
Transactions Lecture 1 (Fekete)

1

Topics in Database Isolation
IITB, January 2006

Lecture 1: Isolation Levels

Alan Fekete
(University of Sydney)
fekete@it.usyd.edu.au

IITB Jan 2006 Transaction Lectures by Alan Fekete 2

Road Map

• Lecture 1: Isolation levels
– Transaction Concept
– ACID properties
– Examples and counter-examples
– Serializability Theory
– Two phase locking and variants
– Other SQL isolation levels
– Snapshot Isolation

• Lecture 2: Safe Use of Low Isolation
• Lecture 3: Replication Management

IITB Jan 2006 Transaction Lectures by Alan Fekete 3

Definition

• A transaction is a collection of one or more
operations on one or more databases, which
reflects a single real-world transition
– In the real world, this happened (completely) or it

didn’t happen at all (Atomicity)
• Commerce examples

– Transfer money between accounts
– Purchase a group of products

• Student record system
– Register for a class (either waitlist or allocated)

IITB Jan 2006 Transaction Lectures by Alan Fekete 4

Coding a transaction

• Typically a computer-based system doing OLTP
has a collection of application programs

• Each program is written in a high-level language,
which calls DBMS to perform individual SQL
statements
– Either through embedded SQL converted by

preprocessor
– Or through Call Level Interface where application

constructs appropriate string and passes it to DBMS

IITB Jan 2006 Transaction Lectures by Alan Fekete 5

Atomicity

• Two possible outcomes for a transaction
– It commits: all the changes are made
– It aborts: no changes are made

• That is, transaction’s activities are all or
nothing
– Furthermore, once an outcome has been

reached, it doesn’t change

IITB Jan 2006 Transaction Lectures by Alan Fekete 6

Integrity

• A real world state is reflected by collections
of values in the tables of the DBMS

• But not every collection of values in a table
makes sense in the real world

• The state of the tables is restricted by
integrity constraints

• e.g. account number is unique
• e.g. stock amount can’t be negative

Transactions Lecture 1 (Fekete)

2

IITB Jan 2006 Transaction Lectures by Alan Fekete 7

Integrity (ctd)

• Many constraints are explicitly declared in the
schema
– So the DBMS will enforce them
– Especially: primary key (some column’s values are non

null, and different in every row)
– And referential integrity: value of foreign key column

is actually found in another “referenced” table

• Some constraints are not declared
– They are business rules that are supposed to hold

IITB Jan 2006 Transaction Lectures by Alan Fekete 8

Consistency
• Each transaction can be written on the assumption that all

integrity constraints hold in the data, before the transaction
runs

• It must make sure that its changes leave the integrity
constraints still holding
– However, there are allowed to be intermediate states where the

constraints do not hold
• A transaction that does this, is called consistent
• This is an obligation on the programmer

– Usually the organization has a testing/checking and sign-off
mechanism before an application program is allowed to get
installed in the production system

IITB Jan 2006 Transaction Lectures by Alan Fekete 9

System obligations

• Provided the app programs have been
written properly,

• Then the DBMS is supposed to make sure
that the state of the data in the DBMS
reflects the real world accurately, as
affected by all the committed transactions

IITB Jan 2006 Transaction Lectures by Alan Fekete 10

Local to global reasoning

• Organization checks each app program as a
separate task
– Each app program running on its own moves from state

where integrity constraints are valid to another state
where they are valid

• System makes sure there are no nasty interactions
• So the final state of the data will satisfy all the

integrity constraints

IITB Jan 2006 Transaction Lectures by Alan Fekete 11

Example - Tables

• System for managing inventory
• InStore(prodID, storeID, qty)
• Product(prodID, desc, mnfr, …,

warehouseQty)
• Order(orderNo, prodID, qty, rcvd, ….)

