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Abstract

attributes in a fact must be assigned leaf-level values from

the underlying domain hierarchy, in order to moghepre-

We extend the OLAP data model to represent
data ambiguity, specifically imprecision and un-

certainty, and introduce an allocation-based ap-
proach to the semantics of aggregation queries
over such data. We identify three natural query
properties and use them to shed light on alterna-
tive query semantics. While there is much work

on representing and querying ambiguous data, to
our knowledge this is the first paper to handle both
imprecision and uncertainty in an OLAP setting.

1 Introduction

In this paper, we extend the multidimensional OLAP data
model to represemtata ambiguityspecificallyimprecision

anduncertainty and study possible semantics for aggrega-
tion queries over such data. While there is much work on
representing and querying ambiguous data, and even some

work in the context of OLAP, to our knowledge this is the 2.

first paper to identify criteria that must be satisfied by any
approach to handling data ambiguity in an OLAP setting,
and to use these criteria in a principled manner to arrive

at appropriate semantics for queries. Our first criterion, 3.

called consistencyaccounts for the relationship between
similar queries issued at related nodes in a domain hierar-
chy in order to meet users’ intuitive expectations as they
navigate up and down the hierarchy. The second criterion,
calledfaithfulnesscaptures the intuition that more precise
data should lead to better results. The third criterioredal
correlation-preservationessentially requires that the sta-
tistical properties of the data should not be affected by the
allocation of ambiguous data records. While the last two
criteria are not specific to OLAP, to our knowledge they
have not been proposed previously.

We extend the usual OLAP data model in two funda-
mental ways. First, we relax the restriction that dimension

cision For example, we can denote that a particular repair

took place in Texas, without specifying a city. Clearlysthi

has implications for how we answer queries—for a query

that aggregates repair costs in Austin, should the example

repair be included, and if so, how? Our second extension is

to introduce a new kind of measure attribute that represents

uncertainty. Intuitively, an uncertain value encodes @ean

of possible values together with our belief in the likelikdoo

of each possible value. Specifically, we represent a value

for an uncertain measure agpmbability distribution func-

tion (pdf)over values from an associated “base” domain.
Our contributions can be summarized as follows:

1. Generalization of the OLAP model to represent data

ambiguity. To our knowledge, this is the first such
generalization that addresses both imprecise dimen-
sion values and uncertain measure values.

The introduction of criteria (consistency, faithfulegs
correlation-preservation) that guide the choice of se-
mantics for aggregation queries over ambiguous data.

A possible-worlds interpretation of data ambiguity
that leads to a novel allocation-based approach to
defining semantics for aggregation queries, and a care-
ful study of choices arising in the treatment of data
ambiguity, using the consistency, faithfulness, and
correlation-preservation criteria.

4. Algorithms for evaluating aggregation queries (in-

cluding AVERAGE, COUNT, and SUM for ordinary
measures, and LinOp for uncertain measures), to-
gether with a complexity analysis.

5. An experimental evaluation that addresses scalability

as well as result quality.
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1.1 Related Work

While there is an extensive literature on queries over am-
biguous data, only a few papers [24, 28, 29, 16] have con-
sidered an OLAP setting. [24] is perhaps the closest to
our work in that it considers the semantics of aggrega-
tion queries, but it does not consider uncertainty or invest
gate criteria that shed light on appropriate query semsintic



[28, 29] consider the problem of imputing missing mea-distribution functions, or pdfs, ovep. O

sure values, using linear equations, entropy maximization . ) L o
cross-entropy minimization, or other constraint program- 1hus, each value in U is a pdf that, intuitively, indi-
ming techniques. [16] describes a method to estimate theates our degree of belief that the “true” value being rep-
error of cube aggregates for certain data; the generalizati "eSented i®, for eacho in the base domai®. For an ex-

of their method to uncertain data is not clear. ample of uncertain domains we consider in this paper, see

The earliest work on aggregate queries over imprecis®ection 2.2.1.

data is [8], and it was followed_ by [20, 9, 25];. hOW'.Definition 2 (Imprecise Domains)An imprecise domain

ever, none of these papers consider data-level h|erarch|(?sover a base domaif is a subset of the powerset &f
(which are central to OLAP). The approach in [8] IeaOISwith (0 ¢ I, elements of are calledmprecisevalues. O
to an exponential-time algorithm for SUM. [9] models un- ' '
certainty using intervals and pdfs and prowdes algorlth_ms Intuitively, an imprecise value is a non-empty set of pos-
for aggregating them. [25] develops a linear programmingsiple values. Allowing dimension attributes to have impre-
based semantics for computing aggregates over probabiligise domains enables us, for example, to use the impre-
tic databases. We note that [20] also discusses uncettainiyise valueW sconsi n for the location attribute in a data
and [26] supports aggregate functions for uncertain dataecord if we know that the sale occurred in Wisconsin but
but doesn’t support imprecision or hierarchies. are unsure about the city.

