Probabilistic Databases

Amol Deshpande

University of Maryland

Goal

- Introduction to probabilistic databases
- Focus on an overview of:
- Different possible representations
- Challenges in using them

Probabilistic Data

- Traditional databases store solid "facts" that can be considered certain
- In many cases, we don't know things precisely
- When storing beliefs etc
- Answering queries with vague predicates
- institute_name like "IITB"
- If you use probabilistic models for predicting some variables
- Or classification models
- Similarly, use statistical models to predict missing data
- I saw a bird, but not sure if it was a dove or a sparrow
- Uncertain, incomplete data is becoming more and more common

Representing uncertainty

- A high-level classification can be made:
- Tuple-level uncertainty
- All attributes in a tuple are known precisely; existence of the tuple is uncertain
- Vague predicates: name approx like 'iit'
- Tuple ("IIT Bombay", ...) will be present in the answer with some uncertainty
- Attribute-level uncertainty
- Tuples (identified by keys) exist for certain; an attribute value is however uncertain
- Tomorrow temperature will be somewhere between 20 C and 30C

Classification

- Is this classification fundamental ?
- Can proper normalization solve this problem?
- Probably yes.
- Tuple-level uncertainty can be converted into attribute-level by adding a boolean attribute
- Things will probably get messy
- Other way round is harder
- Continuous distributions on attributes are common
- Gaussian on temperature for tomorrow.

Classification

- Trying to create a general model that can represent everything is probably doomed to fail
- We will discuss two papers next:
- Simple tuple-level uncertainty model by Norbert Fuhr et al
- A not-too-complex attribute-level uncertainty model that we use in a sensor network application
- Intractability issues are encountered very soon

Roadmap

- Tuple-level uncertainty model originally proposed by Norbert Fuhr, and later work by Dalvi, Suciu
- Possible Worlds Semantics
- Intensional vs Extensional Semantics
- Query execution
- Attribute-level uncertainty model we used in a sensor network application
- Query execution
- An attempt to put other related work in this framework

Tuple-level Uncertainty

- Proposed by Fuhr et al, more work recently by Dalvi and Suciu
- The examples are from Dalvi, Suciu [VLDB04]
- With each tuple, a probability of existence is associated

Tuple-level Uncertainty

- Lets assume that the tuple existence events are independent of each other
- So, prob that $S P=\{s \mathrm{I}, \mathrm{s} 2\}$ is $0.5 * 0.8=0.4$
- Similarly prob that $T^{P}=\{ \}$ is empty is 0.4
- And prob that $S P=\{s I, s 2\}$ and $T^{P}=\{ \}$ is $0.4 * 0.4=0.16$
- In fact, we can assign a probability to each such possibility

Possible Worlds

$$
\operatorname{pwd}\left(D^{p}\right)=\begin{array}{|l|l|}
\hline \text { database instance } & \text { probability } \\
\hline \hline D_{1}=\left\{s_{1}, s_{2}, t_{1}\right\} & 0.24 \\
D_{2}=\left\{s_{1}, t_{1}\right\} & 0.24 \\
D_{3}=\left\{s_{2}, t_{1}\right\} & 0.06 \\
D_{4}=\left\{t_{1}\right\} & 0.06 \\
D_{5}=\left\{s_{1}, s_{2}\right\} & 0.16 \\
D_{6}=\left\{s_{1}\right\} & 0.16 \\
D_{7}=\left\{s_{2}\right\} & 0.04 \\
D_{8}=\phi & 0.04 \\
\hline
\end{array}
$$

Possible Worlds Semantics

- A probabilistic relation is simply a collection of different possible deterministic relations (worlds) with associated probabilities
- Probabilities add up to I

Query Evaluation

- Say you want to execute a query:
- S Join T on B = C, project on D
- Execute the query on each possible world separately
- The final result is a probabilistic relation that represents the end result

Aside

- Selections:
- The result contains all tuples that match a specified predicate
- Joins:
- Given two relations, find pairs of matching tuples and concatenate
- Projection:
- Throw away all attributes except the ones specified