– Rows never deleted!
– Until goods received, rcvd is null

• Also Store, Staff, etc etc
IITB Jan 2006 Transaction Lectures by Alan Fekete 12

Example - Constraints

• Primary keys
– InStore: (prodID, storeID)
– Product: prodID
– Order: orderId
– etc

• Foreign keys
– Instore.prodID references Product.prodID
– etc

Transactions Lecture 1 (Fekete)

3

IITB Jan 2006 Transaction Lectures by Alan Fekete 13

Example - Constraints

• Data values
– Instore.qty >= 0
– Order.rcvd <= current_date or Order.rcvd is null

• Business rules
– for each p, (Sum of qty for product p among all stores

and warehouse) >= 50
– for each p, (Sum of qty for product p among all stores

and warehouse) >= 70 or there is an outstanding order
of product p

IITB Jan 2006 Transaction Lectures by Alan Fekete 14

Example - transactions

• MakeSale(store, product, qty)
• AcceptReturn(store, product, qty)
• RcvOrder(order)
• Restock(store, product, qty)

– // move from warehouse to store
• ClearOut(store, product)

– // move all held from store to warehouse
• Transfer(from, to, product, qty)

– // move goods between stores

IITB Jan 2006 Transaction Lectures by Alan Fekete 15

Example - ClearOut
• Validate Input (appropriate product, store)
• SELECT qty INTO :tmp

FROM InStore
WHERE storeID = :store AND prodID = :product

• UPDATE Product
SET warehouseQty = warehouseQty + :tmp
WHERE prodID = :product

• UPDATE InStore
SET qty = 0
WHERE storeID = :store AND prodID = :product

• COMMIT

This is one way to write
the application; other algorithms
are also possible

IITB Jan 2006 Transaction Lectures by Alan Fekete 16

Example - Restock
• Input validation

– Valid product, store, qty
– Amount of product in warehouse >= qty

• UPDATE Product
SET warehouseQty = warehouseQty - :qty
WHERE prodID = :product

• If no record yet for product in store
INSERT INTO InStore (:product, :store, :qty)

• Else, UPDATE InStore
SET qty = qty + :qty
WHERE prodID = :product and storeID = :store

• COMMIT

IITB Jan 2006 Transaction Lectures by Alan Fekete 17

Example - Consistency

• How to write the app to keep integrity holding?
• MakeSale logic:

– Reduce Instore.qty
– Calculate sum over all stores and warehouse
– If sum < 50, then ROLLBACK // Sale fails
– If sum < 70, check for order of this product where date

is null
• If none found, insert new order for say 25

– COMMIT

This terminates execution
of the program (like return)

IITB Jan 2006 Transaction Lectures by Alan Fekete 18

Example - Consistency

• We don’t need any fancy logic for checking the
business rules in Restock, ClearOut, Transfer
– Because sum of qty not changed; presence of order not

changed
• provided integrity holds before txn, it will still hold afterwards

• We don’t need fancy logic to check business rules
in AcceptReturn
– why?

• Is checking logic needed for RcvOrder?

Transactions Lecture 1 (Fekete)

4

IITB Jan 2006 Transaction Lectures by Alan Fekete 19

Threats to data integrity

• Need for application rollback
• System crash

– Especially due to loss of DBMS buffers
– Data on disk may be stale (and inconsistently so)

• Concurrent activity

• The system has mechanisms to handle these
– Logging deals with rollback and crash recovery

• Remember old value, restore it when needed
– This talk is about concurrency issues

IITB Jan 2006 Transaction Lectures by Alan Fekete 20

Concurrency

• When operations of concurrent threads are
interleaved, the effect on shared state can be
unexpected

• Well known issue in operating systems,
thread programming
– see OS textbooks on critical section
– Java use of synchronized keyword

IITB Jan 2006 Transaction Lectures by Alan Fekete 21

Famous concurrency anomalies
• Dirty data

– One task T reads data written by T’ while T’ is running, then T’
aborts (so its data was not appropriate)

• Lost update
– Two tasks T and T’ both modify the same data
– T and T’ both commit
– Final state shows effects of only T, but not of T’

• Inconsistent read
– One task T sees some but not all changes made by T’
– The values observed may not satisfy integrity constraints
– This was not considered by the programmer, so code moves into

absurd path

IITB Jan 2006 Transaction Lectures by Alan Fekete 22

Example – Dirty data

• AcceptReturn(p1,s1,50) MakeSale(p1,s2,65)
• Update row 1: 25 -> 75
• update row 2: 70->5
• find sum: 90
• // no need to insert
• // row in Order
• Abort
• // rollback row 1 to 25
• COMMIT

etcetcetc

60s1p2

70s2p1

25s1p1

Initial state of InStore, Product

Final state of InStore, Product
Integrity constraint is false:
Sum for p1 is only 40!

