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Abstract

K-Anonymity has been proposed as a mechanism for pro-
tecting privacy in microdata publishing, and numerous re-
coding “models” have been considered for achieving k-
anonymity. This paper proposes a new multidimensional
model, which provides an additional degree of flexibility not
seen in previous (single-dimensional) approaches. Often
this flexibility leads to higher-quality anonymizations, as
measured both by general-purpose metrics and more spe-
cific notions of query answerability.

Optimal multidimensional anonymization is NP-hard
(like previous optimal k-anonymity problems). However,
we introduce a simple greedy approximation algorithm,
and experimental results show that this greedy algorithm
frequently leads to more desirable anonymizations than
exhaustive optimal algorithms for two single-dimensional
models.

1. Introduction
A number of organizations publish microdata for purposes
such as demographic and public health research. In order
to protect individual privacy, known identifiers (e.g., Name
and Social Security Number) must be removed. In addi-
tion, this process must account for the possibility of com-
bining certain other attributes with external data to uniquely
identify individuals [15]. For example, an individual might
be “re-identified” by joining the released data with another
(public) database on Age, Sex, and Zipcode. Figure 1 shows
such an attack, where Ahmed’s medical information is de-
termined by joining the released patient data with a public
voter registration list.

K-anonymity has been proposed to reduce the risk of
this type of attack [12, 13, 15]. The primary goal of k-
anonymization is to protect the privacy of the individuals to
whom the data pertains. However, subject to this constraint,
it is important that the released data remain as “useful” as
possible. Numerous recoding models have been proposed
in the literature for k-anonymization [8, 9, 13, 17, 10], and
often the “quality” of the published data is dictated by the
model that is used. The main contributions of this paper are
a new multidimensional recoding model and a greedy algo-

Voter Registration Data
Name Age Sex Zipcode
Ahmed 25 Male 53711
Brooke 28 Female 55410
Claire 31 Female 90210
Dave 19 Male 02174
Evelyn 40 Female 02237

Patient Data
Age Sex Zipcode Disease
25 Male 53711 Flu
25 Female 53712 Hepatitis
26 Male 53711 Brochitis
27 Male 53710 Broken Arm
27 Female 53712 AIDS
28 Male 53711 Hang Nail

Figure 1. Tables vulnerable to a joining attack

rithm for k-anonymization, an approach with several impor-
tant advantages:1

• The greedy algorithm is substantially more efficient
than proposed optimal k-anonymization algorithms for
single-dimensional models [2, 9, 12]. The time com-
plexity of the greedy algorithm is O(nlogn), while the
optimal algorithms are exponential in the worst case.

• The greedy multidimensional algorithm often pro-
duces higher-quality results than optimal single-
dimensional algorithms (as well as the many existing
single-dimensional heuristic [6, 14, 16] and stochastic
search [8, 18] algorithms).

1.1. Basic Definitions

Quasi-Identifier Attribute Set A quasi-identifer is a min-
imal set of attributes X1, ..., Xd in table T that can be joined
with external information to re-identify individual records.
We assume that the quasi-identifier is understood based on
specific knowledge of the domain.
Equivalence Class A table T consists of a multiset of tu-
ples. An equivalence class for T with respect to attributes
X1, ..., Xd is the set of all tuples in T containing identi-
cal values (x1, ..., xd) for X1, ..., Xd. In SQL, this is like a
GROUP BY query on X1, ..., Xd.

1The visual representation of such recodings reminded us of the work
of artist Piet Mondrian (1872-1944).
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K-Anonymity Property Table T is k-anonymous with
respect to attributes X1, ..., Xd if every unique tuple
(x1, ..., xd) in the (multiset) projection of T on X1, ..., Xd

occurs at least k times. That is, the size of each equivalence
class in T with respect to X1, ..., Xd is at least k.

K-Anonymization A view V of relation T is said to be a
k-anonymization if the view modifies or generalizes the data
of T according to some model such that V is k-anonymous
with respect to the quasi-identifier.

1.2. General-Purpose Quality Metrics

There are a number of notions of microdata quality [2, 6,
8, 10, 12, 13, 14, 15, 16], but intuitively, the anonymiza-
tion process should generalize or perturb the original data as
little as is necessary to satisfy the k-anonymity constraint.
Here we consider some simple general-purpose quality met-
rics, but a more targeted approach to quality measurement
based on query answerability is described in Section 5.

The simplest kind of quality measure is based on the size
of the equivalence classes E in V . Intuitively, the discern-
ability metric (CDM ), described in [2], assigns to each tu-
ple t in V a penalty, which is determined by the size of the
equivalence class containing t.

CDM =
∑

EquivClasses E |E|2

As an alternative, we also propose the normalized aver-
age equivalence class size metric (CAV G).

CAV G = ( total records
total equiv classes )/(k)

1.3. Paper Overview

The first contribution of this paper is a new multidimen-
sional model for k-anonymization (Section 2). Like previ-
ous optimal k-anonymity problems [1, 10], optimal multi-
dimensional k-anonymization is NP-hard. However, for nu-
meric data, we find that under reasonable assumptions the
worst-case maximum size of equivalence classes is O(k) in
the multidimensional case, while in the single-dimensional
model, this bound can grow linearly with the total number
of records. For a simple variation of the multidimensional
model, this bound is 2k (Section 3).