Query execution

- S Join T on B = C, project on D

$S^{p}=$		
	A	B
s_{1}	'm'	1
s_{2}	'n'	1

	database instance	probability	Result		
$\operatorname{pwd}\left(D^{p}\right)=$	$D_{1}=\left\{s_{1}, s_{2}, t_{1}\right\}$	0.24	\{'p'\}\{'p'\}		
	$D_{2}=\left\{s_{1}, t_{1}\right\}$	0.24			
	$D_{3}=\left\{s_{2}, t_{1}\right\}$	0.06	\{'p'\}	answer	probability
	$D_{4}=\left\{t_{1}\right\}$	0.06	\{\}	\{' p^{\prime} \}	0.54
	$D_{5}=\left\{s_{1}, s_{2}\right\}$	0.16	\{\}	$\emptyset{ }^{\text {¢ }}$	0.46
	$D_{6}=\left\{s_{1}\right\}$	0.16	\{\}		
	$D_{7}=\left\{s_{2}\right\}$	0.04	\{\}		
	$D_{8}=\phi$	0.04	\{\}		

Query evaluation

- This evaluation is semantically correct
- But returning this answer is not practical
- Instead try to convert it to a probabilistic relation
- For each tuple, compute the probability it is in the answer
- By summing over all worlds which contain that tuple
- Called 'rank' (given the focus of the work)

D	Rank
'p'	0.54

Another example

- S Join T on $\mathrm{B}=\mathrm{C}$, project on A

$p w d\left(D^{p}\right)=$	database instance	probability	Result \{'m’’'n’\} \{'m’\} \{'n'\}		
	$D_{1}=\left\{s_{1}, s_{2}, t_{1}\right\}$	0.24		answer	probability
	$D_{2}=\left\{s_{1}, t_{1}\right\}$	0.24		\{' $\left.m^{\prime \prime},{ }^{\prime} n^{\prime}\right\}$	0.24
	$D_{3}=\left\{s_{2}, t_{1}\right\}$	0.06		$\left\{{ }^{\prime} m^{\prime}\right\}$	0.24
	$D_{4}=\left\{t_{1}\right\}$	0.06	\{\}	$\left\{{ }^{\prime} n^{\prime}\right\}$	0.06
	$D_{5}=\left\{s_{1}, s_{2}\right\}$	0.16	\{\}	\emptyset	0.46
	$D_{6}=\left\{s_{1}\right\}$	0.16	\{\}		
	$D_{7}=\left\{s_{2}\right\}$	0.04	\{\}		
	$D_{8}=\phi$	0.04	\{\}		

Returned Answer

- S Join T on $B=C$, project on A

$=$| answer | probability |
| :--- | :--- |
| $\left\{{ }^{\prime} m^{\prime \prime}{ }^{\prime} n^{\prime}\right\}$ | 0.24 |
| $\left\{^{\prime} m^{\prime}\right\}$ | 0.24 |
| $\left\{^{\prime} n^{\prime}\right\}$ | 0.06 |
| \emptyset | 0.46 |

\mathbf{D}	Rank
'm'	0.48
'n'	0.30

Note that this final relation does not satisfy independence; The tuples after a query evaluation may become dependent

Query Evaluation

- Evaluating a general query:
- Converting to possible worlds, executing the query separately for each one, and then combining them is not feasible
- Two alternative solutions that work directly on the associated tuple-level probabilities
- Extensional and Intensional Semantics

Extensional Semantics

- We will operate directly on the probabilities
- Take a normal query plan for the query, and execute the query normally
- When a new tuple is created, compute a probability for it
- Assuming independence (for now)
- In the end, the result tuples will have probabilities associated

Extensional: Example

	A	B
s_{1}	'm'	1
s_{2}	'n'	1

$T^{p}=$

0.6

Joins: assume independence

A	B	C	D	prob
'm'	1	1	'p'	$0.8^{*} 0.6=0.48$
'n'	1	1	'p'	$0.5 * 0.6=0.30$

Projection: union probability; assume independence

$$
\begin{array}{|l|}
\hline \mathbf{D} \\
\hline \text { 'p' } \\
\hline
\end{array}\left(\begin{array}{c}
\text { prob } \\
\hline
\end{array}\right.
$$

Umm..This is wrong !!
Why ? The two tuples above are not independent.

