques for doing this
exist already, and in this paper we will adopt existing
ones: see Sec. 8. In all cases, the result is a probabilis-
tic table, denoted Filmsp. Similarly, the uncertain
predicate on Director generates a probabilistic ta-
ble Directorp. Then, we evaluate the following query:

SELECT DISTINCT F.title, F.year
FROM Directorp D, Filmsp F
WHERE D.did = F.did

This is similar to the query q considered earlier
(Figure 2 (b)), and the same extensional plan can be
used to evaluate it. Our system returns:
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‘n’ 1 1 ’p’ 0.5*0.6 = 0.30

(a) Sp !B=C T p

D prob
‘p’ (1 - (1 - 0.48)(1 - 0.3)) = 0.636

(b) ΠD(Sp !B=C T p)

Figure 3: Evaluation of ΠD(Sp !B=C T p)

In this simple example qrank(Dp) contains a single
tuple and the distinction between qpwd and qrank is
blurred. To see this distinction clearer, consider an-
other query, q1(x) : −Sp(x, y), T p(z, y), y = z. Here
qpwd
1 and qrank

1 are given by:

qpwd
1 (Dp) =

answer probability
{′m′,′ n′} 0.24
{′m′} 0.24
{′n′} 0.06
∅ 0.46

qrank
1 (Dp) =

D Rank
’m’ 0.48
’n’ 0.30

For example, the rank probability of ′m′ is obtained
as Pr({′m′,′ n′}) + Pr({′m′}). In general, qpwd(Dp)
may be exponentially large, while qrank(Dp) is sim-
ply a set of tuples, which are sorted by Rank. The
problem in this paper is now to compute qrank(Dp)
efficiently.

Extensional Query Semantics A natural at-
tempt to compute qrank(Dp) is to represent q as a
query plan then compute the probabilities of all tuples
in all intermediate results. For the query q in Fig. 2
(b), such a plan is p = ΠD(Sp !B=C T p), and the cor-
responding probabilities are shown in Fig. 3. The for-
mulas for the probabilities assume tuple independence,
are taken from [13] and are rather straightforward (we
review them in Sec. 4). For example the probability
of a joined tuple s ! t is the product of the probabil-
ities of s and t. Clearly, this approach is much more
efficient than computing the possible worlds qpwd(Dp)
and then computing qrank(Dp), but it is wrong ! It’s
answer is 0.636, while it should be 0.54. The reason is
that the two tuples in Sp !B=C T p are not indepen-
dent events, hence the formula used in ΠD is wrong.

However, let us consider an alternative plan, p′ =
ΠD((ΠB(Sp)) !B=D T p). The extensional evaluation
of this expression is shown in Figure 4, and this time
we do get the correct answer. As we will show later,
this plan will always compute the correct answer to
q, on any probabilistic tables Sp, T p. In this paper
we show how to find automatically a plan whose ex-
tensional evaluation returns the correct answer to a
query q. Finding such a plan requires pushing projec-

B prob
1 (1 - (1 - 0.8)(1 - 0.5)) = 0.9

(a) ΠB(Sp)

B C D prob
1 1 ‘p’ 0.9 * 0.6 = 0.54

(b) ΠB(Sp) !B=C T p

D prob
‘p’ 0.54

(c) ΠD(ΠB(Sp) !B=C T p)

Figure 4: Evaluation of ΠD(ΠB(Sp) !B=C T p)

tions early (as shown in this example), join reordering,
and other kinds of rewritings.

Queries with uncertain matches While query
evaluation on probabilistic databases is an important
problem in itself, our motivation comes from answer-
ing SQL queries with uncertain matches, and ranking
their results. We illustrate here with a simple example
on the Stanford movie database[1].

SELECT DISTINCT F.title, F.year
FROM Director D, Films F
WHERE D.did = F.did

and D.name ≈ ’Copolla’
and F.title ≈ ’rain man’
and F.year ≈ 1995

The predicates on the director name and the movie
title and year are here uncertain.

Our approach is to translate the query into a regu-
lar query over a probabilistic databases. Each tuple in
the table Films is assigned a probability based on how
well it matches the predicates title ≈ ’rain man’
and year ≈ 1995. Several techniques for doing this
exist already, and in this paper we will adopt existing
ones: see Sec. 8. In all cases, the result is a probabilis-
tic table, denoted Filmsp. Similarly, the uncertain
predicate on Director generates a probabilistic ta-
ble Directorp. Then, we evaluate the following query:

SELECT DISTINCT F.title, F.year
FROM Directorp D, Filmsp F
WHERE D.did = F.did

This is similar to the query q considered earlier
(Figure 2 (b)), and the same extensional plan can be
used to evaluate it. Our system returns:

Note that this final relation does not satisfy independence;
The tuples after a query evaluation may become dependent



Query Evaluation

• Evaluating a general query:

• Converting to possible worlds, executing 
the query separately for each one, and 
then combining them is not feasible

• Two alternative solutions that work 
directly on the associated tuple-level 
probabilities

• Extensional and Intensional Semantics



Extensional Semantics

• We will operate directly on the probabilities

• Take a normal query plan for the query, and 
execute the query normally

• When a new tuple is created, compute a 
probability for it

• Assuming independence (for now)

• In the end, the result tuples will have probabilities 
associated



Extensional: Example
cluding queries with joins, nested sub-queries, aggre-
gates, group-by, and existential/universal quantifiers2.
Queries have now a probabilistic semantics, which is
simple and easy to understand by both users and im-
plementors.

The main problem is query evaluation, and this is
the focus of our paper. Our approach is to represent
SQL queries in an algebra, and modify the operators to
compute the probabilities of each output tuple. This
is called extensional semantics in [13], and is quite effi-
cient. While this sounds simple, the problem is that it
doesn’t work: extensional evaluation ignores the com-
plex correlations present in the probabilities of the in-
termediate results and the probabilities computed this
way are wrong in most cases, and lead to incorrect
ranking. In [13], the workaround is to use an inten-
sional semantics 3, which is much more complex and,
as we show here, impractical. Our approach is dif-
ferent: we rewrite the query plans, searching for one
where the extensional evaluation is correct. We show
however that certain queries have a #P-complete data
complexity under probabilistic semantics, and hence
do not admit a correct extensional plan. However,
many queries that occur in practice do have a correct
extensional plan (8 out of the 10 TPC/H queries fall in
this category). For others, we describe two techniques
for evaluation: a heuristics to choose a plan that avoids
large errors, and a Monte-Carlo simulation algorithm,
which is more expensive but can guarantee arbitrarily
small errors.

Outline We give motivating examples in Sec. 2, de-
fine the problem in Sec. 3, and describe our techniques
in Sec. 4-8. Sec. 9 reports experiments and Sec. 10 de-
scribes related work. We conclude in Sec. 11.

2 Examples

We illustrate the main concepts and techniques of this
paper with two simple examples.

Probabilistic Database In a probabilistic
database each tuple has a certain probability of
belonging to the database. Figure 1 shows a proba-
bilistic database Dp with two tables, Sp and T p: the
tuples in Sp have probabilities 0.8 and 0.5, and the
unique tuple in T p has probability 0.6. We use the
superscript p to emphasize that a table or a database
is probabilistic. We assume in this example that the
tuples are independent probabilistic events, in which
case the database is called extensional [13].

The meaning of a probabilistic database is a proba-
bility distribution on all database instances, which we
call possible worlds, and denote pwd(Dp). Fig. 2 (a)
shows the eight possible instances with non-zero prob-
abilities, which are computed by simply multiplying

2In this paper we restrict our discussion to SQL queries whose
normal semantics is a set, not a bag or an ordered list.

3We define extensional and intensional semantics formally in
Sec. 4.

Sp =
A B

s1 ‘m’ 1 0.8
s2 ‘n’ 1 0.5

T p =
C D

t1 1 ‘p’ 0.6

Figure 1: A probabilistic database Dp

pwd(Dp) =

database instance probability
D1 = {s1, s2, t1} 0.24
D2 = {s1, t1} 0.24
D3 = {s2, t1} 0.06
D4 = {t1} 0.06
D5 = {s1, s2} 0.16
D6 = {s1} 0.16
D7 = {s2} 0.04
D8 = φ 0.04

(a)

q(u) : −Sp(x, y), T p(z, u), y = z

(b)

qpwd(Dp) =
answer probability
{′p′} 0.54
∅ 0.46

(c)

Figure 2: (a) The possible worlds for Dp in Figure 1,
(b) a query q, and (c) its possible answers.

the tuple probabilities, as we have assumed them to
be independent. For example, the probability of D2 is
0.8 ∗ (1− 0.5) ∗ 0.6 = 0.24, since the instance contains
the tuples s1 and t1 and does not contain s2.

We now illustrate query evaluation on probabilistic
databases. Consider the conjunctive query q in Fig. 2
(b). Its meaning on Dp is a set of possible answers,
shown in Fig. 2 (c). It is obtained by applying q to
each deterministic database in pwd(Dp), and adding
the probabilities of all instances that return the same
answer. In our example we have q(D1) = q(D2) =
q(D3) = {′p′}, and q(D4) = . . . = q(D8) = ∅. Thus,
the probability of the answer being {′p′} is 0.24+0.24+
0.06 = 0.54, while that of the answer ∅ is 0.46. This
defines the set of possible answers, denoted qpwd(Dp).
Notice that we have never used the structure of the
query explicitly, but only applied it to deterministic
databases taken from pwd(Dp). Thus, one can give
a similar semantics to any query q, no matter how
complex, because we only need to know its meaning
on deterministic databases.