etcetcetc

60s1p2

5s2p1

25s1p1

etcetcetc

44etcp2

10etcp1

etcetcetc

44etcp2

10etcp1

IITB Jan 2006 Transaction Lectures by Alan Fekete 23

Example – Lost update

• ClearOut(p1,s1) AcceptReturn(p1,s1,60)
• Query InStore; qty is 25
• Add 25 to warehouseQty: 40->65
• Update row 1: 25->85
• Update row 1, setting it to 0
• COMMIT
• COMMIT

Initial state of InStore, Product

Final state of InStore, Product

60 returned p1’s have vanished
from system; total is still 115

etcetcetc

45s1p2

50s2p1

25s1p1

etcetcetc

45s1p2

50s2p1

0s1p1

etcetcetc

55etcp2

40etcp1

etcetcetc

55etcp2

65etcp1

IITB Jan 2006 Transaction Lectures by Alan Fekete 24

Example – Inconsistent read

• ClearOut(p1,s1) MakeSale(p1,s2,60)
• Query InStore: qty is 30
• Add 30 to warehouseQty: 10->40
• update row 2: 65->5
• find sum: 75
• // no need to insert
• // row in Order
• Update row 1, setting it to 0
• COMMIT
• COMMIT

etcetcetc

60s1p2

65s2p1

30s1p1

Initial state of InStore, Product

Final state of
InStore, Product

Integrity constraint is false:
Sum for p1 is only 45!

etcetcetc

60s1p2

5s2p1

0s1p1

etcetcetc

44etcp2

10etcp1

etcetcetc

44etcp2

40etcp1

Transactions Lecture 1 (Fekete)

5

IITB Jan 2006 Transaction Lectures by Alan Fekete 25

Serializability
• To make isolation precise, we say that an execution is

serializable when
• There exists some serial (ie batch, no overlap at all)

execution of the same application programs in which each
app follows same logic and in which the overall final state
is the same
– Hopefully, the real execution runs faster than the serial one!

• NB: different serial txn orders may behave differently; we
ask that some serial order produces the given state
– Other serial orders may give different final states

IITB Jan 2006 Transaction Lectures by Alan Fekete 26

Example – Serializable execution

• ClearOut(p1,s1) MakeSale(p1,s2,20)
• Query InStore: qty is 30
• update row 2: 45->25
• find sum: 65
• no order for p1 yet
• Add 30 to WarehouseQty: 10->40
• Update row 1, setting it to 0
• COMMIT
• Insert order for p1
• COMMIT

etcetcetc

60s1p2

45s2p1

30s1p1

Initial state of InStore, Product, Order

Final state of InStore, Product, Order

Execution is like serial
MakeSale; ClearOut

etcetcetc

60s1p2

25s2p1

0s1p1

etcetcetc

44etcp2

10etcp1

etcetcetc

44etcp2

40etcp1

Order: empty

etcNull 25p1

IITB Jan 2006 Transaction Lectures by Alan Fekete 27

Serializability Theory
• There is a beautiful mathematical theory, based on formal languages

– Model an execution as a sequence of operations on data items
• eg r1[x] w1[x] r2[y] r2[x] c1 c2

– Serializability of an execution can be defined by equivalence to a
rearranged sequence (“view serializability”)

– Treat the set of all serializable executions as an object of interest (called
SR)

– Thm: SR is in NP-Hard, i.e. the task of testing whether an execution is
serializable seems unreasonably slow

• Does it matter?
– The goal of practical importance is to design a system that produces some

subset of the collection of serializable executions
– It’s not clear that we care about testing arbitrary executions that don’t

arise in our system

IITB Jan 2006 Transaction Lectures by Alan Fekete 28

Conflict serializability
• There is a nice sufficient condition (ie a conservative

approximation) called conflict serializable, which can be
efficiently tested
– Draw a precedes graph whose nodes are the transactions
– Edge from Ti to Tj when Ti accesses x, then later Tj accesses x,

and the accesses conflict (not both reads)
– The execution is conflict serializable iff the graph is acyclic

• Thm: if an execution is conflict serializable then it is
serializable
– Pf: the serial order with same final state is any topological sort of

the precedes graph
• Most people and books use the approximation, usually

without mentioning it!