Using the multidimensional recoding model, we intro-
duce a simple and efficient greedy algorithm that can be ap-
plied to both categorical and numeric data (Section 4). For
numeric data, the results are a constant-factor approxima-
tion of optimal, as measured by the general-purpose quality
metrics described in the previous section.

General-purpose quality metrics are a good starting point
when the ultimate use of the published data is unknown.
However, in some cases, quality might be more appropri-
ately measured by the application consuming the published
data. The second main contribution of this paper is a more

sophisticated notion of quality measurement, based on a
workload of aggregate queries (Section 5).

Using general-purpose metrics and a simple query work-
load, our experimental evaluation (Section 6) indicates that
the quality of the anonymizations obtained by our greedy al-
gorithm are often superior to those obtained by exhaustive
optimal algorithms for two single-dimensional models.

The paper concludes with discussions of related and fu-
ture work (Sections 7 and 8).

2. Multidimensional Global Recoding
In a relational database, each attribute has some domain of
values. We use the notation DX to denote the domain of at-
tribute X . A global recoding achieves anonymity by map-
ping the domains of the quasi-identifier attributes to gener-
alized or altered values [17].

Global recoding can be further broken down into two
sub-classes [9]. A single-dimensional global recoding is
defined by a function φi : DXi → D′ for each attribute Xi

of the quasi-identifier. An anonymization V is obtained by
applying each φi to the values of Xi in each tuple of T .

Alternatively, a multidimensional global recoding is de-
fined by a single function φ : DX1 × ... × DXn → D′,
which is used to recode the domain of value vectors asso-
ciated with the set of quasi-identifier attributes. Under this
model, V is obtained by applying φ to the vector of quasi-
identifier values in each tuple of T .

Multidimensional recoding can be applied to categor-
ical data (in the presence of user-defined generalization
hierarchies) or to numeric data. For numeric data, and
other totally-ordered domains, (single-dimensional) “par-
titioning” models have been proposed [2, 8]. A single-
dimensional interval is defined by a pair of endpoints p, v ∈
DXi such that p ≤ v. (The endpoints of such an interval
may be open or closed to handle continuous domains.)

Single-dimensional Partitioning Assume there is a total
order associated with the domain of each quasi-identifier
attribute Xi. A single-dimensional partitioning defines, for
each Xi, a set of non-overlapping single-dimensional in-
tervals that cover DXi . φi maps each x ∈ DXi to some
summary statistic for the interval in which it is contained.

The released data will include simple statistics that sum-
marize the intervals they replace. For now, we assume that
these summary statistics are min-max ranges, but we dis-
cuss some other possibilities in Section 5.

This partitioning model is easily extended to multidi-
mensional recoding. Again, assume a total order for each
DXi . A multidimensional region is defined by a pair of d-
tuples (p1, ..., pd), (v1, ..., vd) ∈ DX1 × ...×DXd

such that
∀i, pi ≤ vi. Conceptually, each region is bounded by a d-
dimensional rectangular box, and each edge and vertex of
this box may be either open or closed.
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Age Sex Zipcode Disease
[25-28] Male [53710-53711] Flu
[25-28] Female 53712 Hepatitis
[25-28] Male [53710-53711] Brochitis
[25-28] Male [53710-53711] Broken Arm
[25-28] Female 53712 AIDS
[25-28] Male [53710-53711] Hang Nail

Figure 2. Single-dimensional anonymization

Age Sex Zipcode Disease
[25-26] Male 53711 Flu
[25-27] Female 53712 Hepatitis
[25-26] Male 53711 Brochitis
[27-28] Male [53710-53711] Broken Arm
[25-27] Female 53712 AIDS
[27-28] Male [53710-53711] Hang Nail

Figure 3. Multidimensional anonymization

Strict Multidimensional Partitioning A strict multidi-
mensional partitioning defines a set of non-overlapping
multidimensional regions that cover DX1 × ... × DXd

. φ
maps each tuple (x1, ..., xd) ∈ DX1 × ...×DXd

to a sum-
mary statistic for the region in which it is contained.

When φ is applied to table T (assuming each region is
mapped to a unique vector of summary statistics), the tuple
set in each non-empty region forms an equivalence class in
V . For simplicity, we again assume that these summary
statistics are ranges, and further discussion is provided in
Section 5.

Sample 2-anonymizations of Patients, using single-
dimensional and strict multidimensional partitioning, are
shown in Figures 2 and 3. Notice that the anonymization ob-
tained using the multidimensional model is not permissible
under the single-dimensional model because the domains of
Age and Zipcode are not recoded to a single set of intervals
(e.g., Age 25 is mapped to either [25-26] or [25-27], de-
pending on the values of Zipcode and Sex). However, the
single-dimensional recoding is also valid under the multidi-
mensional model.

Proposition 1 Every single-dimensional partitioning for
quasi-identifier attributes X1, ..., Xd can be expressed as a
strict multidimensional partitioning. However, when d ≥
2 and ∀i, |DXi | ≥ 2, there exists a strict multidimen-
sional partitioning that cannot be expressed as a single-
dimensional partitioning.

It is intuitive that the optimal strict multidimensional
partitioning must be at least as good as the optimal
single-dimensional partitioning. However, the optimal k-
anonymous multidimensional partitioning problem is NP-
hard (Section 2.2). For this reason, we consider the
worst-case upper bounds on equivalence class size for
single-dimensional and multidimensional partitioning (Sec-
tion 2.3).