We believe that a key contribution of this paper is our |n OLAP, each dimension has an associated hierarchy,
methodology—identifying intuitive criteria such as casi e g, the location dimension might have attribufiy and
tency, faithfulness, and correlation-preservation andgis  State with Statedenoting generalizations dity; this sug-

them to study alternative query semantics is an approachests a natural special case of imprecise domains dailled
that can be applied outside the OLAP setting (and indeetsrarchicaldomains, which we define next.

faithfulness and correlation-preservation are not spetifi

OLAP). In this respect, our approach is similar in spirit to Definition 3 (Hierarchical Domains) A hierarchical do-
the use osummarizabilitywhich was introduced to study main H over base domaif is defined to be an imprecise
the interplay betweeproperties of dataand the aggrega- domain overB such that (1)4 contains every singleton set
tion operators (i.e., what properties should the data ssse(i.e., corresponds to some element®f and (2) for any
for results of certain aggregation functions to be meaningpair of elementsé, ho € H,hy D hoorhy Nhy =0. O
ful) [18, 19]. " i . .

A number of papers consider imprecision and uncer- I.ntU|.t|ver, each singleton setis a leaf nod_e in the do-
tainty for non-aggregation queries. The use of possiblénain hierarchy and each non-singleton setris a non-
world semantics to represent imprecise data is discussd@af node; thusMadi son, M | waukee, etc. are leaf
in [1]. [7, 13, 4, 17, 12] associate a probability distrilati  N0des with paren&¥ sconsi n (which, in turn might have
with the data (either at the data element or tuple level), andySA as its parent). We will often refer to a hierarchical do-
generalize relational algebra operators to reflect the-ass§@in in terms of leaf and non-leaf nodes, for convenience.
ua(;ed E’mb"%tf,"'[t_]y- [2’d3] sl;eek to identify |_ncon3|sten.ta_da Definition 4 (Fact Table Schemas and Instances)fact
?n tto reﬁjalr these data asest(iaconslcstetn;[jsttate, mdcz't};\ble schemas (A1, As, ..., Ap; M, ..., M,) where (i)
rast, we 1Tocus on Imprecise yet consisient data, and g, ., gimension attributd;,« € 1...k, has an associ-
not _conS|der Integrity constraints (Othef th_an domain CON%ted domain doif¥;) that isimprecise and (ii) each mea-
stralnts). Various sources of data ambiguity are clgssme ure attributeM;, j € 1...n, has an associated domain
in [22, 23], together with approaches for representing an om(M;) that is eithenumericor uncertain

processing the ambiguity. [27] discusses the many similar- : : : )
ities between statistical databases and OLAP. A database instancef this fact table schema is a col

lection of facts of the form(ay, as,...,ax;m1,...,my)

wherea; € dom(A4;),i € 1...k andm; € domM,),j €
2 Data Model 1...n. In particular, if donf4;) is hierarchicalg; can be
In this section we present our generalization of the stan@ny leaf or non-leaf node in dam;). O

dard multidimensional data model, incorporating impreci-

. . Definition 5 (Regions and Cells)Consider a fact table
sion and uncertainty.

schema with dimension attributels , Ao, ..., Ax. A vec-
. tor (c1, ca, ..., ck) is called acell if every ¢; is an element
2.1 Data Representation of the base domain ofl;, i € 1...k. Theregionof adi-
Attributes in the standard OLAP model are of two kinds— mension vectotas, as, . . ., ax) is defined to be the set of
dimensionandmeasuresWe extend the model to support cells{{c1,c2,...,ck) | ¢; € a;,i € 1...k}. Letreg(r)
uncertainty in measure values and imprecision in dimenéenote the region associated with a fact O

sion values. - ) o
Proposition 1. Consider a fact table schema with dimen-

Definition 1 (Uncertain Domains) An uncertain domain  sion attributesA,, A,, ..., Ay that all have hierarchical
U over base domai@ is the set of all possible probability domains. Consider &-dimensional space in which each
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| | Auto | Loc | Repair| Text| Brake | tion of service reports into the different problem types. We
pl | F-150 | NY | $200 ( ) can model this ambiguity by defining an uncertain mea-
p2 | F-150 | MA | $250 ( ) sure whose values are represented as pdfs over the set of
p3 | F-150 | CA | $150 { ) problem types. However, due to the dynamic nature of text
p4 | Sierra| TX $300 { ) analysis engines, new problem types will be continuously
p5 | Camry| TX | $325 | ... | ( ) added_. Therefore, it is impractica] to assume that the base
p6 | Camry| TX | $175 | ... | (0. ) domain of problem types can be fixed apriori.
{ )
{ )
{ )
{ )

p7 | Civic | TX $225 To address this, we assume there exist trained classi-
p8 | Civic | TX | $120 fiers for each type of problem (e.g., see [30]) that output
p9 | F150 | East| $140 a discrete probability distribution based on analyzing the
pl0| Truck | TX | $500 content of theText attribute; the pdf output reflects the un-
certainty inherent in such classifiers. In the example, the
output of the classifier for the brake topic is represented as
Table 1: Sample datain a CRM application for automobilesa pdf over two value¥es andNo, and is stored in the un-
o ] certain measure attribut8rake as a pair of probabilities.

axisi is labeled with the leaf nodes of dory). For every  (as shown in Table 1)However, we note that all analy-

region, the set of all cells in the region is a contigudis  sjs and algorithms presented henceforth are applicable to
dimensional hyper-rectangle that is orthogonal to the axesattributes with base domain greater than 2.

