
Transactions Lecture 3 (Fekete)

1

Topics in Database Isolation
IITB, January 2006

Lecture 3: Replica Management

Alan Fekete
(University of Sydney)
fekete@it.usyd.edu.au

IITB Jan 2006 Transactions Lectures by Alan Fekete 2

Road Map

• Lecture 1: Isolation levels
• Lecture 2: Safe Use of Low Isolation
• Lecture 3: Replication Management

– The key principle (R any, W all)
– Global concurrency control
– The main design choices
– Serializable systems with lazy propagation
– Using SI in replication
– Limited divergence

IITB Jan 2006 Transactions Lectures by Alan Fekete 3

Definition

• Replication is when the value of some data
item is stored in more than one place
– Typically in different databases at different

physical locations
– Similar issues arise with cached copies

• Eg keep a copy of the part-list at each
warehouse

IITB Jan 2006 Transactions Lectures by Alan Fekete 4

Motivation

• Performance
– Each reader can find a copy close-by

• Less latency to access the data

– More parallelism, load-sharing
• Improved throughput

• Fault-tolerance
– Failure of some site doesn’t halt all activities
– Graceful degradation

IITB Jan 2006 Transactions Lectures by Alan Fekete 5

Key principle

• Read any copy
– Preferably near to the client

• For unchanging data, this is wonderful! But what
if the data item value sometimes changes (i.e.
some transactions write the data)?
– Write all the copies
– This damages performance and fault-tolerance!
– Thus replication is best for data where reads dominate

over updates

IITB Jan 2006 Transactions Lectures by Alan Fekete 6

Global transaction issues

• For now, ignore replication and just think
about a system with multiple databases, and
transactions that access them

• How to get global atomicity?
– Use Two-phase commit
– But this reduces performance markedly,

especially during periods where some nodes are
not available

Transactions Lecture 3 (Fekete)

2

IITB Jan 2006 Transactions Lectures by Alan Fekete 7

Global serializability
• How to get serializable behavior?
• It is not enough for each db to provide serializable

operation locally
• If each db uses 2PL, then global execution is serializable

– All conflicts are compatible with the Commit order
• If you’re not sure each db uses 2PL, and you want global

serializability, you can
– keep global serialization graph
– introduce conflicts at every site through “ticket” updates

IITB Jan 2006 Transactions Lectures by Alan Fekete 8

The main design choices

• There are many design choices for a system
with replicated data. In the next slides, we
present some of these, with sketches of the
trade-offs involved.

IITB Jan 2006 Transactions Lectures by Alan Fekete 9

Where to replicate?
• Everywhere

– “total replication”
– All dbs have identical

contents
– Any read can be done

locally, with no cross-
network communication

• Simple system design
• Performance may suffer

• Not everywhere
– “partial replication”
– Need to manage

information about replica
locations, and choose
location for reads

– Need to make choices about
placement

• Complicated system
design

• Performance may be
improved

IITB Jan 2006 Transactions Lectures by Alan Fekete 10

If partial, what to replicate?

• Complete tables
– Each db has some of the

tables
– Easy to decide whether

local copy exists for some
data

– Easy to reuse standard
dbms engine for query
optimization and processing

• Relatively simpler system
design

• Fragments of tables
– Keep copy of some rows,

perhaps based on values in
particular columns

– Keep copy of some
columns

– Copy can be seen as a view
of underlying global table

• Complex system design

IITB Jan 2006 Transactions Lectures by Alan Fekete 11

How consistent?

• “Always” consistent
– At least, apps shouldn’t

observe difference
from using single dbms

• “transparent
replication”

– Formal definition for
“1 copy serializable
(abbreviated as 1-SR)”

– Some systems propose
“1-copy SI”

• Eventually consistent
– “convergent”
– If updates cease for

long enough, all copies
will reach a common
value

• Intermediate approach:
limited divergence

IITB Jan 2006 Transactions Lectures by Alan Fekete 12

How to propagate writes?

• Capture SQL
statements, and
execute at replicas
– Difficulties if state is

not the same as when
originally executed

• Capture values
written/inserted, and
perform at replicas
– Use triggers to capture

information
– Or access logs kept by

each dbms

Transactions Lecture 3 (Fekete)

3

IITB Jan 2006 Transactions Lectures by Alan Fekete 13

When to propagate writes?
• Eager

– Update all replicas inside
the original transaction

– Requires two-phase commit
• Good for consistency
• Bad for performance
• Hybrid approach: do some

remote activity, but not
the updates themselves

• Lazy
– “asynchronous”
– Update one copy of each

item inside original txn,
then apply those writes that
are relevant to replicas at a
given site in a separate
“copier” txn

– Original txn may be entirely
local at one site

• Good for performance
• May be bad for

consistency

IITB Jan 2006 Transactions Lectures by Alan Fekete 14

Is there a master?