2.1. Spatial Representation

Throughout the paper, we use a convenient spatial repre-
sentation for quasi-identifiers. Consider table T with quasi-
identifier attributes X1, ..., Xd, and assume that there is a
total ordering for each domain. The (multiset) projections
of T on X1, ..., Xd can then be represented as a multiset
of points in d-dimensional space. For example, Figure 4(a)
shows the two-dimensional representation of Patients from
Figure 1, for quasi-identifier attributes Age and Zipcode.

Similar models have been considered for rectangular par-
titioning in 2 dimensions [11]. In this context, the single-
dimensional and multidimensional partitioning models are
analogous to the “p × p” and “arbitrary” classes of tilings,
respectively. However, to the best of our knowledge, none
of the previous optimal tiling problems have included con-
straints requiring minimum occupancy.

2.2. Hardness Result

There have been previous hardness results for optimal k-
anonymization under the attribute- and cell-suppression
models [1, 10]. The problem of optimal strict k-anonymous
multidimensional partitioning (finding the k-anonymous
strict multidimensional partitioning with the smallest CDM

or CAV G) is also NP-hard, but this result does not follow
directly from the previous results.

We formulate the following decision problem using
CAV G.2 Here, a multiset of points P is equivalently rep-
resented as a set of distinct (point, count) pairs.

Decisional K-Anonymous Multidimensional Partitioning
Given a set P of unique (point, count) pairs, with points
in d-dimensional space, is there a strict multidimen-
sional partitioning for P such that for every resulting
multidimensional region Ri,

∑
p∈Ri

count(p) ≥ k or∑
p∈Ri

count(p) = 0, and CAV G ≤ positive constant c?

Theorem 1 Decisional k-anonymous multidimensional
partitioning is NP-complete.

Proof The proof is by reduction from Partition:

Partition Consider a set A of n positive integers
{a1, ..., an}. Is there some A′ ⊆ A, such that

∑
ai∈A′ ai =

∑
aj∈A−A′ aj ?

For each ai ∈ A, construct a (point, count) pair. Let the
point be defined by (01, ..., 0, 1i, 0, ..., 0d) (the ith coordi-
nate is 1, and all other coordinates are 0), which resides in
a d-dimensional unit-hypercube, and let the count equal ai.
Let P be the union of all such pairs.

We claim that the partition problem for A can be re-
duced to the following: Let k =

P
ai

2 . Is there a k-
anonymous strict multidimensional partitioning for P such

2Though stated for CAV G, the result is similar for CDM .
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Figure 4. Spatial representation of Patients and partitionings (quasi-identifiers Zipcode and Age)

that CAV G ≤ 1? To prove this claim, we show that there is
a solution to the k-anonymous multidimensional partition-
ing problem for P if and only if there is a solution to the
partition problem for A.

Suppose there exists a k-anonymous multidimen-
sional partitioning for P . This partitioning must de-
fine two multidimensional regions, R1 and R2, such that∑

p∈R1
count(p) =

∑
p∈R2

count(p) = k =
P

ai

2 , and
possibly some number of empty regions. By the strictness
property, these regions must not overlap. Thus, the sum of
counts for the two non-empty regions constitute the sum of
integers in two disjoint complementary subsets of A, and
we have an equal partitioning of A.

In the other direction, suppose there is a solution to
the partition problem for A. For each binary partition-
ing of A into disjoint complementary subsets A1 and
A2, there is a multidimensional partitioning of P into re-
gions R1, ..., Rn such that

∑
p∈R1

count(p) =
∑

ai∈A1
ai,∑

p∈R2
count(p) =

∑
ai∈A2

ai, and all other Ri are empty:
R1 is defined by two points, the origin and the point p hav-
ing ith coordinate 1 when ai ∈ A1 and 0 otherwise. The
bounding box for R1 is closed at all edges and vertices. R2

is defined by the origin and the point p having ith coordi-
nate = 1 when ai ∈ A2, and 0 otherwise. The bounding
box for R2 is open at the origin, but closed on all other
edges and vertices. CAV G is the average sum of counts for
the non-empty regions, divided by k. In this construction,
CAV G = 1, and R1, ..., Rn is a k-anonymous multidimen-
sional partitioning of P .

Finally, a given solution to the decisional k-anonymous
multidimensional partitioning problem can be verified in
polynomial time by scanning the input set of (point, count)
pairs, and maintaining a sum for each region.¤

2.3. Bounds on Partition Size

It is also interesting to consider worst-case upper bounds on
the size of partitions resulting from single-dimensional and
multidimensional partitioning. This section presents two re-
sults, the first of which indicates that for a constant-sized
quasi-identifier, this upper bound depends only on k and

the maximum number of duplicate copies of a single point
(Theorem 2). This is in contrast to the second result (The-
orem 3), which indicates that for single-dimensional parti-
tioning, this bound may grow linearly with the total number
of points.

In order to state these results, we first define some termi-
nology. A multidimensional cut for a multiset of points is
an axis-parallel binary cut producing two disjoint multisets
of points. Intuitively, such a cut is allowable if it does not
cause a violation of k-anonymity.

Allowable Multidimensional Cut Consider multiset P of
points in d-dimensional space. A cut perpendicular to axis
Xi at xi is allowable if and only if Count(P.Xi > xi) ≥ k
and Count(P.Xi ≤ xi) ≥ k.