Alternate Query Plan

$T^{p}=$

0.6

Projection: union probability; assume independence

$$
\begin{array}{|lc|}
\hline \mathbf{B} & p r o b \\
\hline 1 & (1-(1-0.8)(1-0.5))=0.9 \\
\hline
\end{array}
$$

Join: assume independence

\mathbf{B}	\mathbf{C}	\mathbf{D}		
1	1	'p'		prob
:---:				
0.9	${ }^{2} 0.6=0.54$			

This is correct.
The correctness unfortunately depends on the plan used. Called "safe plans" [Dalvi, Suciu 2004]

Safe plans

- [Dalvi, Suciu 2004] give an algorithm to find a safe plan if one exists for a given query
- If no safe plan, the complexity of query evaluation is in \#P-Complete
- Use intensional semantics for them (next)

Intensional Semantics

- Associate a separate event with each base tuple
- For each intermediate tuple, associated an explicit event expression
- Compute the actual probabilities only when required at the end

Intensional Semantics

Join (intersection):

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}
$' \mathrm{~m} \prime$	1	1	$\prime \mathrm{p}$	$s_{1} \wedge t_{1}$
n^{\prime}	1	1	$\prime \mathrm{p} '$	$s_{2} \wedge t_{1}$

Projection (union):

\mathbf{D}	\mathbf{E}
'p'	$\left(s_{1} \wedge t_{1}\right) \vee\left(s_{2} \wedge t_{1}\right)$

This would result in the correct probability. Can also see correlations.

Intensional Semantics

- Does not depend on the query plan used
- Unfortunately...
- This is computationally too expensive
- Creating and carrying around the event expressions is itself quite painful
- Evaluating a complex event expression is \#P-complete

Recap

- Tuple-level probabilities
- Extensional semantics: Limited use
- Safe plans [Dalvi, Suciu 04]
- Intensional semantics: Intractable
- This model has extended to include some kinds of tuple correlations [Fuhr, Roelleke]
- e.g. tuple disjointness

Roadmap

- Tuple-level uncertainty model originally proposed by Norbert Fuhr, and later work by Dalvi, Suciu
- Possible Worlds Semantics
- Intensional vs Extensional Semantics
- Query execution
- Attribute-level uncertainty model we used in a sensor network application
- Query execution
- An attempt to put other related work in this framework

Attribute-level Uncertainties

- Sensor network application
- Consider two temperature sensors monitoring temperatures at two locations
- Location I: tempI
- Location 2 : temp2
- We propose using a probabilistic model of the evolution of these two variables over time [DGMHH'VLDB 04]
- Goal was to use the attribute correlations to avoid sensing temperature as much as possible
- The correlations tend to be very strong

Attribute-level

- Tuples exist with certainty
- temperature at time tl at location I etc.
- But the attribute values (temperatures) are uncertain
- In particular, each temperature value is a Gaussian
- p (templ at time I) is a Gaussian distribution

$\underline{\underline{\text { time }}}$	$\underline{\underline{\text { templ }}}$	temp2
1	$\int_{20}{ }^{(9)}$	21^{9}
2	$\int_{22}{ }^{(9)}$	$\int_{23}{ }^{(9)}$
3	$1_{18}{ }^{9}$	19

Attribute-level

- Moreover
- Temperatures at different locations are spatially correlated
- temp1 ${ }^{\text {t= }}$ and temp $2^{t=1}$ are correlated
- Temperatures across time are temporally correlated
- temp $\left.\right|^{t=\mid}$ and temp $\left.\right|^{t=2}$ are correlated
- All these correlations are represented by using multidimensional Gaussian distributions over the uncertain attributes

Example 2-dim Gaussian

2D Gaussian PDF With High Covariance (Σ)

Query execution

- Range Query: Is X_i within [a_i, b_i] ?
- Compute the probability:

$$
P\left(X_{i} \in\left[a_{i}, b_{i}\right]\right)=\int_{a_{i}}^{b_{i}} p\left(x_{i}\right) d x_{i}
$$

- Answer is YES with that probability
- This simplest integral is unfortunately non-computable
- Need to use numerical integration
- In this particular case, tables can be used

Query Execution

- For Gaussian distributions, some queries can be answered using closed form expressions
- But range queries can't be
- Also using a range query can result in a partial gaussian, which would be hard to deal with further
- How do you do joins?
- Cheng, Prabhakar address some of these issues in their work

Query Execution

- Things get more complicated if you are using more complex probability distributions
- In general, exact answers are probably not achievable
- But approximations should suffice in many cases