The set of possible answers qpwd(Dp) may be very
large, and it is impractical to return it to the user.
Instead, we compute for each possible tuple t a prob-
ability rank that t belongs to any answer, and return
tuples sorted by this rank. We denote this qrank(Dp).
In our example this is:

qrank(Dp) = D Rank
’p’ 0.54

A B C D prob
‘m’ 1 1 ’p’ 0.8*0.6 = 0.48
‘n’ 1 1 ’p’ 0.5*0.6 = 0.30

(a) Sp !B=C T p

D prob
‘p’ (1 - (1 - 0.48)(1 - 0.3)) = 0.636

(b) ΠD(Sp !B=C T p)

Figure 3: Evaluation of ΠD(Sp !B=C T p)

In this simple example qrank(Dp) contains a single
tuple and the distinction between qpwd and qrank is
blurred. To see this distinction clearer, consider an-
other query, q1(x) : −Sp(x, y), T p(z, y), y = z. Here
qpwd
1 and qrank

1 are given by:

qpwd
1 (Dp) =

answer probability
{′m′,′ n′} 0.24
{′m′} 0.24
{′n′} 0.06
∅ 0.46

qrank
1 (Dp) =

D Rank
’m’ 0.48
’n’ 0.30

For example, the rank probability of ′m′ is obtained
as Pr({′m′,′ n′}) + Pr({′m′}). In general, qpwd(Dp)
may be exponentially large, while qrank(Dp) is sim-
ply a set of tuples, which are sorted by Rank. The
problem in this paper is now to compute qrank(Dp)
efficiently.

Extensional Query Semantics A natural at-
tempt to compute qrank(Dp) is to represent q as a
query plan then compute the probabilities of all tuples
in all intermediate results. For the query q in Fig. 2
(b), such a plan is p = ΠD(Sp !B=C T p), and the cor-
responding probabilities are shown in Fig. 3. The for-
mulas for the probabilities assume tuple independence,
are taken from [13] and are rather straightforward (we
review them in Sec. 4). For example the probability
of a joined tuple s ! t is the product of the probabil-
ities of s and t. Clearly, this approach is much more
efficient than computing the possible worlds qpwd(Dp)
and then computing qrank(Dp), but it is wrong ! It’s
answer is 0.636, while it should be 0.54. The reason is
that the two tuples in Sp !B=C T p are not indepen-
dent events, hence the formula used in ΠD is wrong.

However, let us consider an alternative plan, p′ =
ΠD((ΠB(Sp)) !B=D T p). The extensional evaluation
of this expression is shown in Figure 4, and this time
we do get the correct answer. As we will show later,
this plan will always compute the correct answer to
q, on any probabilistic tables Sp, T p. In this paper
we show how to find automatically a plan whose ex-
tensional evaluation returns the correct answer to a
query q. Finding such a plan requires pushing projec-

B prob
1 (1 - (1 - 0.8)(1 - 0.5)) = 0.9

(a) ΠB(Sp)

B C D prob
1 1 ‘p’ 0.9 * 0.6 = 0.54

(b) ΠB(Sp) !B=C T p

D prob
‘p’ 0.54

(c) ΠD(ΠB(Sp) !B=C T p)

Figure 4: Evaluation of ΠD(ΠB(Sp) !B=C T p)

tions early (as shown in this example), join reordering,
and other kinds of rewritings.

Queries with uncertain matches While query
evaluation on probabilistic databases is an important
problem in itself, our motivation comes from answer-
ing SQL queries with uncertain matches, and ranking
their results. We illustrate here with a simple example
on the Stanford movie database[1].

SELECT DISTINCT F.title, F.year
FROM Director D, Films F
WHERE D.did = F.did

and D.name ≈ ’Copolla’
and F.title ≈ ’rain man’
and F.year ≈ 1995

The predicates on the director name and the movie
title and year are here uncertain.

Our approach is to translate the query into a regu-
lar query over a probabilistic databases. Each tuple in
the table Films is assigned a probability based on how
well it matches the predicates title ≈ ’rain man’
and year ≈ 1995. Several techniques for doing this
exist already, and in this paper we will adopt existing
ones: see Sec. 8. In all cases, the result is a probabilis-
tic table, denoted Filmsp. Similarly, the uncertain
predicate on Director generates a probabilistic ta-
ble Directorp. Then, we evaluate the following query:

SELECT DISTINCT F.title, F.year
FROM Directorp D, Filmsp F
WHERE D.did = F.did

This is similar to the query q considered earlier
(Figure 2 (b)), and the same extensional plan can be
used to evaluate it. Our system returns:

Joins: assume independence

A B C D prob
‘m’ 1 1 ’p’ 0.8*0.6 = 0.48
‘n’ 1 1 ’p’ 0.5*0.6 = 0.30

(a) Sp !B=C T p

D prob
‘p’ (1 - (1 - 0.48)(1 - 0.3)) = 0.636

(b) ΠD(Sp !B=C T p)

Figure 3: Evaluation of ΠD(Sp !B=C T p)

In this simple example qrank(Dp) contains a single
tuple and the distinction between qpwd and qrank is
blurred. To see this distinction clearer, consider an-
other query, q1(x) : −Sp(x, y), T p(z, y), y = z. Here
qpwd
1 and qrank

1 are given by:

qpwd
1 (Dp) =

answer probability
{′m′,′ n′} 0.24
{′m′} 0.24
{′n′} 0.06
∅ 0.46

qrank
1 (Dp) =

D Rank
’m’ 0.48
’n’ 0.30

For example, the rank probability of ′m′ is obtained
as Pr({′m′,′ n′}) + Pr({′m′}). In general, qpwd(Dp)
may be exponentially large, while qrank(Dp) is sim-
ply a set of tuples, which are sorted by Rank. The
problem in this paper is now to compute qrank(Dp)
efficiently.

Extensional Query Semantics A natural at-
tempt to compute qrank(Dp) is to represent q as a
query plan then compute the probabilities of all tuples
in all intermediate results. For the query q in Fig. 2
(b), such a plan is p = ΠD(Sp !B=C T p), and the cor-
responding probabilities are shown in Fig. 3. The for-
mulas for the probabilities assume tuple independence,
are taken from [13] and are rather straightforward (we
review them in Sec. 4). For example the probability
of a joined tuple s ! t is the product of the probabil-
ities of s and t. Clearly, this approach is much more
efficient than computing the possible worlds qpwd(Dp)
and then computing qrank(Dp), but it is wrong ! It’s
answer is 0.636, while it should be 0.54. The reason is
that the two tuples in Sp !B=C T p are not indepen-
dent events, hence the formula used in ΠD is wrong.

However, let us consider an alternative plan, p′ =
ΠD((ΠB(Sp)) !B=D T p). The extensional evaluation
of this expression is shown in Figure 4, and this time
we do get the correct answer. As we will show later,
this plan will always compute the correct answer to
q, on any probabilistic tables Sp, T p. In this paper
we show how to find automatically a plan whose ex-
tensional evaluation returns the correct answer to a
query q. Finding such a plan requires pushing projec-

B prob
1 (1 - (1 - 0.8)(1 - 0.5)) = 0.9

(a) ΠB(Sp)

B C D prob
1 1 ‘p’ 0.9 * 0.6 = 0.54

(b) ΠB(Sp) !B=C T p

D prob
‘p’ 0.54

(c) ΠD(ΠB(Sp) !B=C T p)

Figure 4: Evaluation of ΠD(ΠB(Sp) !B=C T p)

tions early (as shown in this example), join reordering,
and other kinds of rewritings.

Queries with uncertain matches While query
evaluation on probabilistic databases is an important
problem in itself, our motivation comes from answer-
ing SQL queries with uncertain matches, and ranking
their results. We illustrate here with a simple example
on the Stanford movie database[1].

SELECT DISTINCT F.title, F.year
FROM Director D, Films F
WHERE D.did = F.did

and D.name ≈ ’Copolla’
and F.title ≈ ’rain man’
and F.year ≈ 1995

The predicates on the director name and the movie
title and year are here uncertain.

Our approach is to translate the query into a regu-
lar query over a probabilistic databases. Each tuple in
the table Films is assigned a probability based on how
well it matches the predicates title ≈ ’rain man’
and year ≈ 1995. Several techniques for doing this
exist already, and in this paper we will adopt existing
ones: see Sec. 8. In all cases, the result is a probabilis-
tic table, denoted Filmsp. Similarly, the uncertain
predicate on Director generates a probabilistic ta-
ble Directorp. Then, we evaluate the following query:

SELECT DISTINCT F.title, F.year
FROM Directorp D, Filmsp F
WHERE D.did = F.did

This is similar to the query q considered earlier
(Figure 2 (b)), and the same extensional plan can be
used to evaluate it. Our system returns:

Projection: union probability; assume independence

Umm.. This is wrong !! 
Why ? The two tuples above are not independent.



