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Road Map

• Lecture 1: Isolation levels
– Transaction Concept
– ACID properties
– Examples and counter-examples
– Serializability Theory
– Two phase locking and variants
– Other  SQL isolation levels
– Snapshot Isolation

• Lecture 2: Safe Use of Low Isolation
• Lecture 3: Replication Management
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Definition

• A transaction is a collection of one or more 
operations on one or more databases, which 
reflects a single real-world transition
– In the real world, this happened (completely) or it 

didn’t happen at all (Atomicity)
• Commerce examples 

– Transfer money between accounts
– Purchase a group of products 

• Student record system
– Register for a class (either waitlist or allocated)
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Coding a transaction

• Typically a computer-based system doing OLTP 
has a collection of application programs

• Each program is written in a high-level language, 
which calls DBMS to perform individual SQL 
statements
– Either through embedded SQL converted by 

preprocessor
– Or through Call Level Interface where application 

constructs appropriate string and passes it to DBMS
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Atomicity

• Two possible outcomes for a transaction
– It commits: all the changes are made
– It aborts: no changes are made

• That is, transaction’s activities are all or 
nothing
– Furthermore, once an outcome has been 

reached, it doesn’t change
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Integrity

• A real world state is reflected by collections 
of values in the tables of the DBMS

• But not every collection of values in a table 
makes sense in the real world

• The state of the tables is restricted by 
integrity constraints

• e.g. account number is unique
• e.g. stock amount can’t be negative
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Integrity (ctd)

• Many constraints are explicitly declared in the 
schema
– So the DBMS will enforce them
– Especially: primary key (some column’s values are non 

null, and different in every row)
– And referential integrity: value of foreign key column 

is actually found in another “referenced” table 

• Some constraints are not declared
– They are business rules that are supposed to hold
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Consistency
• Each transaction can be written on the assumption that all 

integrity constraints hold in the data, before the transaction 
runs

• It must make sure that its changes leave the integrity 
constraints still holding
– However, there are allowed to be intermediate states where the 

constraints do not hold
• A transaction that does this, is called consistent
• This is an obligation on the programmer

– Usually the organization has a testing/checking and sign-off 
mechanism before an application program is allowed to get 
installed in the production system
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System obligations

• Provided the app programs have been 
written properly, 

• Then the DBMS is supposed to make sure 
that the state of the data in the DBMS 
reflects the real world accurately, as 
affected by all the committed transactions
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Local to global reasoning

• Organization checks each app program as a 
separate task
– Each app program running on its own moves from state 

where integrity constraints are valid to another state 
where they are valid

• System makes sure there are no nasty interactions
• So the final state of the data will satisfy all the 

integrity constraints 
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Example - Tables

• System for managing inventory
• InStore(prodID, storeID, qty)
• Product(prodID, desc, mnfr, …, 

warehouseQty)
• Order(orderNo, prodID, qty, rcvd, ….)

– Rows never deleted!
– Until goods received, rcvd is null

• Also Store, Staff, etc etc
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Example - Constraints

• Primary keys
– InStore: (prodID, storeID)
– Product: prodID
– Order: orderId
– etc

• Foreign keys
– Instore.prodID references Product.prodID
– etc
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Example - Constraints

• Data values
– Instore.qty >= 0
– Order.rcvd <= current_date or Order.rcvd is null

• Business rules
– for each p, (Sum of qty for product p among all stores 

and warehouse) >= 50
– for each p, (Sum of qty for product p among all stores 

and warehouse) >= 70 or there is an outstanding order 
of product p
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Example - transactions

• MakeSale(store, product, qty)
• AcceptReturn(store, product, qty)
• RcvOrder(order)
• Restock(store, product, qty)

– // move from warehouse to store
• ClearOut(store, product)

– // move all held from store to warehouse
• Transfer(from, to, product, qty)

– // move goods between stores
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Example - ClearOut
• Validate Input (appropriate product, store)
• SELECT qty INTO :tmp

FROM InStore
WHERE storeID = :store AND prodID = :product

• UPDATE Product 
SET warehouseQty = warehouseQty + :tmp
WHERE prodID = :product

• UPDATE InStore
SET qty = 0
WHERE storeID = :store AND prodID = :product

• COMMIT

This is one way to write
the application; other algorithms
are also possible
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Example - Restock
• Input validation