A single-dimensional cut is also axis-parallel, but con-
siders all regions in the space to determine allowability.

Allowable Single-Dimensional Cut Consider a multiset
P of points in d-dimensional space, and suppose we have
already made S single-dimensional cuts, thereby separat-
ing the space into disjoint regions R1, ..., Rm. A single-
dimensional cut perpendicular to Xi at xi is allowable,
given S, if ∀Rj overlapping line Xi = xi, Count(Rj .Xi >
xi) ≥ k and Count(Rj .Xi ≤ xi) ≥ k.

Notice that recursive allowable multidimensional cuts
will result in a k-anonymous strict multidimensional parti-
tioning for P (although not all strict multidimensional par-
titionings can be obtained in this way), and a k-anonymous
single-dimensional partitioning for P is obtained through
successive allowable single-dimensional cuts.

For example, in Figures 4(b) and (c), the first cut oc-
curs on the Zipcode dimension at 53711. In the multidi-
mensional case, the left-hand side is cut again on the Age
dimension, which is allowable because it does not produce
a region containing fewer than k points. In the single-
dimensional case, however, once the first cut is made, there
are no remaining allowable single-dimensional cuts. (Any
cut perpendicular to the Age axis would result in a region
on the right containing fewer than k points.)

Intuitively, a partitioning is considered minimal when
there are no remaining allowable cuts.
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(a) A set of points for which there is no allowable cut

1k-1b3

k-1mk-1b2

k-1b1

a3a2a1

(b) Adding a single point produces an allowable cut

Figure 5. 2-Dimensional example of equiva-
lence class size bound

Minimal Strict Multidimensional Partitioning Let
R1, ..., Rn denote a set of regions induced by a strict mul-
tidimensional partitioning, and let each region Ri contain
multiset Pi of points. This multidimensional partitioning
is minimal if ∀i, |Pi| ≥ k and there exists no allowable
multidimensional cut for Pi.

Minimal Single-Dimensional Partitioning A set S of al-
lowable single-dimensional cuts is a minimal single-
dimensional partitioning for multiset P of points if there
does not exist an allowable single-dimensional cut for P
given S.

The following two theorems give upper-bounds on
partition size for minimal multidimensional and single-
dimensional partitioning, respectively.

Theorem 2 If R1, ..., Rn denote the set of regions induced
by a minimal strict multidimensional partitioning for multi-
set of points P , the maximum number of points contained in
any Ri is 2d(k− 1) + m, where m is the maximum number
of copies of any distinct point in P .

Proof The proof has two parts. First, we show that there
exists a multiset P of points in d-dimensional space such
that |P | = 2d(k−1)+m and that there is no allowable mul-
tidimensional cut for P . Let x̂i denote some value on axis
Xi such that x̂i−1 and x̂i+1 are also values on axis Xi, and
let P initially contain m copies of the point (x̂1, x̂2, ..., x̂d).
Add to P k − 1 copies of each of the following points:

(x̂1 − 1, x̂2, ..., x̂d), (x̂1 + 1, x̂2, ..., x̂d),
(x̂1, x̂2 − 1, ..., x̂d), (x̂1, x̂2 + 1, ..., x̂d),
...
(x̂1, x̂2, ..., x̂d − 1), (x̂1, x̂2, ..., x̂d + 1)

For example, Figure 5 shows P in 2 dimensions. By
addition, |P | = 2d(k − 1) + m, and by projecting P onto
any Xi we obtain the following point counts:

Count(Xi) =





k − 1, Xi = x̂i − 1
m + 2(d− 1)(k − 1), Xi = x̂i

k − 1, Xi = x̂i + 1
0, otherwise

Based on these counts, it is clear that any binary cut per-
pendicular to axis Xi would result in some partition con-
taining fewer than k points.

Second, we show that for any multiset of points P in d-
dimensional space such that |P | > 2d(k − 1) + m, there
exists an allowable multidimensional cut for P .

Consider some P in d-dimensional space, such that
|P | = 2d(k − 1) + m + 1, and let x̂i denote the median
value of P projected on axis Xi. If there is no allowable cut
for P , we claim that there are at least m + 1 copies of point
(x̂1, ..., x̂d) in P , contradicting the definition of m.

For every dimension i = 1, ..., d, if there is no allow-
able cut perpendicular to axis Xi, then (because x̂i is the
median) Count(Xi < x̂i) ≤ k − 1 and Count(Xi >
x̂i) ≤ k − 1. This means that Count(Xi = x̂i) ≥
2(d − 1)(k − 1) + m + 1. Thus, over d dimensions, we
find Count(X1 = x̂1 ∧ ... ∧Xd = x̂d) ≥ m + 1. ¤

Theorem 3 The maximum number of points contained in
any region R resulting from a minimal single-dimensional
partitioning of a multiset of points P in d-dimensional
space (d ≥ 2) is O(|P |).

Proof We construct a multiset of points P , and a minimal
single-dimensional partitioning for P , such that the greatest
number of points in a resulting region is O(|P |).

Consider a quasi-identifier attribute X with domain DX ,
and a finite set VX ⊆ DX with a point x̂ ∈ VX .