Alternate Query Plan
cluding queries with joins, nested sub-queries, aggre-
gates, group-by, and existential/universal quantifiers2.
Queries have now a probabilistic semantics, which is
simple and easy to understand by both users and im-
plementors.

The main problem is query evaluation, and this is
the focus of our paper. Our approach is to represent
SQL queries in an algebra, and modify the operators to
compute the probabilities of each output tuple. This
is called extensional semantics in [13], and is quite effi-
cient. While this sounds simple, the problem is that it
doesn’t work: extensional evaluation ignores the com-
plex correlations present in the probabilities of the in-
termediate results and the probabilities computed this
way are wrong in most cases, and lead to incorrect
ranking. In [13], the workaround is to use an inten-
sional semantics 3, which is much more complex and,
as we show here, impractical. Our approach is dif-
ferent: we rewrite the query plans, searching for one
where the extensional evaluation is correct. We show
however that certain queries have a #P-complete data
complexity under probabilistic semantics, and hence
do not admit a correct extensional plan. However,
many queries that occur in practice do have a correct
extensional plan (8 out of the 10 TPC/H queries fall in
this category). For others, we describe two techniques
for evaluation: a heuristics to choose a plan that avoids
large errors, and a Monte-Carlo simulation algorithm,
which is more expensive but can guarantee arbitrarily
small errors.

Outline We give motivating examples in Sec. 2, de-
fine the problem in Sec. 3, and describe our techniques
in Sec. 4-8. Sec. 9 reports experiments and Sec. 10 de-
scribes related work. We conclude in Sec. 11.

2 Examples

We illustrate the main concepts and techniques of this
paper with two simple examples.

Probabilistic Database In a probabilistic
database each tuple has a certain probability of
belonging to the database. Figure 1 shows a proba-
bilistic database Dp with two tables, Sp and T p: the
tuples in Sp have probabilities 0.8 and 0.5, and the
unique tuple in T p has probability 0.6. We use the
superscript p to emphasize that a table or a database
is probabilistic. We assume in this example that the
tuples are independent probabilistic events, in which
case the database is called extensional [13].

The meaning of a probabilistic database is a proba-
bility distribution on all database instances, which we
call possible worlds, and denote pwd(Dp). Fig. 2 (a)
shows the eight possible instances with non-zero prob-
abilities, which are computed by simply multiplying

2In this paper we restrict our discussion to SQL queries whose
normal semantics is a set, not a bag or an ordered list.

3We define extensional and intensional semantics formally in
Sec. 4.

Sp =
A B

s1 ‘m’ 1 0.8
s2 ‘n’ 1 0.5

T p =
C D

t1 1 ‘p’ 0.6

Figure 1: A probabilistic database Dp

pwd(Dp) =

database instance probability
D1 = {s1, s2, t1} 0.24
D2 = {s1, t1} 0.24
D3 = {s2, t1} 0.06
D4 = {t1} 0.06
D5 = {s1, s2} 0.16
D6 = {s1} 0.16
D7 = {s2} 0.04
D8 = φ 0.04

(a)

q(u) : −Sp(x, y), T p(z, u), y = z

(b)

qpwd(Dp) =
answer probability
{′p′} 0.54
∅ 0.46

(c)

Figure 2: (a) The possible worlds for Dp in Figure 1,
(b) a query q, and (c) its possible answers.

the tuple probabilities, as we have assumed them to
be independent. For example, the probability of D2 is
0.8 ∗ (1− 0.5) ∗ 0.6 = 0.24, since the instance contains
the tuples s1 and t1 and does not contain s2.

We now illustrate query evaluation on probabilistic
databases. Consider the conjunctive query q in Fig. 2
(b). Its meaning on Dp is a set of possible answers,
shown in Fig. 2 (c). It is obtained by applying q to
each deterministic database in pwd(Dp), and adding
the probabilities of all instances that return the same
answer. In our example we have q(D1) = q(D2) =
q(D3) = {′p′}, and q(D4) = . . . = q(D8) = ∅. Thus,
the probability of the answer being {′p′} is 0.24+0.24+
0.06 = 0.54, while that of the answer ∅ is 0.46. This
defines the set of possible answers, denoted qpwd(Dp).
Notice that we have never used the structure of the
query explicitly, but only applied it to deterministic
databases taken from pwd(Dp). Thus, one can give
a similar semantics to any query q, no matter how
complex, because we only need to know its meaning
on deterministic databases.

The set of possible answers qpwd(Dp) may be very
large, and it is impractical to return it to the user.
Instead, we compute for each possible tuple t a prob-
ability rank that t belongs to any answer, and return
tuples sorted by this rank. We denote this qrank(Dp).
In our example this is:

qrank(Dp) = D Rank
’p’ 0.54

This is correct. 
The correctness unfortunately depends on the plan used.
Called “safe plans” [Dalvi, Suciu 2004]

Projection: union probability; assume independence

A B C D prob
‘m’ 1 1 ’p’ 0.8*0.6 = 0.48
‘n’ 1 1 ’p’ 0.5*0.6 = 0.30

(a) Sp !B=C T p

D prob
‘p’ (1 - (1 - 0.48)(1 - 0.3)) = 0.636

(b) ΠD(Sp !B=C T p)

Figure 3: Evaluation of ΠD(Sp !B=C T p)

In this simple example qrank(Dp) contains a single
tuple and the distinction between qpwd and qrank is
blurred. To see this distinction clearer, consider an-
other query, q1(x) : −Sp(x, y), T p(z, y), y = z. Here
qpwd
1 and qrank

1 are given by:

qpwd
1 (Dp) =

answer probability
{′m′,′ n′} 0.24
{′m′} 0.24
{′n′} 0.06
∅ 0.46

qrank
1 (Dp) =

D Rank
’m’ 0.48
’n’ 0.30

For example, the rank probability of ′m′ is obtained
as Pr({′m′,′ n′}) + Pr({′m′}). In general, qpwd(Dp)
may be exponentially large, while qrank(Dp) is sim-
ply a set of tuples, which are sorted by Rank. The
problem in this paper is now to compute qrank(Dp)
efficiently.

Extensional Query Semantics A natural at-
tempt to compute qrank(Dp) is to represent q as a
query plan then compute the probabilities of all tuples
in all intermediate results. For the query q in Fig. 2
(b), such a plan is p = ΠD(Sp !B=C T p), and the cor-
responding probabilities are shown in Fig. 3. The for-
mulas for the probabilities assume tuple independence,
are taken from [13] and are rather straightforward (we
review them in Sec. 4). For example the probability
of a joined tuple s ! t is the product of the probabil-
ities of s and t. Clearly, this approach is much more
efficient than computing the possible worlds qpwd(Dp)
and then computing qrank(Dp), but it is wrong ! It’s
answer is 0.636, while it should be 0.54. The reason is
that the two tuples in Sp !B=C T p are not indepen-
dent events, hence the formula used in ΠD is wrong.

However, let us consider an alternative plan, p′ =
ΠD((ΠB(Sp)) !B=D T p). The extensional evaluation
of this expression is shown in Figure 4, and this time
we do get the correct answer. As we will show later,
this plan will always compute the correct answer to
q, on any probabilistic tables Sp, T p. In this paper
we show how to find automatically a plan whose ex-
tensional evaluation returns the correct answer to a
query q. Finding such a plan requires pushing projec-

B prob
1 (1 - (1 - 0.8)(1 - 0.5)) = 0.9

(a) ΠB(Sp)

B C D prob
1 1 ‘p’ 0.9 * 0.6 = 0.54

(b) ΠB(Sp) !B=C T p

D prob
‘p’ 0.54

(c) ΠD(ΠB(Sp) !B=C T p)

Figure 4: Evaluation of ΠD(ΠB(Sp) !B=C T p)

tions early (as shown in this example), join reordering,
and other kinds of rewritings.

Queries with uncertain matches While query
evaluation on probabilistic databases is an important
problem in itself, our motivation comes from answer-
ing SQL queries with uncertain matches, and ranking
their results. We illustrate here with a simple example
on the Stanford movie database[1].

SELECT DISTINCT F.title, F.year
FROM Director D, Films F
WHERE D.did = F.did

and D.name ≈ ’Copolla’
and F.title ≈ ’rain man’
and F.year ≈ 1995

The predicates on the director name and the movie
title and year are here uncertain.

Our approach is to translate the query into a regu-
lar query over a probabilistic databases. Each tuple in
the table Films is assigned a probability based on how
well it matches the predicates title ≈ ’rain man’
and year ≈ 1995. Several techniques for doing this
exist already, and in this paper we will adopt existing
ones: see Sec. 8. In all cases, the result is a probabilis-
tic table, denoted Filmsp. Similarly, the uncertain
predicate on Director generates a probabilistic ta-
ble Directorp. Then, we evaluate the following query:

SELECT DISTINCT F.title, F.year
FROM Directorp D, Filmsp F
WHERE D.did = F.did

This is similar to the query q considered earlier
(Figure 2 (b)), and the same extensional plan can be
used to evaluate it. Our system returns:

Join: assume independence

A B C D prob
‘m’ 1 1 ’p’ 0.8*0.6 = 0.48
‘n’ 1 1 ’p’ 0.5*0.6 = 0.30

(a) Sp !B=C T p

D prob
‘p’ (1 - (1 - 0.48)(1 - 0.3)) = 0.636

(b) ΠD(Sp !B=C T p)

Figure 3: Evaluation of ΠD(Sp !B=C T p)

In this simple example qrank(Dp) contains a single
tuple and the distinction between qpwd and qrank is
blurred. To see this distinction clearer, consider an-
other query, q1(x) : −Sp(x, y), T p(z, y), y = z. Here
qpwd
1 and qrank

1 are given by:

qpwd
1 (Dp) =

answer probability
{′m′,′ n′} 0.24
{′m′} 0.24
{′n′} 0.06
∅ 0.46

qrank
1 (Dp) =

D Rank
’m’ 0.48
’n’ 0.30

For example, the rank probability of ′m′ is obtained
as Pr({′m′,′ n′}) + Pr({′m′}). In general, qpwd(Dp)
may be exponentially large, while qrank(Dp) is sim-
ply a set of tuples, which are sorted by Rank. The
problem in this paper is now to compute qrank(Dp)
efficiently.