– Valid product, store, qty
– Amount of product in warehouse >= qty

• UPDATE Product
SET warehouseQty = warehouseQty - :qty
WHERE prodID = :product

• If no record yet for product in store
INSERT INTO InStore (:product, :store, :qty)

• Else, UPDATE InStore
SET qty = qty + :qty
WHERE prodID = :product and storeID = :store

• COMMIT
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Example - Consistency

• How to write the app to keep integrity holding?
• MakeSale logic:

– Reduce Instore.qty
– Calculate sum over all stores and warehouse
– If sum < 50, then ROLLBACK // Sale fails
– If sum < 70, check for order of this product where date 

is null
• If none found, insert new order for say 25

– COMMIT

This terminates execution 
of the program (like return)
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Example - Consistency

• We don’t need any fancy logic for checking the 
business rules in Restock, ClearOut, Transfer
– Because sum of qty not changed; presence of order not 

changed
• provided integrity holds before txn, it will still hold afterwards

• We don’t need fancy logic to check business rules 
in AcceptReturn
– why?

• Is checking logic needed for RcvOrder?
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Threats to data integrity

• Need for application rollback
• System crash

– Especially due to loss of DBMS buffers
– Data on disk may be stale (and inconsistently so)

• Concurrent activity

• The system has mechanisms to handle these
– Logging deals with rollback and crash recovery

• Remember old value, restore it when needed
– This talk is about concurrency issues
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Concurrency

• When operations of concurrent threads are 
interleaved, the effect on shared state can be 
unexpected

• Well known issue in operating systems, 
thread programming
– see OS textbooks on critical section
– Java use of synchronized keyword
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Famous concurrency anomalies
• Dirty data

– One task T reads data written by T’ while T’ is running, then T’
aborts (so its data was not appropriate)

• Lost update
– Two tasks T and T’ both modify the same data
– T and T’ both commit
– Final state shows effects of only T, but not of T’

• Inconsistent read
– One task T sees some but not all changes made by T’
– The values observed may not satisfy integrity constraints
– This was not considered by the programmer, so code moves into 

absurd path
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Example – Dirty data

• AcceptReturn(p1,s1,50) MakeSale(p1,s2,65)
• Update row 1: 25 -> 75
• update row 2: 70->5
• find sum: 90
• // no need to insert
• // row in Order
• Abort
• // rollback row 1 to 25
• COMMIT

etcetcetc

60s1p2

70s2p1

25s1p1

Initial state of InStore, Product

Final state of InStore, Product
Integrity constraint is false:
Sum for p1 is only 40!

etcetcetc

60s1p2

5s2p1

25s1p1

etcetcetc

44etcp2

10etcp1

etcetcetc

44etcp2

10etcp1
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Example – Lost update

• ClearOut(p1,s1) AcceptReturn(p1,s1,60)
• Query InStore; qty is 25
• Add 25 to warehouseQty: 40->65
• Update row 1: 25->85
• Update row 1, setting it to 0
• COMMIT
• COMMIT

Initial state of InStore, Product

Final state of InStore, Product

60 returned p1’s have vanished 
from system; total is still 115

etcetcetc

45s1p2

50s2p1

25s1p1

etcetcetc

45s1p2

50s2p1

0s1p1

etcetcetc

55etcp2

40etcp1

etcetcetc

55etcp2

65etcp1

IITB Jan 2006 Transaction Lectures by Alan Fekete 24

Example – Inconsistent read

• ClearOut(p1,s1)          MakeSale(p1,s2,60)
• Query InStore: qty is 30
• Add 30 to warehouseQty: 10->40
• update row 2: 65->5
• find sum: 75
• // no need to insert
• // row in Order
• Update row 1, setting it to 0
• COMMIT
• COMMIT

etcetcetc

60s1p2

65s2p1

30s1p1

Initial state of InStore, Product

Final state of 
InStore, Product

Integrity constraint is false:
Sum for p1 is only 45!

etcetcetc

60s1p2

5s2p1

0s1p1

etcetcetc

44etcp2

10etcp1

etcetcetc

44etcp2

40etcp1
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Serializability
• To make isolation precise, we say that an execution is 

serializable when
• There exists some serial (ie batch, no overlap at all) 

execution of the same application programs in which each 
app follows same logic and in which the overall final state 
is the same
– Hopefully, the real execution runs faster than the serial one!