Initially, let P contain precisely 2k − 1 points p having
p.X = x̂. Then add to P an arbitrarily large number of
points q, each with q.X ∈ VX , but q.X 6= x̂, and such that
for each v ∈ VX there are at least k points in the resulting
set P having X = v.

By construction, if |Vx| = r, there are r − 1 allowable
single-dimensional cuts for P perpendicular to X (at each
point in VX ), and we denote this set of cuts S. However,
there are no allowable single-dimensional cuts for P given
S (perpendicular to any other axis). Thus, S is a minimal
single-dimensional partitioning, and the size of the largest
resulting region is O(|P |). ¤

3. Multidimensional Local Recoding
In contrast to global recoding, local recoding models map
(non-distinct) individual data items to generalized values
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[17]. Formally, a local recoding function, which we will
denote φ∗ to distinguish it from global recoding functions,
maps each (non-distinct) tuple t ∈ T to some recoded tuple
t′. V is obtained by replacing each tuple t ∈ T with φ∗(t).
Several local recoding models have been considered in the
literature, some of which are outlined in [9]. In this section,
we describe one such model that relaxes the requirements
of strict multidimensional partitioning.

Relaxed Multidimensional Partitioning A relaxed multi-
dimensional partitioning for relation T defines a set of
(potentially overlapping) distinct multidimensional regions
that cover DX1 × ... × DXd

. Local recoding function φ∗

maps each tuple (x1, ..., xd) ∈ T to a summary statistic for
one of the regions in which it is contained.

This relaxation offers an extra degree of flexibility. For
example, consider generating a 3-anonymization of Pa-
tients, and suppose Zipcode is the single quasi-identifier at-
tribute. Using the strict model, we would need to recode
the Zipcode value in each tuple to [53710-53712]. Un-
der the relaxed model, this recoding can be performed on
a tuple-by-tuple basis, mapping two occurrences of 53711
to [53710−53711] and one occurrence to [53711−53712].

Proposition 2 Every strict multidimensional partitioning
can be expressed as a relaxed multidimensional partition-
ing. However, if there are at least two tuples in table T
having the same vector of quasi-identifier values, there ex-
ists a relaxed multidimensional partitioning that cannot be
expressed as a strict multidimensional partitioning.

Under the relaxed model, a partitioning is not necessar-
ily defined by binary cuts. Instead, a set of points is parti-
tioned by defining two (possibly overlapping) multidimen-
sional regions P1 and P2, and then mapping each point to
either P1 or P2 (but not both). In this case, the upper-bound
on the size of a minimal partition (one that cannot be di-
vided without violating k-anonymity) is 2k − 1.

4. A Greedy Partitioning Algorithm
Using multidimensional partitioning, a k-anonymization is
generated in two steps. In the first step, multidimensional
regions are defined that cover the domain space, and in the
second step, recoding functions are constructed using sum-
mary statistics from each region. In the previous sections,
we alluded to a recursive algorithm for the first step. In this
section we outline a simple scalable algorithm, reminiscent
of those used to construct kd-trees [5], that can be adapted
to either strict or relaxed partitioning. The second step is
described in more detail in Section 5

The strict partitioning algorithm is shown in Figure 6.
Each iteration must choose the dimension and value about
which to partition. In the literature about kd-trees, one

Anonymize(partition)
if (no allowable multidimensional cut for partition)

return φ : partition → summary
else
dim ← choose dimension()
fs ← frequency set(partition, dim)
splitV al ← find median(fs)
lhs ← {t ∈ partition : t.dim ≤ splitV al}
rhs ← {t ∈ partition : t.dim > splitV al}
return Anonymize(rhs) ∪ Anonymize(lhs)

Figure 6. Top-down greedy algorithm for
strict multidimensional partitioning

strategy used for obtaining uniform occupancy was median-
partitioning [5]. In Figure 6, the split value is the median of
partition projected on dim. Like kd-tree construction, the
time complexity is O(nlogn), where n = |T |.

If there exists an allowable multidimensional cut for par-
tition P perpendicular to some axis Xi, then the cut per-
pendicular to Xi at the median is allowable. By Theorem 2,
the greedy (strict) median-partitioning algorithm results in a
set of multidimensional regions, each containing between k
and 2d(k−1)+m points, where m is the maximum number
of copies of any distinct point.

We have some flexibility in choosing the dimension on
which to partition. As long as we make an allowable cut
when one exists, this choice does not affect the partition-
size upper-bound. One heuristic, used in our implementa-
tion, chooses the dimension with the widest (normalized)
range of values [5]. Alternatively, it may be possible to
choose a dimension based on an anticipated workload.

The partitioning algorithm in Figure 6 is easily adapted
for relaxed partitioning. Specifically, the points falling at
the median (where t.dim = splitV al) are divided evenly
between lhs child and rhs child such that |lhs child| =
|rhs child| (+1 when |partition| is odd). In this case,
there is a 2k − 1 upper-bound on partition size.

Finally, a similar greedy multidimensional partitioning
strategy can be used for categorical attributes in the pres-
ence of user-defined generalization hierarchies. However,
our quality upper-bounds do not hold in this case.

4.1. Bounds on Quality

Using our upper bounds on partition size, it is easy to com-
pute bounds for the general-purpose metrics described in
Section 1.2 and totally-ordered attributes. By definition,
k-anonymity requires that every equivalence class contain
at least k records. For this reason, the optimal achievable
value of CDM (denoted CDM∗) ≥ k ∗ total records, and
CAV G∗ ≥ 1.