Extensional Query Semantics A natural at-
tempt to compute qrank(Dp) is to represent q as a
query plan then compute the probabilities of all tuples
in all intermediate results. For the query q in Fig. 2
(b), such a plan is p = ΠD(Sp !B=C T p), and the cor-
responding probabilities are shown in Fig. 3. The for-
mulas for the probabilities assume tuple independence,
are taken from [13] and are rather straightforward (we
review them in Sec. 4). For example the probability
of a joined tuple s ! t is the product of the probabil-
ities of s and t. Clearly, this approach is much more
efficient than computing the possible worlds qpwd(Dp)
and then computing qrank(Dp), but it is wrong ! It’s
answer is 0.636, while it should be 0.54. The reason is
that the two tuples in Sp !B=C T p are not indepen-
dent events, hence the formula used in ΠD is wrong.

However, let us consider an alternative plan, p′ =
ΠD((ΠB(Sp)) !B=D T p). The extensional evaluation
of this expression is shown in Figure 4, and this time
we do get the correct answer. As we will show later,
this plan will always compute the correct answer to
q, on any probabilistic tables Sp, T p. In this paper
we show how to find automatically a plan whose ex-
tensional evaluation returns the correct answer to a
query q. Finding such a plan requires pushing projec-

B prob
1 (1 - (1 - 0.8)(1 - 0.5)) = 0.9

(a) ΠB(Sp)

B C D prob
1 1 ‘p’ 0.9 * 0.6 = 0.54

(b) ΠB(Sp) !B=C T p

D prob
‘p’ 0.54

(c) ΠD(ΠB(Sp) !B=C T p)

Figure 4: Evaluation of ΠD(ΠB(Sp) !B=C T p)

tions early (as shown in this example), join reordering,
and other kinds of rewritings.

Queries with uncertain matches While query
evaluation on probabilistic databases is an important
problem in itself, our motivation comes from answer-
ing SQL queries with uncertain matches, and ranking
their results. We illustrate here with a simple example
on the Stanford movie database[1].

SELECT DISTINCT F.title, F.year
FROM Director D, Films F
WHERE D.did = F.did

and D.name ≈ ’Copolla’
and F.title ≈ ’rain man’
and F.year ≈ 1995

The predicates on the director name and the movie
title and year are here uncertain.

Our approach is to translate the query into a regu-
lar query over a probabilistic databases. Each tuple in
the table Films is assigned a probability based on how
well it matches the predicates title ≈ ’rain man’
and year ≈ 1995. Several techniques for doing this
exist already, and in this paper we will adopt existing
ones: see Sec. 8. In all cases, the result is a probabilis-
tic table, denoted Filmsp. Similarly, the uncertain
predicate on Director generates a probabilistic ta-
ble Directorp. Then, we evaluate the following query:

SELECT DISTINCT F.title, F.year
FROM Directorp D, Filmsp F
WHERE D.did = F.did

This is similar to the query q considered earlier
(Figure 2 (b)), and the same extensional plan can be
used to evaluate it. Our system returns:



Safe plans

• [Dalvi, Suciu 2004] give an algorithm to find 
a safe plan if one exists for a given query

• If no safe plan, the complexity of query 
evaluation is in #P-Complete

• Use intensional semantics for them (next)



Intensional Semantics

• Associate a separate event with each base 
tuple

• For each intermediate tuple, associated an 
explicit event expression

• Compute the actual probabilities only when 
required at the end



Intensional Semantics
cluding queries with joins, nested sub-queries, aggre-
gates, group-by, and existential/universal quantifiers2.
Queries have now a probabilistic semantics, which is
simple and easy to understand by both users and im-
plementors.

The main problem is query evaluation, and this is
the focus of our paper. Our approach is to represent
SQL queries in an algebra, and modify the operators to
compute the probabilities of each output tuple. This
is called extensional semantics in [13], and is quite effi-
cient. While this sounds simple, the problem is that it
doesn’t work: extensional evaluation ignores the com-
plex correlations present in the probabilities of the in-
termediate results and the probabilities computed this
way are wrong in most cases, and lead to incorrect
ranking. In [13], the workaround is to use an inten-
sional semantics 3, which is much more complex and,
as we show here, impractical. Our approach is dif-
ferent: we rewrite the query plans, searching for one
where the extensional evaluation is correct. We show
however that certain queries have a #P-complete data
complexity under probabilistic semantics, and hence
do not admit a correct extensional plan. However,
many queries that occur in practice do have a correct
extensional plan (8 out of the 10 TPC/H queries fall in
this category). For others, we describe two techniques
for evaluation: a heuristics to choose a plan that avoids
large errors, and a Monte-Carlo simulation algorithm,
which is more expensive but can guarantee arbitrarily
small errors.

Outline We give motivating examples in Sec. 2, de-
fine the problem in Sec. 3, and describe our techniques
in Sec. 4-8. Sec. 9 reports experiments and Sec. 10 de-
scribes related work. We conclude in Sec. 11.

2 Examples

We illustrate the main concepts and techniques of this
paper with two simple examples.

Probabilistic Database In a probabilistic
database each tuple has a certain probability of
belonging to the database. Figure 1 shows a proba-
bilistic database Dp with two tables, Sp and T p: the
tuples in Sp have probabilities 0.8 and 0.5, and the
unique tuple in T p has probability 0.6. We use the
superscript p to emphasize that a table or a database
is probabilistic. We assume in this example that the
tuples are independent probabilistic events, in which
case the database is called extensional [13].

The meaning of a probabilistic database is a proba-
bility distribution on all database instances, which we
call possible worlds, and denote pwd(Dp). Fig. 2 (a)
shows the eight possible instances with non-zero prob-
abilities, which are computed by simply multiplying

2In this paper we restrict our discussion to SQL queries whose
normal semantics is a set, not a bag or an ordered list.

3We define extensional and intensional semantics formally in
Sec. 4.

Sp =
A B

s1 ‘m’ 1 0.8
s2 ‘n’ 1 0.5

T p =
C D

t1 1 ‘p’ 0.6

Figure 1: A probabilistic database Dp

pwd(Dp) =

database instance probability
D1 = {s1, s2, t1} 0.24
D2 = {s1, t1} 0.24
D3 = {s2, t1} 0.06
D4 = {t1} 0.06
D5 = {s1, s2} 0.16
D6 = {s1} 0.16
D7 = {s2} 0.04
D8 = φ 0.04

(a)

q(u) : −Sp(x, y), T p(z, u), y = z

(b)

qpwd(Dp) =
answer probability
{′p′} 0.54
∅ 0.46

(c)

Figure 2: (a) The possible worlds for Dp in Figure 1,
(b) a query q, and (c) its possible answers.

the tuple probabilities, as we have assumed them to
be independent. For example, the probability of D2 is
0.8 ∗ (1− 0.5) ∗ 0.6 = 0.24, since the instance contains
the tuples s1 and t1 and does not contain s2.

We now illustrate query evaluation on probabilistic
databases. Consider the conjunctive query q in Fig. 2
(b). Its meaning on Dp is a set of possible answers,
shown in Fig. 2 (c). It is obtained by applying q to
each deterministic database in pwd(Dp), and adding
the probabilities of all instances that return the same
answer. In our example we have q(D1) = q(D2) =
q(D3) = {′p′}, and q(D4) = . . . = q(D8) = ∅. Thus,
the probability of the answer being {′p′} is 0.24+0.24+
0.06 = 0.54, while that of the answer ∅ is 0.46. This
defines the set of possible answers, denoted qpwd(Dp).
Notice that we have never used the structure of the
query explicitly, but only applied it to deterministic
databases taken from pwd(Dp). Thus, one can give
a similar semantics to any query q, no matter how
complex, because we only need to know its meaning
on deterministic databases.

The set of possible answers qpwd(Dp) may be very
large, and it is impractical to return it to the user.
Instead, we compute for each possible tuple t a prob-
ability rank that t belongs to any answer, and return
tuples sorted by this rank. We denote this qrank(Dp).
In our example this is:

qrank(Dp) = D Rank
’p’ 0.54

number in [0, 1] representing its probability.
The Query Evaluation Problem This paper ad-

dresses the following problem: given schema R̄p,Γp, a
probabilistic database Dp and a query q over schema
R̄, compute the probabilistic rankings qrank(Dp).