• Primary copy
– “master-slave”
– One replica of each item is

authoritative
– It is always updated first
– If lazy propagation, this

either restricts transaction
content, or forces non-local
execution

• Bad for flexibility

• Group
– “multimaster” or “update

anywhere”
– Different txns can update

replicas in different orders
– If eager propagation, then

deadlock is very common;
– If lazy propagation, then

need conflict resolution to
ensure convergence

• Good for flexibility

IITB Jan 2006 Transactions Lectures by Alan Fekete 15

System architecture
• Middleware

– Applications go through a
veneer that manages global
issues and then passes
operations to local dbs

– Middleware may not have
enough information eg internal
conflicts, risk of distributed
deadlocks

– No need to modify apps if they
use JDBC or similar API

– No need to modify engines
• More practical in most cases

• Engine-based
– Modify each dbms to know

about replication
– No need to modify applications
– Need to modify engines

• Hard to do except with open-
source dbms, or if you work for
one of the vendors!

– Unlikely to work with
heterogenous engines

IITB Jan 2006 Transactions Lectures by Alan Fekete 16

Communication platform?

• Point-to-point messages
– Eg socket programming

• Always present on any
platform

• Programmer needs to deal
with failures, and with
out-of-order deliveries

• Can get good raw
performance

• Group communication
services
– Eg Spread, Transis, etc
– Deliver to all members of

the group
– Sender can require

guarantees on order etc

• Much easier system
design

• Performance may suffer

IITB Jan 2006 Transactions Lectures by Alan Fekete 17

Design space summary

• In practice, want performance and simple
system design
– lazy propagation and primary copy

• In theory, want consistency and application
generality
– eager propagation, multi-master

IITB Jan 2006 Transactions Lectures by Alan Fekete 18

Isolation and lazy propagation?

• If multi-master, then even convergence is hard to
enforce
– Need timestamps to recognize out-of-order updates

• So, assume primary copy
• Without restrictions on data and applications,

reads can see old data
– If a txn’s reads are not all at same site, it might even see

inconsistently old data

Transactions Lecture 3 (Fekete)

4

IITB Jan 2006 Transactions Lectures by Alan Fekete 19

Example
• X has primary copy at A,

replica at B
• Y has primary copy at B,

replica at A
• T1 runs at A: r[X] r[Y]

w[X]
– Later copier T3 propagates

write of X to B
• T2 runs at B: r[X] r[Y]

w[Y]
– Later copier T4 propagates

write of Y to A

• At A: r1[XA] r1[YA]
w1[XA] c1 w4[YA] c4

• At B: r2[XB] r2[YB]
w2[YB] c2 w3[XB] c3

• Neither T1 nor T2 sees the
other’s changes

IITB Jan 2006 Transactions Lectures by Alan Fekete 20

Example II
• X has primary copy at A,

replicas at B and C
• Y has primary copy at B,

replica at C
• T1 runs at A: r[X] w[X]

– Later copier T4 propagates
write of X to B

– Copier T5 propagates write of
X to C

• T2 runs at B: r[X] r[Y] w[Y]
– Later copier T6 propagates

write of Y to C
• T3 runs at C: r[X]r[Y]

• At A: r1[XA] w1[XA] c1
• At B: w5[XB] c3 r2[XB] r2[YB]

w2[YB] c2
• At C: w6[YC] c6 r3[XC] r3[YC] c3

w5[XC] c5
• T2 sees T1, T3 sees T2 on Y

(hence knows about T1) but
does not see T1 on X

IITB Jan 2006 Transactions Lectures by Alan Fekete 21

Restrictions

• Most work on serialization with lazy updates
assumes a restricted model of data and apps

• We limit application logic so that each original
transaction can run at one site
– It accesses data with copies at that site
– It only updates data whose primary copy is at that site

• Call this the “data ownership” assumption
– This is common in practice, since app is usually

focused on modifying data which “belongs” to the
organisation or suborg which wrote the app

– But it may read data which belongs elsewhere

IITB Jan 2006 Transactions Lectures by Alan Fekete 22

The copy graph

• Nodes are the sites where databases are
located

• Edge from Ni to Nj if
– There is an item X whose primary copy is

located at Ni and which is replicated at Nj

IITB Jan 2006 Transactions Lectures by Alan Fekete 23

Strongly Acyclic Copy graph

• CRR96 showed:
– Assume data ownership

model
– Assume each db uses 2PL
– Allow arbitrary execution

of copier transactions,
– then the overall execution is

1-copy serializable if and
only if the undirected image
of the copy graph has no
cycles Problem: two different

paths from T1 to T3

Problem: cycle from T1 to T1

T1 T2

T3

IITB Jan 2006 Transactions Lectures by Alan Fekete 24

Combining OLTP and OLAP

• A special case has been widely used, where
copy graph is a star

• Have one site which has the primary copy
for all items (OLTP node)