• NB: different serial txn orders may behave differently; we 
ask that some serial order produces the given state
– Other serial orders may  give different final states
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Example – Serializable execution

• ClearOut(p1,s1)          MakeSale(p1,s2,20)
• Query InStore: qty is 30
• update row 2: 45->25
• find sum: 65
• no order for p1 yet
• Add 30 to WarehouseQty: 10->40
• Update row 1, setting it to 0
• COMMIT
• Insert order for p1
• COMMIT

etcetcetc

60s1p2

45s2p1

30s1p1

Initial state of InStore, Product, Order

Final state of InStore, Product, Order

Execution is like serial 
MakeSale; ClearOut

etcetcetc

60s1p2

25s2p1

0s1p1

etcetcetc

44etcp2

10etcp1

etcetcetc

44etcp2

40etcp1

Order: empty

etcNull 25p1
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Serializability Theory
• There is a beautiful mathematical theory, based on formal languages

– Model an execution as a sequence of operations on data items 
• eg r1[x] w1[x] r2[y] r2[x] c1 c2

– Serializability of an execution can be defined by equivalence to a 
rearranged sequence (“view serializability”)

– Treat the set of all serializable executions as an object of interest (called 
SR)

– Thm: SR is in NP-Hard, i.e. the task of testing whether an execution is 
serializable seems unreasonably slow

• Does it matter?
– The goal of practical importance is to design a system that produces some 

subset of the collection of serializable executions
– It’s not clear that we care about testing arbitrary executions that don’t 

arise in our system
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Conflict serializability
• There is a nice sufficient condition (ie a conservative 

approximation) called conflict serializable, which can be 
efficiently tested
– Draw a precedes graph whose nodes are the transactions
– Edge from Ti to Tj when Ti accesses x, then later Tj accesses x, 

and the accesses conflict (not both reads)
– The execution is conflict serializable iff the graph is acyclic

• Thm: if an execution is conflict serializable then it is 
serializable
– Pf: the serial order with same final state is any topological sort of 

the precedes graph
• Most people and books use the approximation, usually 

without mentioning it! 
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Example – Lost update

• ClearOut(p1,s1) 
AcceptReturn(p1,s1,60)

• Query InStore; qty is 25
• Add 25 to warehouseQty: 40->65
• Update row 1: 25->85
• Update row 1, setting it to 0
• COMMIT
• COMMIT

• Items: Product(p1) as 
x, Instore(p1,s1) as y

• Execution is 
– r1[y] r1[x] w1[x] r2[y] 

w2[y] w1[y] c1 c2

• Precedes Graph

T1 T2

r1[y]…w2[y]

w2[y]…w1[y]
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DBMS support for transactions

• DBMS acts whenever application wants to read or 
write data
– Or when explicitly told to act

• System’s actions are to request/release “locks”
• This may cause temporary blocking, if locks are 

not available
– There is also overhead while acting

• Strict two-phase locking ensures serializable
transactions
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Lock manager

• A structure in (volatile memory) in the DBMS 
which remembers which txns have set locks on 
which items, in which modes

• It rejects a request to get a new lock if a 
conflicting lock is already held by a different txn

• NB: a lock does not actually prevent access to the 
data, it only prevents getting a conflicting lock
– So data protection only comes if the right lock is 

requested before every access to the data
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Lock modes

• Locks can be for writing (X), reading (S) or 
other modes

• Standard conflict rules: two X locks on the 
same item conflict, so do one X and one S 
lock on the same data
– However, two S locks do not conflict

• Thus X=exclusive, S=shared
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Automatic lock management

• DBMS requests the appropriate lock 
whenever the app program submits a 
request to read or write a data item