IITB Jan 2006 Transaction Lectures by Alan Fekete 29

Example – Lost update

• ClearOut(p1,s1)
AcceptReturn(p1,s1,60)

• Query InStore; qty is 25
• Add 25 to warehouseQty: 40->65
• Update row 1: 25->85
• Update row 1, setting it to 0
• COMMIT
• COMMIT

• Items: Product(p1) as
x, Instore(p1,s1) as y

• Execution is
– r1[y] r1[x] w1[x] r2[y]

w2[y] w1[y] c1 c2

• Precedes Graph

T1 T2

r1[y]…w2[y]

w2[y]…w1[y]
IITB Jan 2006 Transaction Lectures by Alan Fekete 30

DBMS support for transactions

• DBMS acts whenever application wants to read or
write data
– Or when explicitly told to act

• System’s actions are to request/release “locks”
• This may cause temporary blocking, if locks are

not available
– There is also overhead while acting

• Strict two-phase locking ensures serializable
transactions

Transactions Lecture 1 (Fekete)

6

IITB Jan 2006 Transaction Lectures by Alan Fekete 31

Lock manager

• A structure in (volatile memory) in the DBMS
which remembers which txns have set locks on
which items, in which modes

• It rejects a request to get a new lock if a
conflicting lock is already held by a different txn

• NB: a lock does not actually prevent access to the
data, it only prevents getting a conflicting lock
– So data protection only comes if the right lock is

requested before every access to the data

IITB Jan 2006 Transaction Lectures by Alan Fekete 32

Lock modes

• Locks can be for writing (X), reading (S) or
other modes

• Standard conflict rules: two X locks on the
same item conflict, so do one X and one S
lock on the same data
– However, two S locks do not conflict

• Thus X=exclusive, S=shared

IITB Jan 2006 Transaction Lectures by Alan Fekete 33

Automatic lock management

• DBMS requests the appropriate lock
whenever the app program submits a
request to read or write a data item

• If lock is available, the access is performed
• If lock is not available, the whole txn is

blocked until the lock is obtained
– After a conflicting lock has been released by

the other txn that held it

IITB Jan 2006 Transaction Lectures by Alan Fekete 34

Strict two-phase locking

• Locks that a txn obtains are kept until the
txn completes
– Once the txn commits or aborts, then all its

locks are released (as part of the commit or
rollback processing)

• Two phases:
– Locks are being obtained (while txn runs)
– Locks are released (when txn finished)

NB. This is different from when
locks are released in O/S or threaded code

IITB Jan 2006 Transaction Lectures by Alan Fekete 35

Serializability

• If every transaction does strict two-phase
locking (requesting all appropriate locks),
then executions are serializable

• However, performance does suffer, as txns
can be blocked for considerable periods
– Deadlocks can arise, requiring system-initiated

aborts

IITB Jan 2006 Transaction Lectures by Alan Fekete 36

Proof sketch
• Suppose all txns do strict 2PL
• If Ti has an edge to Tj in the precedes graph

– That is, Ti accesses x before Tj has conflicting access to x
– Ti has lock at time of its access, Tj has lock at time of its access
– Since locks conflict, Ti must release its lock before Tj’s access to x
– Ti completes before Tj accesses x
– Ti completes before Tj completes

• So the precedes graph is subset of the (acyclic) total order
of txn commit

• Conclusion: the execution has same final state as the serial
execution where txns are arranged in commit order

Transactions Lecture 1 (Fekete)