For strict multidimensional partitioning, assume that the
points in each distinct partition are mapped to a unique
vector of summary statistics. We showed that under the
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greedy algorithm, for each equivalence class E, |E| ≤
2d(k− 1)+m, where m is the maximum number of copies
of any distinct quasi-identifier tuple.

CDM is maximized when the tuples are divided into the
largest possible equivalence classes, so CDM ≤ (2d(k −
1) + m) ∗ total records. Thus,

CDM

CDM∗ ≤
2d(k − 1) + m

k

Similarly, CAV G is maximized when the tuples are
divided into the largest possible equivalence classes, so
CAV G ≤ (2d(k − 1) + m)/k.

CAV G

CAV G∗ ≤
2d(k − 1) + m

k

Observe that for constant d and m, the strict greedy al-
gorithm is a constant-factor approximation, as measured by
CDM and CAV G. If d varies, but m/k is constant, the ap-
proximation is O(d).

For relaxed multidimensional partitioning, the greedy
algorithm produces a 2-approximation because CDM ≤
2k ∗ total records, and CAV G ≤ 2.

4.2. Scalability

When the table T to be anonymized is larger than the avail-
able memory, the main scalability issue to be addressed is
finding the median value of a selected attribute within a
given partition.

We propose a solution to this problem based on the idea
of a frequency set. The frequency set of attribute A for par-
tition P is the set of unique values of A in P , each paired
with an integer indicating the number of times it appears in
P . Given the frequency set of A for P , the median value is
found using a standard median-finding algorithm.

Because individual frequency sets contain just one entry
per value in the domain of a particular attribute, and are
much smaller than the size of the data itself, it is reasonable
to assume that a single frequency set will fit in memory. For
this reason, in the worst case, we must sequentially scan
the database at most twice, and write once, per level of the
recursive partitioning “tree.” The data is first scanned once
to find the median, and then scanned and written once to
re-partition the data into two “runs” (lhs and rhs) on disk.

It is worth noting that this scheme may be further opti-
mized to take advantage of available memory because, in
practice, the frequency sets for multiple attributes may fit
in memory. One approach would be similar to the scalable
algorithms used for decision tree construction in [7].

5. Workload-Driven Quality Measurement
The general-purpose quality metrics in Section 1.2 are a
good place to start when the application that ultimately con-
sumes the anonymized data is unknown. However, in some

cases, the publisher may want to consider an anticipated
workload, such as building a data mining model [6, 8, 16],
or answering a set of aggregate queries. This section intro-
duces the latter problem, including examples where multi-
dimensional recoding provides needed flexibility.

Consider a set of queries with selection predicates
(equality or range) of the form attribute <oper>
constant and an aggregate function (COUNT, SUM,
AVG, MIN, and MAX). Our ability to answer this type of
queries from anonymized data depends on two main factors:
the type of summary statistic(s) released for each attribute,
and the degree to which the selection predicates in the work-
load match the range boundaries in the anonymous data.

The choice of summary statistics influences our ability
to compute various aggregate functions.3 In this paper, we
consider releasing two summary statistics for each attribute
A and equivalence class E:

• Range statistic (R) So far, all of our examples have in-
volved a single summary statistic defined by the range
of values for A appearing in E, which allows for easy
computation of MIN and MAX aggregates.

• Mean Statistic (M) We also consider a summary sta-
tistic defined by the mean value of A appearing in E,
which allows for the computation of AVG and SUM.

When choosing summary statistics, it is important to
consider potential avenues for inference. Notice that in
some cases simply releasing the minimum-maximum range
allows for some inferences about the distribution of values
within an equivalence class. For example, consider an at-
tribute A, and let k = 2. Suppose that an equivalence class
of the released anonymization contains two tuples, and A is
summarized by the range [0 − 1]. It is easy to infer that in
one of the original tuples A = 0, and in the other A = 1.

This type of inference about distribution (which may also
arise in single-dimensional recoding) is not likely to pose
a problem in preventing joining attacks because, without
background knowledge, it is still impossible for an adver-
sary to distinguish the tuples within an equivalence class
from one another.

The second factor influencing our ability to answer ag-
gregate queries is the degree to which the selection predi-
cates in the given workload “match” the boundaries of the
range statistics in the released anonymization. In many
ways, this is analogous to matching indices and selection
predicates in traditional query processing.

Predicate-Range Matching A selection predicate Pred
conceptually divides the original table T into two sets of tu-
ples, TT

Pred and TF
Pred (those that satisfy the predicate and

3Certain types of aggregate functions (e.g., MEDIAN) are ill-suited to
this type of computation. We do not know of any way to compute such
functions from these summary statistics.
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those that do not). When range statistics are published, we
say that an anonymization V matches a boolean predicate
Pred if every tuple t ∈ TT

Pred is mapped to an equivalence
class in V containing no tuples from TF

Pred.
To illustrate these ideas, consider a workload containing

two queries:

SELECT AVG(Age)
FROM Patients
WHERE Sex = ‘Male’

SELECT COUNT(*)
FROM Patients
WHERE Sex = ‘Male’
AND Age ≤ 26

A strict multidimensional anonymization of Patients is
given in Figure 7, including two summary statistics (range
and mean) for Age. Notice that the mean allows us to an-
swer the first query precisely and accurately. The second
query can also be answered precisely because the predi-
cate matches a single equivalence class in the anonymiza-
tion. Comparing this with the single-dimensional recod-
ing shown in Figure 2, notice that it would be impossi-
ble to answer the second query precisely using the single-
dimensional recoding.