• If lock is available, the access is performed
• If lock is not available, the whole txn is 

blocked until the lock is obtained
– After a conflicting lock has been released by 

the other txn that held it

IITB Jan 2006 Transaction Lectures by Alan Fekete 34

Strict two-phase locking

• Locks that a txn obtains are kept until the 
txn completes
– Once the txn commits or aborts, then all its 

locks are released (as part of the commit or 
rollback processing)

• Two phases:
– Locks are being obtained (while txn runs)
– Locks are released (when txn finished)

NB. This is different from when 
locks are released in O/S or threaded code
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Serializability

• If every transaction does strict two-phase 
locking (requesting all appropriate locks), 
then executions are serializable

• However, performance does suffer, as txns
can be blocked for considerable periods
– Deadlocks can arise, requiring system-initiated 

aborts
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Proof sketch
• Suppose all txns do strict 2PL
• If Ti has an edge to Tj in the precedes graph

– That is, Ti accesses x before Tj has conflicting access to x
– Ti has lock at time of its access, Tj has lock at time of its access
– Since locks conflict, Ti must release its lock before Tj’s access to x
– Ti completes before Tj accesses x
– Ti completes before Tj completes

• So the precedes graph is subset of the (acyclic) total order 
of txn commit

• Conclusion: the execution has same final state as the serial 
execution where txns are arranged in commit order
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Example – No Dirty data
• AcceptReturn(p1,s1,50) MakeSale(p1,s2,65)
• Update row 1: 25 -> 75 
• //t1 X-locks InStore. row 1
• update row 2: 70->5
• //t2 X-locks Instore.row2
• try  find sum:// blocked 
• //  as S-lock on Instore.row1 
• // can’t be obtained
• User-initiated Abort
• // rollback row 1 to 35; release lock 
• // now get locks
• find sum: 40
• ROLLBACK 
• // row 2 restored to 70
•

etcetcetc

60s1p2

70s2p1

25s1p1

Initial state of InStore, Product

Final state of 
InStore, Product

Integrity constraint is valid etcetcetc

60s1p2

70s2p1

25s1p1

etcetcetc

44etcp2

10etcp1

etcetcetc

44etcp2

10etcp1
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Example – No Lost update
• ClearOut(p1,s1)        AcceptReturn(p1,s1,60)
• Query InStore; qty is 25
• //t1 S-lock InStore.row1
• Add 25 to warehouseQty: 40->65
• // t1 X-lock Product.row 1
• try Update row 1
• // blocked 
• // as X-lock on InStore.row1
• // can’t be obtained
• Update row 1, setting it to 0
• //t1 upgrades to X-lock on InStore.row1
• COMMIT // release t1’s locks
• // now get X-lock
• Update row 1: 0->60
• COMMIT

Initial state of InStore, Product

Final state of InStore, Product
Outcome is same as serial
ClearOut; AcceptReturn

etcetcetc

45s1p2

50s2p1

25s1p1

etcetcetc

45s1p2

50s2p1

60s1p1

etcetcetc

55etcp2

40etcp1

etcetcetc

55etcp2

65etcp1
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Example – No Lost update
• ClearOut(p1,s1)        AcceptReturn(p1,s1,60)
• Query InStore; qty is 25
• //t1 S-lock InStore.row1
• Add 25 to warehouseQty: 40->65
• // t1 X-lock Product.row 1
• try Update row 1
• // blocked 
• // as X-lock on InStore.row1
• // can’t be obtained
• Update row 1, setting it to 0
• //t1 upgrades to X-lock on InStore.row1
• COMMIT // release t1’s locks
• // now get X-lock
• Update row 1: 0->60
• COMMIT

• Product(p1) as x, 
Instore(p1,s1) as 
y

• r1[y] r1[x] w1[x] 
w1[y] r2[y] w2[y] 
c1 c2

T1 T2

r1[y]…w2[y]
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Granularity

• What is an item (on which a lock is obtained)?
– Most times, in most modern systems: item is one tuple

in a table
– Sometimes: item is a page (with several tuples)
– Sometimes: item is a whole table

• In order to manage conflicts properly, system gets 
“intention” mode locks on larger granules before 
getting actual X/S locks on smaller granules
– Conflict rules cover intention modes as well as X and S
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Granularity trade-offs