7

IITB Jan 2006 Transaction Lectures by Alan Fekete 37

Example – No Dirty data
• AcceptReturn(p1,s1,50) MakeSale(p1,s2,65)
• Update row 1: 25 -> 75
• //t1 X-locks InStore. row 1
• update row 2: 70->5
• //t2 X-locks Instore.row2
• try find sum:// blocked
• // as S-lock on Instore.row1
• // can’t be obtained
• User-initiated Abort
• // rollback row 1 to 35; release lock
• // now get locks
• find sum: 40
• ROLLBACK
• // row 2 restored to 70
•

etcetcetc

60s1p2

70s2p1

25s1p1

Initial state of InStore, Product

Final state of
InStore, Product

Integrity constraint is valid etcetcetc

60s1p2

70s2p1

25s1p1

etcetcetc

44etcp2

10etcp1

etcetcetc

44etcp2

10etcp1

IITB Jan 2006 Transaction Lectures by Alan Fekete 38

Example – No Lost update
• ClearOut(p1,s1) AcceptReturn(p1,s1,60)
• Query InStore; qty is 25
• //t1 S-lock InStore.row1
• Add 25 to warehouseQty: 40->65
• // t1 X-lock Product.row 1
• try Update row 1
• // blocked
• // as X-lock on InStore.row1
• // can’t be obtained
• Update row 1, setting it to 0
• //t1 upgrades to X-lock on InStore.row1
• COMMIT // release t1’s locks
• // now get X-lock
• Update row 1: 0->60
• COMMIT

Initial state of InStore, Product

Final state of InStore, Product
Outcome is same as serial
ClearOut; AcceptReturn

etcetcetc

45s1p2

50s2p1

25s1p1

etcetcetc

45s1p2

50s2p1

60s1p1

etcetcetc

55etcp2

40etcp1

etcetcetc

55etcp2

65etcp1

IITB Jan 2006 Transaction Lectures by Alan Fekete 39

Example – No Lost update
• ClearOut(p1,s1) AcceptReturn(p1,s1,60)
• Query InStore; qty is 25
• //t1 S-lock InStore.row1
• Add 25 to warehouseQty: 40->65
• // t1 X-lock Product.row 1
• try Update row 1
• // blocked
• // as X-lock on InStore.row1
• // can’t be obtained
• Update row 1, setting it to 0
• //t1 upgrades to X-lock on InStore.row1
• COMMIT // release t1’s locks
• // now get X-lock
• Update row 1: 0->60
• COMMIT

• Product(p1) as x,
Instore(p1,s1) as
y

• r1[y] r1[x] w1[x]
w1[y] r2[y] w2[y]
c1 c2

T1 T2

r1[y]…w2[y]

IITB Jan 2006 Transaction Lectures by Alan Fekete 40

Granularity

• What is an item (on which a lock is obtained)?
– Most times, in most modern systems: item is one tuple

in a table
– Sometimes: item is a page (with several tuples)
– Sometimes: item is a whole table

• In order to manage conflicts properly, system gets
“intention” mode locks on larger granules before
getting actual X/S locks on smaller granules
– Conflict rules cover intention modes as well as X and S

IITB Jan 2006 Transaction Lectures by Alan Fekete 41

Granularity trade-offs

• Larger granularity: fewer locks held, so less
overhead; but less concurrency possible
– “false conflicts” when txns deal with different parts of

the same item

• Smaller “fine” granularity: more locks held, so
more overhead; but more concurrency is possible

• System usually gets tuple grain locks until there
are too many of them; then it replaces them with
page or table locks

IITB Jan 2006 Transaction Lectures by Alan Fekete 42

Explicit lock management

• With most DBMS, the application program
can include statements to set or release
locks on a table
– Details vary

• e.g. LOCK TABLE InStore IN
EXCLUSIVE MODE

Transactions Lecture 1 (Fekete)

8

IITB Jan 2006 Transaction Lectures by Alan Fekete 43

Big Picture: ACID

• Atomic
– State shows either all the effects of txn, or none of them

• Consistent
– Txn moves from a state where integrity holds, to

another where integrity holds
• Isolated (serializable)

– Effect of txns is the same as txns running one after
another (ie looks like batch mode)

• Durable
– Once a txn has committed, its effects remain in the

database

IITB Jan 2006 Transaction Lectures by Alan Fekete 44

Big Picture: Impact

• If programmer writes applications so each txn is
consistent

• And DBMS uses logging and strict two-phase
locking for every transaction
– It provides atomic, isolated, durable execution
– i.e. actual execution has same effect as some serial

execution of those txns that committed (but not those
that aborted)

• Then the final state will satisfy all the integrity
constraints

NB true even though system does not know all integrity constraints!