• Other sites just run read-only queries
(OLAP nodes)

• Eg RBSS’02, PA’04

Transactions Lecture 3 (Fekete)

5

IITB Jan 2006 Transactions Lectures by Alan Fekete 25

Acyclic Copy Graph

• BKRSS99 introduced algorithms that work
if directed copy graph has no cycle

• Key idea: ensure that copiers update nodes
in a consistent order
– Based on a tree
– Or using timestamps
– Could also be done with totally ordered

multicast to carry each txn’s copiers
IITB Jan 2006 Transactions Lectures by Alan Fekete 26

Use of SI in Replication

• Because SI is now so common (Oracle,
PostgreSQL), there is recently a lot of
interest in replication using SI rather 2PL

• SW’00 shows how to ensure 1-SR using
ticket or graph techniques

• WK’05, LKPJ’05 show how to get 1-SI
– Without data ownership hypothesis
– Using totally-ordered multicast

IITB Jan 2006 Transactions Lectures by Alan Fekete 27

Combining local SI to 1-SI

• Assume each txn runs at a single site
• Then reading is determined by consistent snapshot
• But how to test for concurrent writes?
• Solution: deliver writeset info to other sites within

the txn
– But defer actually applying them

• Important to use db info so conflicts are checked
at tuple not table granularity

IITB Jan 2006 Transactions Lectures by Alan Fekete 28

Extensions

• LKPJ’05 also deals with many practical
issues such as handling message failures,
preventing deadlocks, detecting some
conflicts early using the local SI properties

• Overall message: they get quite scalable
performance

IITB Jan 2006 Transactions Lectures by Alan Fekete 29

Relaxed Currency

• 1-SR allows read-only queries which run on
out-of-date values
– Some applications want limits on how old data

might be
• RBSS’02 allows app to specify bound on

staleness
• GLRG’04 provides SQL extension

– And builds checks into query optimisation

IITB Jan 2006 Transactions Lectures by Alan Fekete 30

Relaxed Consistency
• 1-SR and 1-SI both require all items read by txn T to come from a

consistent view
– This is easy if each txn runs at a single site
– But it is hard if txn’s reads can be spread around, for performance or

because replication is not total
• Some applications may be willing to see data which were valid at

slightly different times
• Much theory about controlling timing of updates to limit divergence of

data values
– Esp work on real-time databases

• GLRG’04 introduced SQL syntax to capture apps requirements
– Focus on allocating reads to sites, rather than controlling divergence of

sites

Transactions Lecture 3 (Fekete)

6

IITB Jan 2006 Transactions Lectures by Alan Fekete 31

Future Work

• Replication across WANS
– Order-enforcing group communication costs

are very high here
• Limited divergence (QoS guarantees)

– Integrating system mechanisms with
application requirements

IITB Jan 2006 Transactions Lectures by Alan Fekete 32

References

• Gray, Helland, O’Neil, Shasha “The dangers of
replication and a solution” in SIGMOD’96

• Chundi, Rosenkrantz, Ravi “Deferred updates and
data placement in distributed databases” in
ICDE’96

• Breitbart, Komondoor, Rastogi, Seshadri,
Silberschatz “Update propagation protocols for
replicated databases” in SIGMOD’99

IITB Jan 2006 Transactions Lectures by Alan Fekete 33

References

• Schenkel, Weikum “Integrating snapshot
isolation into transactional federations” in
CoopIS’00

• Röhm, Böhm, Schek, Schuldt “FAS – a freshness-
sensitive coordination middleware for a cluster of
OLAP components” in VLDB’02

• Plattner, Alonso “Ganymed: scalable replication
for transactional web applications” in
Middleware’04

IITB Jan 2006 Transactions Lectures by Alan Fekete 34

References

• Guo, Larson, Ramakrishnan, Goldstein “Relaxed
Currency and Consistency: How to say good
enough in SQL” in SIGMOD’04

• Wu, Kemme “Postgres-R(SI): combining replica
control with concurrency control based on
snapshot isolation” in ICDE’05

• Lin, Kemme, Patino-Martinex, Jimenez-Peris
“Middleware-based data replication providing
snapshot isolation” in SIGMOD’05