• Larger granularity: fewer locks held, so less 
overhead; but less concurrency possible
– “false conflicts” when txns deal with different parts of 

the same item

• Smaller “fine” granularity: more locks held, so 
more overhead; but more concurrency is possible

• System usually gets tuple grain locks until there 
are too many of them; then it replaces them with 
page or table locks
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Explicit lock management

• With most DBMS, the application program 
can include statements to set or release 
locks on a table
– Details vary

• e.g. LOCK TABLE  InStore IN 
EXCLUSIVE MODE
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Big Picture: ACID

• Atomic
– State shows either all the effects of txn, or none of them

• Consistent
– Txn moves from a state where integrity holds, to 

another where integrity holds
• Isolated (serializable)

– Effect of txns is the same as txns running one after 
another (ie looks like batch mode)

• Durable
– Once a txn has committed, its effects remain in the 

database
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Big Picture: Impact

• If programmer writes applications so each txn is 
consistent

• And DBMS uses logging and strict two-phase 
locking for every transaction
– It provides atomic, isolated, durable execution
– i.e. actual execution has same effect as some serial 

execution of those txns that committed (but not those 
that aborted)

• Then the final state will satisfy all the integrity 
constraints

NB true even though system does not know all integrity constraints!
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Problems with serializability

• The performance reduction from isolation is high
– Transactions are often blocked because they want to 

read data that another txn has changed

• For many applications, the accuracy of the data 
they read is not crucial
– e.g. overbooking a plane is ok in practice
– e.g. your banking decisions would not be very different 

if you saw yesterday’s balance instead of the most up-
to-date
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A and D matter!

• Even when isolation isn’t needed, no one is 
willing to give up atomicity and durability
– These deal with modifications a txn makes
– Writing is less frequent than reading, so log 

entries and write locks are considered worth the 
effort
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Explicit isolation levels

• A transaction can be declared to have 
isolation properties that are less stringent 
than serializability
– However SQL standard says that default should 

be serializable (also called “level 3 isolation”)
– In practice, most systems have weaker default 

level, and most txns run at weaker levels!
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Browse

• SET TRANACTION ISOLATION LEVEL 
READ UNCOMMITTED
– Do not set read locks at all

• Of course, still set write locks before updating data
• If fact, system forces the txn to be read-only unless 

you say otherwise

– Allows txn to read dirty data (from a txn that 
will later abort)
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Cursor stability

• SET TRANACTION ISOLATION LEVEL 
READ COMMMITTED
– Set read locks but release them after the read 

has happened
• e.g. when cursor moves onto another element during 

scan of the results of a multirow query
– i.e. do not hold S-locks till txn commits/aborts

• Of course, still keep commit-duration X-locks

• Also called “level 1 isolation”

Most common in practice!
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Impact of Read Committed

– Data seen by txn is never dirty, but it can be 
inconsistent (between reads of different items, 
or even between one read and a later one of the 
same item)

• Especially, weird things happen between different 
rows returned by a cursor

– But performance is often much better
• Bober and Carey (ICDE’92) simulation study shows 

approx 3 times higher throughput than for 2PL
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Repeatable read

• SET TRANACTION ISOLATION LEVEL 
REPEATABLE READ
– Set share and exclusive locks on data items, and hold 

them till txn finished, but release share locks on indices 
as soon as index has been examined

– Allows “phantoms”, rows that are not seen in a query 
that ought to have been (or vice versa)

– Problems if one txn is changing the set of rows that 
meet a condition, while another txn is retrieving that set
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Snapshot Isolation

• Most DBMS vendors use variants of the standard 
locking algorithms

• However, recently a new “multiversion”
concurrency control approach has become popular
– Based on allowing readers to use old versions kept even 

after writer has changed an item
– Note: this generalizes “MV2PL” described in textbooks 

by allowing reads of old versions in txns which do 
updates
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Snapshot Isolation
• A multiversion concurrency control mechanism which was 

described in SIGMOD ’95 by  H. Berenson, P. Bernstein, 
J. Gray, J. Melton, E. O’Neil, P. O’Neil

• Used in Oracle, PostgreSQL for “Isolation Level 
Serializable”
– But does not guarantee serializable execution as defined in 

standard transaction management theory
• Available in Microsoft SQL Server 2005 as “Isolation 