IITB Jan 2006 Transaction Lectures by Alan Fekete 45

Problems with serializability

• The performance reduction from isolation is high
– Transactions are often blocked because they want to

read data that another txn has changed

• For many applications, the accuracy of the data
they read is not crucial
– e.g. overbooking a plane is ok in practice
– e.g. your banking decisions would not be very different

if you saw yesterday’s balance instead of the most up-
to-date

IITB Jan 2006 Transaction Lectures by Alan Fekete 46

A and D matter!

• Even when isolation isn’t needed, no one is
willing to give up atomicity and durability
– These deal with modifications a txn makes
– Writing is less frequent than reading, so log

entries and write locks are considered worth the
effort

IITB Jan 2006 Transaction Lectures by Alan Fekete 47

Explicit isolation levels

• A transaction can be declared to have
isolation properties that are less stringent
than serializability
– However SQL standard says that default should

be serializable (also called “level 3 isolation”)
– In practice, most systems have weaker default

level, and most txns run at weaker levels!

IITB Jan 2006 Transaction Lectures by Alan Fekete 48

Browse

• SET TRANACTION ISOLATION LEVEL
READ UNCOMMITTED
– Do not set read locks at all

• Of course, still set write locks before updating data
• If fact, system forces the txn to be read-only unless

you say otherwise

– Allows txn to read dirty data (from a txn that
will later abort)

Transactions Lecture 1 (Fekete)

9

IITB Jan 2006 Transaction Lectures by Alan Fekete 49

Cursor stability

• SET TRANACTION ISOLATION LEVEL
READ COMMMITTED
– Set read locks but release them after the read

has happened
• e.g. when cursor moves onto another element during

scan of the results of a multirow query
– i.e. do not hold S-locks till txn commits/aborts

• Of course, still keep commit-duration X-locks

• Also called “level 1 isolation”

Most common in practice!

IITB Jan 2006 Transaction Lectures by Alan Fekete 50

Impact of Read Committed

– Data seen by txn is never dirty, but it can be
inconsistent (between reads of different items,
or even between one read and a later one of the
same item)

• Especially, weird things happen between different
rows returned by a cursor

– But performance is often much better
• Bober and Carey (ICDE’92) simulation study shows

approx 3 times higher throughput than for 2PL

IITB Jan 2006 Transaction Lectures by Alan Fekete 51

Repeatable read

• SET TRANACTION ISOLATION LEVEL
REPEATABLE READ
– Set share and exclusive locks on data items, and hold

them till txn finished, but release share locks on indices
as soon as index has been examined

– Allows “phantoms”, rows that are not seen in a query
that ought to have been (or vice versa)

– Problems if one txn is changing the set of rows that
meet a condition, while another txn is retrieving that set

IITB Jan 2006 Transaction Lectures by Alan Fekete 52

Snapshot Isolation

• Most DBMS vendors use variants of the standard
locking algorithms

• However, recently a new “multiversion”
concurrency control approach has become popular
– Based on allowing readers to use old versions kept even

after writer has changed an item
– Note: this generalizes “MV2PL” described in textbooks

by allowing reads of old versions in txns which do
updates

IITB Jan 2006 Transaction Lectures by Alan Fekete 53

Snapshot Isolation
• A multiversion concurrency control mechanism which was

described in SIGMOD ’95 by H. Berenson, P. Bernstein,
J. Gray, J. Melton, E. O’Neil, P. O’Neil

• Used in Oracle, PostgreSQL for “Isolation Level
Serializable”
– But does not guarantee serializable execution as defined in

standard transaction management theory
• Available in Microsoft SQL Server 2005 as “Isolation

Level Snapshot”
– Only available to a txn provided the database has had snapshots

enabled

IITB Jan 2006 Transaction Lectures by Alan Fekete 54

Snapshot Isolation (SI)

• Read of an item does not give current value
• Instead, use old versions (kept with timestamps) to

find value that had been most recently committed
at the time the txn started
– Exception: if the txn has modified the item, use the

value it wrote itself
• The transaction sees a “snapshot” of the database,

at an earlier time
– Intuition: this should be consistent, if the database was

consistent before

Transactions Lecture 1 (Fekete)