Application to queries with uncertain pred-
icates Consider now a deterministic database D and
a query q≈ that explicitly mentions some uncertain
predicates over base tables. We convert this problem
into evaluating a deterministic query q, obtained by
removing all uncertain predicates from q≈, on a prob-
abilistic database, obtained by associating a probabil-
ity Pr(t) to each tuple t based on how well t satisfies
the uncertain predicates in the query.

4 Query Evaluation

We turn now to the central problem, evaluating
qrank(Dp) for a query q, and a probabilistic database
Dp. Applying the definition directly is infeasible, since
it involves iterating over a large set of database in-
stances. Instead, we will first review the intensional
evaluation of [13] then describe our approach.

We restrict our discussion first to conjunctive
queries, which alternatively can be expressed as
select(distinct)-project-join queries. This helps us bet-
ter understand the query evaluation problem and its
complexity, and will consider more complex query ex-
pressions in Sec. 7. We use either datalog notation for
our queries q, or plans p in the select/project/product
algebra4: σ,Π,×.

4.1 Intensional Query Evaluation

One method for evaluating queries on probabilistic
databases is to use complex events, and was intro-
duced in [13]. We review it here and discuss its limi-
tations. Start by expressing q as a query plan, using
the operators σ,Π,×. Then modify each operator to
compute the event attribute E in each intermediate
result: denote σi,Πi,×i the modified operators. It is
more convenient to introduce them in the functional
representation, by defining the complex event ep(t) for
each tuple t, inductively on the query plan p:

eσi
c(p)(t) =

{
ep(t) if c(t) is true
⊥ if c(t) is false

eΠi
Ā

(p)(t) =
∨

t′:ΠĀ(t′)=t

ep(t′) (1)

ep×ip′(t, t′) = ep(t) ∧ ep′(t′)

The tabular definitions for σi,Πi,×i follow easily:
σi acts like σ then copies the complex events from the
input tuples to the output tuples; Πi associates to a
tuple t the complex event e1 ∨ . . . ∨ en obtained from

4Notice that Π also does duplicate elimination

A B C D E
‘m’ 1 1 ’p’ s1 ∧ t1
‘n’ 1 1 ’p’ s2 ∧ t1

(a) Sp !i
B=C T p

D E
‘p’ (s1 ∧ t1) ∨ (s2 ∧ t1)

(b) Πi
D(Sp !i

B=C T p)

D Rank
‘p′ Pr((s1 ∧ t1) ∨ (s2 ∧ t1)) = 0.54

(c) qrank(Dp) = Pr(Πi
D(Sp !i

B=C T p))

Figure 5: Intensional Evaluation of ΠD(Sp !B=C T p)

the complex events of all input tuples t1, . . . , tn that
project into t; and ×i simply associates to a product
tuple (t, t′) the complex event e ∧ e′.

Example 4.1 Let us consider the database Dp de-
scribed in Figure 1. Consider the query plan, p =
ΠD(Sp !B=C T p). Figure 5 shows the intensional
evaluation of the query (we used the tuple names as
atomic events). pi(Dp) contains a single tuple ′p′ with
the event (s1 ∧ t1) ∨ (s2 ∧ t1).

Thus, pi(Dp) denotes an intensional probabilistic
relation. It can be shown that this is independent on
the particular choice of plan p, and we denote qi(Dp)
the value pi(Dp) for any plan p for q, and call it the in-
tensional semantics5 of q on the probabilistic database
Dp. We prove now that it is equivalent to the possible
worlds semantics, qpwd(Dp).

Theorem 4.2. The intensional semantics and the
possible worlds semantics on probabilistic databases
coincide for conjunctive queries. More precisely,
pwd(qi(Dp)) = qpwd(Dp) for every intensional prob-
abilistic database Dp and conjunctive query q.

(All proofs in this paper are available in our techni-
cal report [10].) Theorem 4.2 allows us to compute
qrank(Dp), as follows. First compute qi(Dp), then
compute the probability Pr(e) for each complex event.
Then qrank(Dp) = Pr(qi(Dp)).

Example 4.3 Fig. 5(c) shows prank(Dp) for Ex. 4.1.
Pr((s1 ∧ t1) ∨ (s2 ∧ t1)) was shown in Ex. 3.1.

It is very impractical to use the intensional seman-
tics to compute the rank probabilities, for two reasons.
First, the event expressions in qi(Dp) can become very
large. In the worst case the size of such an expres-
sion can become of the same order of magnitude as
the database. For instance, if a projection on a table

5In [13] this is the only query semantics considered.

Join (intersection):
number in [0, 1] representing its probability.

The Query Evaluation Problem This paper ad-
dresses the following problem: given schema R̄p,Γp, a
probabilistic database Dp and a query q over schema
R̄, compute the probabilistic rankings qrank(Dp).

Application to queries with uncertain pred-
icates Consider now a deterministic database D and
a query q≈ that explicitly mentions some uncertain
predicates over base tables. We convert this problem
into evaluating a deterministic query q, obtained by
removing all uncertain predicates from q≈, on a prob-
abilistic database, obtained by associating a probabil-
ity Pr(t) to each tuple t based on how well t satisfies
the uncertain predicates in the query.

4 Query Evaluation

We turn now to the central problem, evaluating
qrank(Dp) for a query q, and a probabilistic database
Dp. Applying the definition directly is infeasible, since
it involves iterating over a large set of database in-
stances. Instead, we will first review the intensional
evaluation of [13] then describe our approach.

We restrict our discussion first to conjunctive
queries, which alternatively can be expressed as
select(distinct)-project-join queries. This helps us bet-
ter understand the query evaluation problem and its
complexity, and will consider more complex query ex-
pressions in Sec. 7. We use either datalog notation for
our queries q, or plans p in the select/project/product
algebra4: σ,Π,×.

4.1 Intensional Query Evaluation

One method for evaluating queries on probabilistic
databases is to use complex events, and was intro-
duced in [13]. We review it here and discuss its limi-
tations. Start by expressing q as a query plan, using
the operators σ,Π,×. Then modify each operator to
compute the event attribute E in each intermediate
result: denote σi,Πi,×i the modified operators. It is
more convenient to introduce them in the functional
representation, by defining the complex event ep(t) for
each tuple t, inductively on the query plan p:

eσi
c(p)(t) =

{
ep(t) if c(t) is true
⊥ if c(t) is false

eΠi
Ā

(p)(t) =
∨

t′:ΠĀ(t′)=t

ep(t′) (1)

ep×ip′(t, t′) = ep(t) ∧ ep′(t′)

The tabular definitions for σi,Πi,×i follow easily:
σi acts like σ then copies the complex events from the
input tuples to the output tuples; Πi associates to a
tuple t the complex event e1 ∨ . . . ∨ en obtained from

4Notice that Π also does duplicate elimination

A B C D E
‘m’ 1 1 ’p’ s1 ∧ t1
‘n’ 1 1 ’p’ s2 ∧ t1

(a) Sp !i
B=C T p

D E
‘p’ (s1 ∧ t1) ∨ (s2 ∧ t1)

(b) Πi
D(Sp !i

B=C T p)

D Rank
‘p′ Pr((s1 ∧ t1) ∨ (s2 ∧ t1)) = 0.54

(c) qrank(Dp) = Pr(Πi
D(Sp !i

B=C T p))

Figure 5: Intensional Evaluation of ΠD(Sp !B=C T p)

the complex events of all input tuples t1, . . . , tn that
project into t; and ×i simply associates to a product
tuple (t, t′) the complex event e ∧ e′.

Example 4.1 Let us consider the database Dp de-
scribed in Figure 1. Consider the query plan, p =
ΠD(Sp !B=C T p). Figure 5 shows the intensional
evaluation of the query (we used the tuple names as
atomic events). pi(Dp) contains a single tuple ′p′ with
the event (s1 ∧ t1) ∨ (s2 ∧ t1).

Thus, pi(Dp) denotes an intensional probabilistic
relation. It can be shown that this is independent on
the particular choice of plan p, and we denote qi(Dp)
the value pi(Dp) for any plan p for q, and call it the in-
tensional semantics5 of q on the probabilistic database
Dp. We prove now that it is equivalent to the possible
worlds semantics, qpwd(Dp).

Theorem 4.2. The intensional semantics and the
possible worlds semantics on probabilistic databases
coincide for conjunctive queries. More precisely,
pwd(qi(Dp)) = qpwd(Dp) for every intensional prob-
abilistic database Dp and conjunctive query q.

(All proofs in this paper are available in our techni-
cal report [10].) Theorem 4.2 allows us to compute
qrank(Dp), as follows. First compute qi(Dp), then
compute the probability Pr(e) for each complex event.
Then qrank(Dp) = Pr(qi(Dp)).

Example 4.3 Fig. 5(c) shows prank(Dp) for Ex. 4.1.
Pr((s1 ∧ t1) ∨ (s2 ∧ t1)) was shown in Ex. 3.1.

It is very impractical to use the intensional seman-
tics to compute the rank probabilities, for two reasons.
First, the event expressions in qi(Dp) can become very
large. In the worst case the size of such an expres-
sion can become of the same order of magnitude as
the database. For instance, if a projection on a table

5In [13] this is the only query semantics considered.

Projection (union):

This would result in the correct probability.
Can also see correlations.



Intensional Semantics

• Does not depend on the query plan used

• Unfortunately...