Level Snapshot”
– Only available to a txn provided the database has had snapshots 

enabled
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Snapshot Isolation (SI)

• Read of an item does not give current value
• Instead, use old versions (kept with timestamps) to 

find value that had been most recently committed 
at the time the txn started
– Exception: if the txn has modified the item, use the 

value it wrote itself
• The transaction sees a “snapshot” of the database, 

at an earlier time
– Intuition: this should be consistent, if the database was 

consistent before
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Checks for ww-conflict
• If a Snapshot transaction T has modified an item, T will 

not be allowed to commit if any other transaction has 
committed and installed a changed value for that item, 
between T’s start (snapshot) and T’s commit
– “First committer wins”
– Similar to optimistic validation-based cc, but only write-sets are 

checked
• T must hold X-lock on modified items at time of commit, 

to install them. In practice, commit-duration X-locks may 
be set when write executes. These help to allow conflicting 
modifications to be detected (and T aborted) when T tries 
to write the item, instead of waiting till T tries to commit.
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Benefits of SI

• Reading is never blocked, and also doesn’t 
block other txns activities
– Performance similar to Read Committed

• Avoids the usual anomalies
– No dirty read
– No lost update
– No inconsistent read
– Set-based selects are repeatable (no phantoms)
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Problems with SI

• SI does not always give serializable executions 
– (despite Oracle etc using it for “ISOLATION LEVEL 

SERIALIZABLE)
– Serializable: among two concurrent txns, one sees the 

effects of the other; versus SI: neither sees the effects of 
the other

• Integrity Constraints can be violated
– Even if every application is written to be consistent!
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Example – Skew Write

• MakeSale(p1,s1,26) MakeSale(p1,s2,25)
• Update row 1: 30->4 
• update row 2: 35->10
• find sum: 72
• // No need to  Insert row in Order
• Find  sum: 71
• // No need to insert row in Order
• COMMIT
• COMMIT

etcetcetc

60s1p2

35s2p1

30s1p1

Initial state of InStore, Product, Order

Final state of InStore, Product, Order

Integrity constraint is false:
Sum is 46

etcetcetc

60s1p2

10s2p1

4s1p1

etcetcetc

44etcp2

32etcp1

etcetcetc

44etcp2

32etcp1

Order: empty

Order: empty

NB: sum uses old value of row1 and Product, 
and self-changed value of row2
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Skew Writes

• SI breaks serializability when txns modify 
different items, each based on a previous state of 
the item the other modified

• This is fairly rare in practice
• Eg the TPC-C benchmark runs correctly under SI

– when txns conflict due to modifying different data, 
there is also a shared item they both modify too (like a 
total quantity) so SI will abort one of them
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Multiversion Serializability Theory

• From Y. Raz in RIDE’93
– Suitable for multiversion histories
– Use subscript on item to indicate writer txn of that version
– Eg r1[x3] means T1 reads version of x produced by T3

• WW-conflict from T1 to T2
– T1 writes a version of x, T2 writes a later version of x

• In our case, succession (version order) defined by commit times of writer txns
• WR-conflict from T1 to T2

– T1 writes a version of x, T2 reads this version of x (or a later version of x)
• RW-conflict from T1 to T2 (Adya et al ICDE’00 called  this 

“antidependency”)
– T1 reads a version of x, T2 writes a later version of x

• Theorem: Serializability of a given execution is proved by acyclic conflict 
graph
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Skew Writes

• Previous example
– Item x: Instore(p1,s1)
– Item y:Instore(p1,s2)
– Item z:Product(p1)

• r1[x0] w1[x1] r2[y0] 
w2[y2] r2[x0] r2[y2] 
r2[z0] r1[x1] r1[y0] 
r1[z0] c1 c2

T1 T2
Antidependency on x
w1[x1] … r2[x0]

Antidependency on y

Conflict graph for this execution
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Further Reading

• Transaction Theory: “Transactional 
Information Systems” by G. Weikum and 
G. Vossen

• Transaction implementation details: 
“Transaction Processing” by J. Gray and A. 
Reuter