10

IITB Jan 2006 Transaction Lectures by Alan Fekete 55

Checks for ww-conflict
• If a Snapshot transaction T has modified an item, T will

not be allowed to commit if any other transaction has
committed and installed a changed value for that item,
between T’s start (snapshot) and T’s commit
– “First committer wins”
– Similar to optimistic validation-based cc, but only write-sets are

checked
• T must hold X-lock on modified items at time of commit,

to install them. In practice, commit-duration X-locks may
be set when write executes. These help to allow conflicting
modifications to be detected (and T aborted) when T tries
to write the item, instead of waiting till T tries to commit.

IITB Jan 2006 Transaction Lectures by Alan Fekete 56

Benefits of SI

• Reading is never blocked, and also doesn’t
block other txns activities
– Performance similar to Read Committed

• Avoids the usual anomalies
– No dirty read
– No lost update
– No inconsistent read
– Set-based selects are repeatable (no phantoms)

IITB Jan 2006 Transaction Lectures by Alan Fekete 57

Problems with SI

• SI does not always give serializable executions
– (despite Oracle etc using it for “ISOLATION LEVEL

SERIALIZABLE)
– Serializable: among two concurrent txns, one sees the

effects of the other; versus SI: neither sees the effects of
the other

• Integrity Constraints can be violated
– Even if every application is written to be consistent!

IITB Jan 2006 Transaction Lectures by Alan Fekete 58

Example – Skew Write

• MakeSale(p1,s1,26) MakeSale(p1,s2,25)
• Update row 1: 30->4
• update row 2: 35->10
• find sum: 72
• // No need to Insert row in Order
• Find sum: 71
• // No need to insert row in Order
• COMMIT
• COMMIT

etcetcetc

60s1p2

35s2p1

30s1p1

Initial state of InStore, Product, Order

Final state of InStore, Product, Order

Integrity constraint is false:
Sum is 46

etcetcetc

60s1p2

10s2p1

4s1p1

etcetcetc

44etcp2

32etcp1

etcetcetc

44etcp2

32etcp1

Order: empty

Order: empty

NB: sum uses old value of row1 and Product,
and self-changed value of row2

IITB Jan 2006 Transaction Lectures by Alan Fekete 59

Skew Writes

• SI breaks serializability when txns modify
different items, each based on a previous state of
the item the other modified

• This is fairly rare in practice
• Eg the TPC-C benchmark runs correctly under SI

– when txns conflict due to modifying different data,
there is also a shared item they both modify too (like a
total quantity) so SI will abort one of them

IITB Jan 2006 Transaction Lectures by Alan Fekete 60

Multiversion Serializability Theory

• From Y. Raz in RIDE’93
– Suitable for multiversion histories
– Use subscript on item to indicate writer txn of that version
– Eg r1[x3] means T1 reads version of x produced by T3

• WW-conflict from T1 to T2
– T1 writes a version of x, T2 writes a later version of x

• In our case, succession (version order) defined by commit times of writer txns
• WR-conflict from T1 to T2

– T1 writes a version of x, T2 reads this version of x (or a later version of x)
• RW-conflict from T1 to T2 (Adya et al ICDE’00 called this

“antidependency”)
– T1 reads a version of x, T2 writes a later version of x

• Theorem: Serializability of a given execution is proved by acyclic conflict
graph

Transactions Lecture 1 (Fekete)

11

IITB Jan 2006 Transaction Lectures by Alan Fekete 61

Skew Writes

• Previous example
– Item x: Instore(p1,s1)
– Item y:Instore(p1,s2)
– Item z:Product(p1)

• r1[x0] w1[x1] r2[y0]
w2[y2] r2[x0] r2[y2]
r2[z0] r1[x1] r1[y0]
r1[z0] c1 c2

T1 T2
Antidependency on x
w1[x1] … r2[x0]

Antidependency on y

Conflict graph for this execution

IITB Jan 2006 Transaction Lectures by Alan Fekete 62

Further Reading

• Transaction Theory: “Transactional
Information Systems” by G. Weikum and
G. Vossen

• Transaction implementation details:
“Transaction Processing” by J. Gray and A.
Reuter