Recap

- Attribute-level uncertainty means the attribute values are uncertain
- In general, say the uncertain attributes are $U_{_} \mathrm{i}, \mathrm{i}=\mathrm{I}, \ldots, \mathrm{N}$
- In the simplest case, the attributes are independent of each other
- Even then things can get hairy
- For example, if the attributes are continuous and the probability distributions used are Gaussians
- For continuous attributes, anything but "uniform within range [a, b]" would probably be non-trivial to handle
- Even for discrete distributions (see later)

Recap

- In the case we considered, the correlations were very important, and were explicitly modeled
- A single multi-dimensional probability distribution on all U_i simultaneously
- Things get messy very soon even for the simplest continuous distribution considered
- Query execution times can be very high

Roadmap

- Tuple-level uncertainty model originally proposed by Norbert Fuhr, and later work by Dalvi, Suciu
- Possible Worlds Semantics
- Intensional vs Extensional Semantics
- Query execution
- Attribute-level uncertainty model we used in a sensor network application
- Query execution
- An attempt to put other related work in this framework

Barbara et al [1992]

- "The management of probabilistic data", IEEE TKDE 1992
- Attribute-level Uncertainty
- Discrete variables
- Had a notion of "missing probability"
- Assumed to be distributed over the entire domain, but no assumptions on exactly how
- Semantics of relational operators ended up being a bit messy

TABLE II			
	Example of Missing Probabilities		
EMPLOYEE	DEPARTMENT	QUALITY BONUS	SALES
		0.3 [Great yes]	0.3
Jon Smith	Toy	0.4 [Good yes]	$[\$ 30-34 \mathrm{~K}]$
		$0.2\left[\right.$ Fair $\left.{ }^{*}\right]$	0.5
		$0.1\left[{ }^{*}\right]$	$[\$ 35-39 \mathrm{~K}]$
			$0.2\left[{ }^{*}\right]$

Barbara et al [1992]

- Can model correlations between attributes
- This model has similarities to graphical models, conditional independence etc...
- Especially when multiple relations and joins are considered

TABLE II			
	Example of Missing Probabilities		
EMPLOYEE	DEPARTMENT	QUALITY BONUS	SALES
Jon Smith	Toy	0.3 [Great yes]	0.3
		0.4 [Good yes]	$[\$ 30-34 \mathrm{~K}]$
		0.2 [Fair ${ }^{*}$]	0.5
		$0.1\left[{ }^{* *}\right]$	$[\$ 35-39 \mathrm{~K}]$
			$0.2[*]$

Cheng, Prabhakar et al

- e.g."Evaluating probabilistic queries over imprecise data"; SIGMOD 2003
- Attribute-level uncertainty
- The range of an uncertain attribute is assumed to be known and hopefully not too large
- No assumptions on how the value is distributed in this range
- So temp_I is in [18,23] definitely; the actual distribution in this range could be anything (e.g. a cut-off gaussian)
- Assumed independence
- Focus on answering queries such as nearest-neighbor queries
- The ranges on the attribute values are used heavily in these algorithms

Probview

- Lakshaman, Leone, Ross, Subrahmanian [TODS 97]
- An attempt to generalize many of the previous models
- Tuple-level uncertainties
- But for each tuple, we have a range associated
- An upper bound and a lower bound
- To a large extent, succeeded in combining the different types of probabilistic models proposed before
- But the resulting model is quite complex

TRIO

- Project recently started at Stanford
- "Working models for uncertain data"; ICDE 06
- In the models presented in this paper, they don't really have probabilities
- Semantics similar to possible worlds
- An "uncertain" relation is defined to be a set of possible relation instances
- Example: Bird spotting relation (spotter, date, location, bird)

```
I1: empty
I2: [Carol, 12/25/04, Los Altos, bluebird]
I3: [Carol, 12/25/04, Los Altos, bluebird],
    [Carol, 12/26/04, Los Altos, bluebird]
```


TRIO

- Present one "complete" model that is closed under all operations:
- An uncertain relation is:
- A deterministic relation with a "variable" associated with each tuple
- A boolean formula $f(T)$ over these variables
- If the formula is true, that particular instance exists
- This model is probably intractable computationally
- A series of less complex "incomplete" models which are probably better suited for implementation

```
t1 = [Carol, 12/25/04, Los Altos, bluebird]
t2 = [Carol, 12/26/04, Los Altos, bluebird]
constraint: t2 => t1
```


Questions?