• This is computationally too expensive

• Creating and carrying around the event 
expressions is itself quite painful

• Evaluating a complex event expression is 
#P-complete



Recap

• Tuple-level probabilities

• Extensional semantics: Limited use

• Safe plans [Dalvi, Suciu 04]

• Intensional semantics: Intractable

• This model has extended to include some 
kinds of tuple correlations [Fuhr,  Roelleke]

• e.g. tuple disjointness



Roadmap
• Tuple-level uncertainty model originally proposed by Norbert 

Fuhr, and later work by Dalvi, Suciu

• Possible Worlds Semantics

• Intensional vs Extensional Semantics

• Query execution

• Attribute-level uncertainty model we used in a sensor 
network application

• Query execution

• An attempt to put other related work in this framework



Attribute-level 
Uncertainties

• Sensor network application

• Consider two temperature sensors monitoring 
temperatures at two locations

• Location 1 :  temp1

• Location 2 :  temp2

• We propose using a probabilistic model of the evolution 
of these two variables over time [DGMHH’ VLDB 04]

• Goal was to use the attribute correlations to avoid 
sensing temperature as much as possible

• The correlations tend to be very strong



Attribute-level
• Tuples exist with certainty

• temperature at time t1 at location 1 etc.

• But the attribute values (temperatures) are uncertain

• In particular, each temperature value is a Gaussian

• p(temp1 at time 1) is a Gaussian distribution

time temp1 temp2
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Attribute-level

• Moreover

• Temperatures at different locations are spatially 
correlated

• temp1t=1 and temp2t=1 are correlated

• Temperatures across time are temporally correlated

• temp1t=1 and temp1t=2 are correlated

• All these correlations are represented by using multi-
dimensional Gaussian distributions over the uncertain 
attributes
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Query execution
• Range Query: Is X_i within [a_i, b_i] ?

• Compute the probability:

• Answer is YES with that probability

• This simplest integral is unfortunately non-computable

• Need to use numerical integration

• In this particular case, tables can be used
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of energy in both send and receive modes, meaning that both sender and receiver
consume about .4 mJ of energy. Table 1 summarizes the energy costs of acquiring
readings from various sensors available for motes. In this article, we primarily
focus on temperature readings, though we briefly discuss other attributes as well
in Section 6. Assuming we are acquiring temperature readings (which cost .5 J per
sample), we compute the cost of a plan that visits s nodes and acquires a readings
to be (.4× 2)× s+.5× a if there are no lost packets. In Section 4.1, we generalize
this idea, and consider lossy communication. Note that this cost treats the entire
network as a shared resource in which power needs to be conserved equivalently
on each mote. More sophisticated cost models that take into account the relative
importance of nodes close to the root could be used, but an exploration of such
cost models is not needed to demonstrate the utility of our approach.

3 Model-based querying

As described above, the central element in our approach is the use of a probabilistic
model to answer queries about the attributes in a sensor network. This section
focuses on a few specific queries: range predicates, attribute-value estimates, and
standard aggregates. We provide a review of the standard methodology required
to use a probabilistic model to answer these queries. This probabilistic model can
answer many other significantly more complex queries as well; we outline some
of these directions in Section 7.

3.1 Probabilistic queries

A probability density function (pdf), or prior density, p(X1, . . . , Xn) assigns a
probability for each joint value x1, . . . , xn for the attributes X1, . . . , Xn.

Range queries: We begin by considering range queries that ask if an attribute
Xi is in the range [ai, bi]. Typically, we would need to query the sensor network
to obtain the value of the attribute and then test whether the query is true or false.
Using a probabilistic model, we can compute the probability P (Xi ∈ [ai, bi]).
If this probability is very high, we are confident that the predicate Xi ∈ [ai, bi] is
true. Analogously, if the probability is very low, we are confident that the predicate
is false. Otherwise, we may not have enough information to answer this query
with sufficient confidence and may need to acquire more data from the sensor
network. The probability P (Xi ∈ [ai, bi]) can be computed in two steps: First, we
marginalize, or project, the pdf p(X1, . . . , Xn) to a density over only attribute Xi:

p(xi) =
∫

p(x1, . . . , xn)dx1 . . . dxi−1dxi+1 . . . dxn.

Marginalization gives us the pdf over only Xi. We can then compute P (Xi ∈
[ai, bi]) simply by:

P (Xi ∈ [ai, bi]) =
∫ bi

ai

p(xi)dxi. (1)



Query Execution

• For Gaussian distributions, some queries can be 
answered using closed form expressions

• But range queries can’t be

• Also using a range query can result in a partial 
gaussian, which would be hard to deal with further

• How do you do joins ?

• Cheng, Prabhakar address some of these issues in 
their work



Query Execution

• Things get more complicated if you are using more 
complex probability distributions

• In general, exact answers are probably not achievable

• But approximations should suffice in many cases



Recap
• Attribute-level uncertainty means the attribute values are 

uncertain

• In general, say the uncertain attributes are U_i, i = 1,...,N

• In the simplest case, the attributes are independent of each 
other

• Even then things can get hairy

• For example, if the attributes are continuous and the 
probability distributions used are Gaussians

• For continuous attributes, anything but “uniform within range 
[a, b]” would probably be non-trivial to handle

• Even for discrete distributions (see later)



Recap

• In the case we considered, the correlations were very 
important, and were explicitly modeled

• A single multi-dimensional probability distribution on all 
U_i simultaneously

• Things get messy very soon even for the simplest 
continuous distribution considered

• Query execution times can be very high



Roadmap
• Tuple-level uncertainty model originally proposed by Norbert 

Fuhr, and later work by Dalvi, Suciu

• Possible Worlds Semantics

• Intensional vs Extensional Semantics

• Query execution

• Attribute-level uncertainty model we used in a sensor 
network application

• Query execution

• An attempt to put other related work in this framework



Barbara et al [1992]
• “The management of probabilistic data”, IEEE TKDE 1992

• Attribute-level Uncertainty

• Discrete variables

• Had a notion of “missing probability”

• Assumed to be distributed over the entire domain, but no 
assumptions on exactly how

• Semantics of relational operators ended up being a bit messy488 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING.VOL.4.NO.5,OCTOBER 1992 

TABLE 11 
EXAMPLE OF MISSING PROBABILITIES 

EMPLOYEE DEPARTMENT QUALITY BONUS SALES 

Jon Smith Toy 

0.3 [Great yes] 

0.4 [Good yes] 
0.2 [Fair “1 

0.1 [’ *I 

0.3 
[$30-34K] 
0.5 
[$35-39K3 
n 7 r*i 

There, 0.2 probability has not been assigned to a particular 
sales range. It is assumed that this missing probability is 
distributed over all ranges in the domain, but we make no 
ass~lmptions as to how it is distributed. This situation could 
arise if, for instance, 10 people are polled to estimate Jon 
Smith’s sales for the upcoming year. Three people have 
estimated sales of 30 000 to 34 999 (e.g., similar to last year’s 
sales); five of 35 000 to 39 999 (e.g., last year plus inflation). 
Two people have not been reached and give rise to the 0.2 
missing probability. Since the missing probability could or 
could not go to the range $30-34K, the probability that the 
sales will be $30-34K next year is actually between 0.3 and 
0.3 + 0.2. In this sense, the probability 0.3 associated with 
the sales range $30-34K is a lower bound. Similarly, 0.5 is 
a lower bound for the probability associated with $35-39K. 
Notice that the 0.2 is not a lower bound. The tuple 0.2 [ * ] 
states how much probability could be assigned to tuples with 
no wildcards. 

The missing probability for QUALITY, BONUS is inter- 

preted similarly. A probability of 0.1 is distributed in an 
undetermined way over all possible quality, bonus pairs, while 
0.2 is distributed only over pairs that have a “Fair” quality 
component. Thus the probability that Smith is rated as “Great” 

and gets a bonus is between 0.3 and 0.3 + 0.1. 
We believe that missing probability is a powerful concept. 

It allows the model to capture uncertainty in data values as 
well as in the probabilities. It facilitates inserting data into 
a probabilistic relation, i.e., it is not necessary to have all 
information before some tuple can be entered. It also makes it 
possible to eliminate uninteresting information when display- 
ing relations. For example, a user may only be interested in 
seeing values with probability greater than 0.5; the rest can be 
ignored. Finally, as we will see later on, missing probability 
arises naturally during relational operations, even when the 
base relations have no missing probability. 

We have chosen the no assumptions interpretation for miss- 
ing probabilities for two main reasons. One, we believe it 
is very natural and powerful. Second, manipulating such 
missing probabilities as relations are projected, joined, etc., 
is surprisingly easy (see Section II). Other interpretations of 
missing probabilities are possible, for example, one may wish 
to consider the missing probabilities to be distributed over 
domain values not explicitly listed in the relation. Another 
possibility is to consider probabilities not listed in the rela- 
tion to be uniformly distributed. In this case, the probability 
distribution is known but not enumerated in the relation. 
We do not want to rule out other interpretations, but due 
to space limitations, we will only study the no assumptions 
interpretation. The full system we envision, however, will 
allow multiple interpretations. 