When a workload consists of many queries, even a mul-
tidimensional anonymization might not match every selec-
tion predicate. An exhaustive discussion of query process-
ing over imprecise data is beyond the scope of this paper.
However, when no additional distribution information is
available, a simple approach assumes a uniform distribution
of values for each attribute within each equivalence class.
The effects of multidimensional versus single-dimensional
recoding, with respect to a specific query workload, are ex-
plored empirically in Section 6.3.

Our work on workload-driven anonymization is prelimi-
nary, and in this paper, the workload is primarily used as an
evaluation tool. One of the most important future directions
is directly integrating knowledge of an anticipated work-
load into the anonymization algorithm. Formally, a query
workload can be expressed as a set of (multdimensional re-
gion, aggregate, weight) triples, where the boundaries of
each region are determined by the selection predicates in
the workload. Each query is also assigned a weight indicat-
ing its importance with respect to the rest of the workload.
When a selection predicate in the workload does not exactly
match the boundaries of one or more equivalence classes,
evaluating this query over the anonymized data will incur
some error. This error can be defined as the normalized
difference between the result of evaluating the query on the
anonymous data, and the result on the original data. Intu-
itively, the task of a workload-driven algorithm is to gener-
ate an anonymization that minimizes the weighted sum of
such errors.

6. Experimental Evaluation
Our experiments evaluated the quality of anonymizations
produced by our greedy multidimensional algorithm by

Age(R) Age(M) Sex(R) Zipcode(R) Disease
[25− 26] 25.5 Male 53711 Flu
[25− 27] 26 Female 53712 Hepatitis
[25− 26] 25.5 Male 53711 Brochitis
[27− 28] 27.5 Male [53710− 53711] Broken Arm
[25− 27] 26 Female 53712 AIDS
[27− 28] 27.5 Male [53710− 53711] Hang Nail

Figure 7. A 2-anonymization with multiple
summary statistics

Distribution (Discrete Uniform, Discrete Normal)
Attributes Total quasi-identifier attributes
Cardinality Distinct values per attribute
Tuples Total tuples in table
Std. Dev. (σ) With respect to standard normal (Normal only)
Mean (µ) (Normal only)

Figure 8. Parameters of synthetic generator

comparing these results with those produced by optimal al-
gorithms for two other models: full-domain generalization
[9, 12], and single-dimensional partitioning [2, 8]. The spe-
cific algorithms used in the comparison (Incognito [9] and
K-Optimize [2]) were chosen for efficiency, but any exhaus-
tive algorithm for these models would yield the same result.
It is important to note that the exhaustive algorithms are ex-
ponential in the worst case, and they run many times slower
than our greedy algorithm. Nonetheless, the quality of the
results obtained by the latter is often superior.

For these experiments, we used both synthetic and real-
world data. We compared quality, using general-purpose
metrics, and also with respect to a simple query workload.

6.1. Experimental Data

For some experiments, we used a synthetic data generator,
which produced two discrete joint distributions: discrete
uniform and discrete normal. We limited the evaluation to
discrete domains so that the exhaustive algorithms would
be tractable without pre-generalizing the data. To generate
the discrete normal distribution, we first generated the mul-
tivariate normal distribution, and then discretized the values
of each attribute into equal-width ranges. The parameters
are described in Figure 8.

In addition to synthetic data, we also used the Adults
database from the UC Irvine Machine Learning Repository
[3], which contains census data, and has become a de facto
benchmark for k-anonymity. We configured this data set as
it was configured for the experiments reported in [2], using
eight regular attributes, and removing tuples with missing
values. The resulting database contained 30,162 records.
For the partitioning experiments, we imposed an intuitive
ordering on each attribute, but unlike [2], we eliminated
all hierarchical constraints for both models. For the full-
domain experiments, we used the same generalization hier-
archies that were used in [9].
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(a) Uniform distribution (5 attributes)
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(b) Normal distribution (5 attributes, σ = .2)
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(c) Normal distribution (5 attributes, k = 10)
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(d) Normal distribution (k = 10, σ = .2)

Figure 9. Quality comparisons for synthetic data using the discernability metric

6.2. General-Purpose Metrics

We first performed some experiments comparing quality us-
ing general-purpose metrics. Here we report results for the
discernability penalty (Section 1.2), but the comparisons are
similar for the average equivalence class size.

The first experiment compared the three models for var-
ied k. We fixed the number of tuples at 10,000, the per-
attribute cardinality at 8, and the number of attributes at 5.
For the full-domain generalization model, we constructed
generalization hierarchies using binary trees. The results
for the uniform distribution are shown in Figure 9(a). Re-
sults for the discrete normal distribution (µ = 3.5, σ = .2)
are given in Figure 9(b). We found that greedy multidimen-
sional partitioning produced “better” generalizations than
the other algorithms in both cases. However, the magnitude
of this difference was much more pronounced for the non-
uniform distribution.