A central premise of our model is that keys are deterministic. 
This is not the only choice, but we feel that deterministic 
keys are very natural and lead to simple relational operators. 
Furthermore, it is still possible to represent stochastic entities 
with our model. For instance, suppose that we are not certain 
whether Jon Smith and Fred Jones are employees in company 
Acme of Example 1.1. Say the probability that Jon Smith 
“exists,” i.e., works for Acme, is at least 0.7. To represent 
this, we can include an attribute COMPANY in our relation, 
making its distribution for Jon Smith assign 0.7 probability to 
“Acme,” the rest is missing. 

Before continuing, we will discuss briefly where the “prob- 
abilistic data” for our relations come from.’ There are actually 
many possibilities. One is to have users assign the probabilities 
according to their “confidence” or “belief’ in the values (171. 
Thus a user, after reading recommendation letters for a job 
candidate, may say that he is 80% confident that this is a good 
candidate. 

A second option is to compute the probabilities from an 
underlying sample. For example, a conventional deterministic 
relation may contain the evaluations of Fred Jones made by 
100 people. Say 15 people find Jones “Very Good,” and 
85 find him “Good.” The relative frequencies can lead to 
probabilities of 151100 for “Very Good,” 85/100 for “Good.” 
Our extended model includes a new operator (stochastic) 
that will automatically generate a probabilistic relation out of 
an underlying deterministic relation containing samples (see 
Section VI). 

Probabilities can also be assigned to data according to their 
timeliness. For instance, suppose that at 9:00 am the position 
of a ship is reported as X. As time progresses, the likelihood 
that the ship is still at X decreases, so the user may provide a 
time decreasing function to generate the probabilities attached 
to positions. (Note that missing probability is useful once again 
to cover the unknown locations of the ship.) 

Incidentally, in this paper, we will focus exclusively on 
discrete probability distribution functions. Although we do 
not discuss it here, it may be possible to extend our model 
to continuous probabilities, and this opens the door to other 
sources of probabilistic data. For example, we may know that 
a given radar has a normally distributed error with standard 
deviation of one mile. Thus the position of an airplane will be 
given by a normal distribution. 

For our presentation of the probabilistic model we have two 
main goals. One is to convince the reader that the PDM could 
be useful in practice. For this, we have included examples that 
show how real applications can be modeled. We have also 
presented a collection of useful operators, ranging from the 
simple, like Project, to the more powerful (but useful) C-Join 
and Stochastic. 

A second goal is to present the formal underpinnings 
of the model. Although the PDM seems very intuitive and 
the operations appear straightforward, there are some subtle 
issues regarding missing probabilities. It is true that missing 
probabilities can be manipulated in a straightforward fashion, 

’ Strictly speaking, probabilities cannot be determined from a finite set of 
observations [15]. Our approach is to estimate the probability distribution 
function and then to treat the estimate as the true distribution. 



Barbara et al [1992]
• Can model correlations between attributes

• This model has similarities to graphical models, 
conditional independence etc...

• Especially when multiple relations and joins are 
considered488 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING.VOL.4.NO.5,OCTOBER 1992 

TABLE 11 
EXAMPLE OF MISSING PROBABILITIES 

EMPLOYEE DEPARTMENT QUALITY BONUS SALES 

Jon Smith Toy 

0.3 [Great yes] 

0.4 [Good yes] 
0.2 [Fair “1 

0.1 [’ *I 

0.3 
[$30-34K] 
0.5 
[$35-39K3 
n 7 r*i 

There, 0.2 probability has not been assigned to a particular 
sales range. It is assumed that this missing probability is 
distributed over all ranges in the domain, but we make no 
ass~lmptions as to how it is distributed. This situation could 
arise if, for instance, 10 people are polled to estimate Jon 
Smith’s sales for the upcoming year. Three people have 
estimated sales of 30 000 to 34 999 (e.g., similar to last year’s 
sales); five of 35 000 to 39 999 (e.g., last year plus inflation). 
Two people have not been reached and give rise to the 0.2 
missing probability. Since the missing probability could or 
could not go to the range $30-34K, the probability that the 
sales will be $30-34K next year is actually between 0.3 and 
0.3 + 0.2. In this sense, the probability 0.3 associated with 
the sales range $30-34K is a lower bound. Similarly, 0.5 is 
a lower bound for the probability associated with $35-39K. 
Notice that the 0.2 is not a lower bound. The tuple 0.2 [ * ] 
states how much probability could be assigned to tuples with 
no wildcards. 

The missing probability for QUALITY, BONUS is inter- 

preted similarly. A probability of 0.1 is distributed in an 
undetermined way over all possible quality, bonus pairs, while 
0.2 is distributed only over pairs that have a “Fair” quality 
component. Thus the probability that Smith is rated as “Great” 

and gets a bonus is between 0.3 and 0.3 + 0.1. 
We believe that missing probability is a powerful concept. 

It allows the model to capture uncertainty in data values as 
well as in the probabilities. It facilitates inserting data into 
a probabilistic relation, i.e., it is not necessary to have all 
information before some tuple can be entered. It also makes it 
possible to eliminate uninteresting information when display- 
ing relations. For example, a user may only be interested in 
seeing values with probability greater than 0.5; the rest can be 
ignored. Finally, as we will see later on, missing probability 
arises naturally during relational operations, even when the 
base relations have no missing probability. 

We have chosen the no assumptions interpretation for miss- 
ing probabilities for two main reasons. One, we believe it 
is very natural and powerful. Second, manipulating such 
missing probabilities as relations are projected, joined, etc., 
is surprisingly easy (see Section II). Other interpretations of 
missing probabilities are possible, for example, one may wish 
to consider the missing probabilities to be distributed over 
domain values not explicitly listed in the relation. Another 
possibility is to consider probabilities not listed in the rela- 
tion to be uniformly distributed. In this case, the probability 
distribution is known but not enumerated in the relation. 
We do not want to rule out other interpretations, but due 
to space limitations, we will only study the no assumptions 
interpretation. The full system we envision, however, will 
allow multiple interpretations. 

A central premise of our model is that keys are deterministic. 
This is not the only choice, but we feel that deterministic 
keys are very natural and lead to simple relational operators. 
Furthermore, it is still possible to represent stochastic entities 
with our model. For instance, suppose that we are not certain 
whether Jon Smith and Fred Jones are employees in company 
Acme of Example 1.1. Say the probability that Jon Smith 
“exists,” i.e., works for Acme, is at least 0.7. To represent 
this, we can include an attribute COMPANY in our relation, 
making its distribution for Jon Smith assign 0.7 probability to 
“Acme,” the rest is missing. 

Before continuing, we will discuss briefly where the “prob- 
abilistic data” for our relations come from.’ There are actually 
many possibilities. One is to have users assign the probabilities 
according to their “confidence” or “belief’ in the values (171. 
Thus a user, after reading recommendation letters for a job 
candidate, may say that he is 80% confident that this is a good 
candidate. 

A second option is to compute the probabilities from an 
underlying sample. For example, a conventional deterministic 
relation may contain the evaluations of Fred Jones made by 
100 people. Say 15 people find Jones “Very Good,” and 
85 find him “Good.” The relative frequencies can lead to 
probabilities of 151100 for “Very Good,” 85/100 for “Good.” 
Our extended model includes a new operator (stochastic) 
that will automatically generate a probabilistic relation out of 
an underlying deterministic relation containing samples (see 
Section VI). 

Probabilities can also be assigned to data according to their 
timeliness. For instance, suppose that at 9:00 am the position 
of a ship is reported as X. As time progresses, the likelihood 
that the ship is still at X decreases, so the user may provide a 
time decreasing function to generate the probabilities attached 
to positions. (Note that missing probability is useful once again 
to cover the unknown locations of the ship.) 

Incidentally, in this paper, we will focus exclusively on 
discrete probability distribution functions. Although we do 
not discuss it here, it may be possible to extend our model 
to continuous probabilities, and this opens the door to other 
sources of probabilistic data. For example, we may know that 
a given radar has a normally distributed error with standard 
deviation of one mile. Thus the position of an airplane will be 
given by a normal distribution. 

For our presentation of the probabilistic model we have two 
main goals. One is to convince the reader that the PDM could 
be useful in practice. For this, we have included examples that 
show how real applications can be modeled. We have also 
presented a collection of useful operators, ranging from the 
simple, like Project, to the more powerful (but useful) C-Join 
and Stochastic. 

A second goal is to present the formal underpinnings 
of the model. Although the PDM seems very intuitive and 
the operations appear straightforward, there are some subtle 
issues regarding missing probabilities. It is true that missing 
probabilities can be manipulated in a straightforward fashion, 

’ Strictly speaking, probabilities cannot be determined from a finite set of 
observations [15]. Our approach is to estimate the probability distribution 
function and then to treat the estimate as the true distribution. 



Cheng, Prabhakar et al
• e.g. “Evaluating probabilistic queries over imprecise data”; SIGMOD 

2003

• Attribute-level uncertainty

• The range of an uncertain attribute is assumed to be known and 
hopefully not too large

• No assumptions on how the value is distributed in this range

• So temp_1 is in [18, 23] definitely; the actual distribution in this 
range could be anything (e.g. a cut-off gaussian) 

• Assumed independence

• Focus on answering queries such as nearest-neighbor queries

• The ranges on the attribute values are used heavily in these 
algorithms



Probview

• Lakshaman, Leone, Ross, Subrahmanian [TODS 97]

• An attempt to generalize many of the previous models

• Tuple-level uncertainties

• But for each tuple, we have a range associated

• An upper bound and a lower bound

• To a large extent, succeeded in combining the different 
types of probabilistic models proposed before

• But the resulting model is quite complex



TRIO
• Project recently started at Stanford

• “Working models for uncertain data”; ICDE 06

• In the models presented in this paper, they don’t really have 
probabilities

• Semantics similar to possible worlds

• An “uncertain” relation is defined to be a set of possible 
relation instances

• Example: Bird spotting relation (spotter, date, location, bird)

I1: [Amy, 12/23/04, Stanford, crow]
I2: [Amy, 12/23/04, Stanford, raven]
I3: [Amy, 12/23/04, Stanford, crow],

[Amy, 12/23/04, Stanford, raven]

To see why this set of instances cannot be represented in
our model, note that we would need two separate tuples for
crow and raven, otherwise we would not get I3. Both
of these tuples would have to be marked “?” (to get I1 and
I2). However, then the empty relation (no birds sighted)
would also be a possible instance, which we did not intend
to include. !

Now let us explore what happens when we perform opera-
tions on data in our model.

Example 2.2: Suppose we have the following sighting of
either a dove or a sparrow:

[Bill, 12/27/04, Palo Alto, {dove,sparrow}]

and the following relevant tuples in the BirdInfo rela-
tion:

[dove, gray, medium]
[sparrow, brown, small]

If we perform a natural join of these two relations, there are
two possible instances in the result:

I1: [Bill, 12/27/04, Palo Alto, dove,
gray, medium]

I2: [Bill, 12/27/04, Palo Alto, sparrow,
brown, small]

Using the types of uncertainty we have, there is no way to
represent that exactly one of these two tuples exists, but not
both. !

Example 2.3: Consider the same sighting tuple from the
previous example, but now as a contrived example for illus-
trative purposes, suppose the BirdInfo relation contains:

[dove, gray, medium]
[dove, white, small]

Now the natural join produces the following possible in-
stances:

I1: [Bill, 12/27/04, Palo Alto, dove,
gray, medium],

[Bill, 12/27/04, Palo Alto, dove,
white, small]

I2: empty

Using the types of uncertainty we have, there is no way
to represent that either both of the dove tuples exists or
neither do. !

2.3 Adding Constraints to the Model

Examples 2.2 and 2.3 show that our model is not closed
under the natural join operation. Specifically, Example 2.2
shows that for closure we need some form of mutual ex-
clusion over tuples (exclusive-or, denoted ⊕), while Exam-
ple 2.3 shows that we need mutual inclusion (iff, denoted
≡).

These examples suggest extending our model to include
constraints over the existence of tuples, and in fact later we
will see that by allowing arbitrary existence constraints, we
obtain a complete (and therefore closed) model. The next
example shows that constraints involving only ⊕ and ≡ are
not sufficient for completeness.

Example 2.4: Consider the following set of instances rep-
resenting zero, one, or two sightings, but the later sighting
cannot be recorded without the earlier one:

I1: empty
I2: [Carol, 12/25/04, Los Altos, bluebird]
I3: [Carol, 12/25/04, Los Altos, bluebird],

[Carol, 12/26/04, Los Altos, bluebird]

The reader may verify that this set of instances cannot be
represented in our model either. Intuitively, this example
requires an implication constraint between two tuples. !

For complexity reasons it is natural to consider con-
straints that are restricted to binary clauses: 2-satisfiability
is polynomially solvable, whereas 3-satisfiability is NP-
hard [15]. It turns out 2-clauses are not sufficient for com-
pleteness either, as seen in the next example which also
explores the effect of selection predicates on uncertain at-
tribute values.

Example 2.5: Suppose we have the following sighting of
either a crow, a sparrow or dove:

[Dave, 12/25/04, Menlo Park, {crow,sparrow,dove}]

and the following relevant tuples in the BirdInfo rela-
tion:

[crow, black, medium]
[sparrow, brown, small]
[dove, gray, medium]

If we perform a natural semijoin of BirdInfo with
Sightings, the result has the following set of three pos-
sible instances:

I1: [crow, black, medium]
I2: [sparrow, brown, small]
I3: [dove, gray, medium]

Representing this set of instances requires an exclusive-or
among three tuples, so it cannot be modeled with only 2-
clauses. !



TRIO
• Present one “complete” model that is closed under all 

operations:

• An uncertain relation is:

• A deterministic relation with a “variable” associated with 
each tuple

• A boolean formula f(T) over these variables

• If the formula is true, that particular instance exists

• This model is probably intractable computationally

• A series of less complex “incomplete” models which are probably 
better suited for implementation 

Model RA R? RA
? R⊕≡ R2 RA

2 Rsets

Building Block a-tuple tuple a-tuple tuple tuple a-tuple tuple
Constraints none ? ? binary ⊕, ≡ 2-clause 2-clause n-way choice

Table 1: Nomenclature and Definition of Incomplete Models

4.1 Definition of Incomplete Models

As illustrated in Section 2, we consider two fundamental
kinds of uncertainty:

• or-sets, where we are uncertain about which of a finite
set of values a particular attribute value takes

• existence constraints, which enable us to specify un-
certainty about whether a tuple exists in a relation, or
how its existence depends on the existence of other
tuples

These types of uncertainty have been considered in the
past: or-sets have been considered in [10, 19, 23], and
maybe-tuples have been considered in the context of
queries on relations with nulls [8].

We begin by defining a complete model, denoted RA
prop,

which captures both types of uncertainty. We then de-
fine incomplete models in terms of different restrictions on
RA

prop.
In RA

prop, a-tuples (for approximate tuples) are tuples
with one or more or-sets for attribute values, and exis-
tence constraints are expressed as boolean formulas over a-
tuples. An instance of an a-tuple is a regular tuple in which
we choose a single value for each attribute. Formally, an
RA

prop relation is represented by:
1. a multiset of a-tuples, T = t1, . . . , tn, and
2. a boolean formula f(T ).

Note that in f(T ) the tuples are used as propositional vari-
ables with the intent that ti is True if and only if ti is in the
relation instance. T is a multiset because there may be two
tuples ti and tj , i #= j, that have identical values for each
attribute. A satisfying assignment for f(T ) is a mapping
that assigns either True or False to each ti ∈ T , and
such that f(T ) evaluates to True. The following defines
the instances of an RA

prop relation.

Definition 4.1 (Instances of RA
prop). The set of instances

I(R) of an RA
prop relation R = (T, f) is the set of ordinary

relations R that can be obtained as follows:
1. Let σ be a satisfying assignment for f(T ). Consider

the set of a-tuples T ′ in T for which σ assigns True.
2. Let R be an ordinary relation that includes one in-

stance for every a-tuple in T ′. !

Example 4.2: The set of instances from Example 2.4 can
be represented as an RA

prop relation as follows:

t1 = [Carol, 12/25/04, Los Altos, bluebird]
t2 = [Carol, 12/26/04, Los Altos, bluebird]
constraint: t2 => t1

!

A proof for the following theorem is in appendix A.

Theorem 4.3. RA
prop is a complete model. !

Two comments regarding RA
prop:

• Clearly it is possible to express or-sets using boolean
formulas, and hence a-tuples do not strictly add to the
expressive power of RA

prop. However, as we will see
later, singling out a-tuples enables us to identify inter-
esting incomplete models. In addition, if we allow or-
sets with an infinite number of possible values (Sec-
tion 7), then they can no longer be represented with
boolean constraints.

• c-tables [18] is also a complete model, and is therefore
equivalent in expressive power to RA

prop. However,
restrictions on c-tables do not yield the interesting in-
complete models we will discuss.

We now define a family of incomplete models as restric-
tions on RA

prop. These models are shown in Table 1. Re-
strictions are obtained either by limiting the kind of con-
straints that appear in f , denoted in the subscript of the
model name, or limiting the model not to include a-tuples,
denoted in the superscript of the name. Specifically, we use
the following notation in Table 1. The superscript A on R
means the model allows a-tuples, otherwise only ordinary
tuples. The subscript specifies the type of constraints al-
lowed. An empty subscript in RA means that each a-tuple
must be present in the relation. A subscript “?” means that
maybe-tuples are allowed. A subscript “2” means that f
is a conjunction of clauses with at most two literals. The
subscript of “⊕ ≡” in R⊕≡ means that f is a conjunction
of formulas of the form (ti ≡ tj) or (tk ⊕ tl).

Example 4.4: In Example 2.2 we joined an a-tuple with
two ordinary tuples, but the result was not expressible with
a-tuples. However, the result of the join can be expressed
with an R⊕≡ relation:

t1 = [Bill, 12/27/04, Palo Alto, dove
gray, medium]

t2 = [Bill, 12/27/04, Palo Alto, sparrow
brown, small]

constraint: t1 xor t2

!

The last model in Table 1 that needs explanation is Rsets.
Informally, an Rsets relation R consists of a multiset
{r1, r2, . . . , rm} where each ri is a set of ordinary tuples
and each ri is optionally labeled “?”. An instance of R
is obtained by choosing exactly one tuple from each un-
labeled ri, and choosing at most one tuple from each ri

labelled “?”.



Questions ?