Following this observation, the second experiment com-
pared quality using the same three models, but varied the
standard deviation (σ) of the synthetic data. (Small values
of σ indicate a high degree of non-uniformity.) The number
of attributes was again fixed at 5, and k was fixed at 10. The
results (Figure 9(c)) show that the difference in quality is
most pronounced for non-uniform distributions.
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Figure 10. Quality comparison for Adults
database using discernability metric

The next experiment measured quality for varied quasi-
identifier size, with σ = .2 and k = 10. As the number
of attributes increased, the observed discernability penalty
decreased for each of the three models (Figure 9(d)). At
first glance, this result is counter-intuitive. However, this
decrease is due to the sparsity of the original data, which
contains fewer duplicate tuples as the number of attributes
increases.

In addition to the synthetic data, we compared the three
algorithms using the Adults database (Figure 10). Again,
we found that greedy multidimensional partitioning gener-
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(a) Optimal single-dimensional partitioning
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(b) Greedy strict multidimensional partitioning

Figure 11. Anonymizations for two attributes with a discrete normal distribution (µ = 25, σ = .2).

Predicate on X
k Model Mean Error Std. Dev.
10 Single 7.73 5.94
10 Multi 4.66 3.26
25 Single 12.68 7.17
25 Multi 5.69 3.86
50 Single 7.73 5.94
50 Multi 7.94 5.87

Predicate on Y
k Model Mean Error Std. Dev.
10 Single 3.18 2.56
10 Multi 4.03 3.44
25 Single 5.06 4.17
25 Multi 5.67 3.80
50 Single 8.25 6.15
50 Multi 8.06 5.58

Figure 12. Error for count queries with single-
attribute selection predicates

ally produced the best results.

6.3. Workload-Based Quality

We also compared the optimal single-dimensional and
greedy multidimensional partitioning algorithms with re-
spect to a simple query workload, using a synthetic data
set containing 1000 tuples, with two quasi-identifier at-
tributes (discrete normal, each with cardinality 50, µ = 25,
σ = .2). Visual representations of the resulting partition-
ings are given in Figures 11(b) and 11(a).

Multidimensional partitioning does an excellent job at
capturing the underlying multivariate distribution. In con-

trast, we observed that for non-uniform data and small k,
single-dimensional partitioning tends to reflect the distrib-
ution of just one attribute. However, the optimal single-
dimensional anonymization is quite sensitive to the under-
lying data, and a small change to the synthetic data set often
dramatically changes the resulting anonymization.

This tendency to “linearize” attributes has an impact on
query processing over the anonymized data. Consider a
simple workload for this two-attribute data set, consisting of
queries of the form “SELECT COUNT(*) WHERE {X, Y }
= value”, where X and Y are the quasi-identifier attributes,
and value is an integer between 0 and 49. (In Figures 11(a)
and 11(b), X and Y are displayed on the horizontal and ver-
tical axes.) We evaluated the set of queries of this form over
each anonymization and the original data set. When a pred-
icate did not match any partition, we assumed a uniform
distribution within each partition.

For each anonymization, we computed the mean and
standard deviation of the absolute error over the set of
queries in the workload. These results are presented in Fig-
ure 12. As is apparent from Figures 11(a) and 11(b), and
from the error measurements, queries with predicates on Y
are more accurately answered from the single-dimensional
anonymization than are queries with predicates on X. The
observed error is more consistent across queries using the
multidimensional anonymization.

7. Related Work
Many recoding models have been proposed in the litera-
ture for guaranteeing k-anonymity. The majority of these
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models have involved user-defined value generalization hi-
erarchies [6, 8, 9, 12, 14, 16]. Recently, partitioning models
have been proposed to automatically produce generalization
hierarchies for totally-ordered domains [2, 8]. However,
these recoding techniques have all been single-dimensional.

In addition to global recoding models, simpler local re-
coding models have also been considered, including sup-
pressing individual data cells. Several approximation algo-
rithms have been proposed for the problem of finding the
k-anonymization that suppresses the fewest cells [1, 10].

In another related direction, Chawla et al. [4] propose a
theoretical framework for privacy in data publishing based
on private histograms. This work describes a recursive san-
itization algorithm in multidimensional space. However, in
their problem formulation, minimum partition-occupancy is
not considered to be an absolute constraint.

Finally, several papers have considered evaluating the re-
sults of k-anonymization algorithms based on a particular
data mining task, such as building a decision tree [6, 8, 16],
but quality evaluation based on a query workload has not
previously been explored.

8. Conclusion and Future Work
In this paper, we introduced a multidimensional recoding
model for k-anonymity. Although optimal multidimen-
sional partitioning is NP-hard, we provide a simple and ef-
ficient greedy approximation algorithm for several general-
purpose quality metrics. An experimental evaluation indi-
cates that often the results of this algorithm are actually bet-
ter than those produced by more expensive optimal algo-
rithms using other recoding models.

The second main contribution of this paper is a more tar-
geted notion of quality measurement, based on a workload
of aggregate queries. The second part of our experimen-
tal evaluation indicated that, for workloads involving predi-
cates on multiple attributes, the multidimensional recoding
model often produces more desirable results.

There are a number of promising areas for future work.
In particular, as mentioned in Section 5, we are consider-
ing ways of integrating an anticipated query workload di-
rectly into the anonymization algorithms. Also, we suspect
that multidimensional recoding would lend itself to creat-
ing anonymizations that are useful for building data mining
models since the partitioning pattern more faithfully reflects
the multivariate distribution of the original data.
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