If every dimension attribute has a hierarchical domain,
we thus have an intuitive interpretation of each fact in the2 3 Queries
database as a region inkadimensional space. If ali; '

are leaf nodes, the observationpiecise and describes a \yhie the OLAP paradigm offers a rich array of query op-

region consisting of a single cell. If one or mark are erators, the basic query consists of selecting a node for one

gss'gf‘;d no?-leg; r(;pdes, _the c:bse_rvauo;nprr]eusl?eanqd or more dimensions and applying an aggregation operator

escribes a largee-dimensional region. Each cell InSIAe 5 particular measure attribute. For example, selecting
this region represents a possible completion of an IMpEeciSia | ocation nodeX and the Automobile nodé&i Vi ¢
fact, formed by replacing non-leaf nodewith a leaf nod_e and applying SUM to theRepairmeasure returns the to-
from the subtree rooted at. The process of completing

: : . ; _ tal amount spent on repairs &f vi ¢ cars in Texas. All
every imprecise fact in this manner representsoasible other queries (such asll-up, slice, drill-down, pivotetc.)
world for the database (Section 4).

can be described in terms of repeated applications of basic
o gueries. We therefore concentrate on studying the seman-
2.2 Motivating Example tics of basic queries in light of our two data model exten-

Consider the scenario of a car manufacturer using a CRMIONS; the extension to the full array of OLAP query opera-
application to track and manage service requests acro@rs is straightforward, and is omitted for lack of space.

its worldwide dealer operations. A fact table illustrating

such data is shown in Table 1. Each fact describes an “inbefinition 6 (Queries and Query Resultsh query Q over
cident”. The first two columns are dimension attributesa databas® with schema A, A, ..., Ag; My, ..., M,)
Automobile (Auto) and Location (Loc), and take values has the formQ(as, ..., axr; M;, A), where: (a1, ..., ax
from their associated hierarchical domains. The structurelescribes thé&-dimensional region being queried, (ilY;

of these domains and the regions of the facts are shown ilescribes the measure of interest, and diis an aggrega-
Figure 1. Precise facts, p1—p8 in Table 1, have leaf nodeson function.

assigned to both dimension attributes and are mapped t0 The result of@ is obtained by applyingd to a set of

the appropriate cells in Figure 1. Facts p9 and p10, on the, s AND-RELEVANT (a1, . .., ax, D). This is described
other hand, are imprecise. Fact p9 is imprecise becausg detail below. 0

the Location dimension is assigned to the non-leaf node

East and its region contains the cels\NY, F150) and . . o
(MA, F150) . Similarly, the region for p10 contains the The function FND-RELEVANT identifies the set of facts

cells (TX, F150) and(TX, Sierra). Each fact con- M D deemed “relevant” to the query region, and the ap-

tains a value for the numeric measure attribRepairde- propriate d_efinitjon of this functiqn is an im_po_rtant issue

noting the repair cost associated with the incident. add_ressed in this paper. All precise facts W't.h'n the query
region are naturally included, but we have an important de-

sign decision with respect to imprecise facts. We have three

options: ignore all imprecise facts (tiNone option), in-

We want to classify incidents based on the type of prob-clude only those contained in the query region (@Gua-

lem (e.g., “brake”, “transmission”, “engine noise” etc.), tains option), or include all imprecise facts whose region

as described in the auxiliaryext attribute. The subjec- overlaps (i.e., intersects) the query regi@vdrlaps op-

tive nature of text precludes the unambiguous classification).

2.2.1 Example of Measure Uncertainty
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2.4 Motivating Example (Contd.) To further illustrate the role of allocation, consider quer
Q6. If p10 is allocated to all cells in its region then Q6 can

How to handle imprecise facts when answering queries is Be answered. Otherwise, the answer to Q6 is undefined, as

central ISSUe, which we now |IIustra'§e through an examplem regular OLAP. Although allocation can be accomplished
In later sections, we study the various options for deter

L ) in several ways it is reasonable to expect that allocation
mining the facts relevant.to a query more rigorously. W is query independent. For example, Q7 and Q8 must be
Cof‘s'der aggregat(? quernies of t”he tyWéhat are the re- answered using the same allocation for p10.
pair costs for F150's in th_e East ’Jie a SUM aggregate Consistency and faithfulness are discussed further in
value for the measure attribuRepairin the region denoted

: : A Sections 3 and 5. A discussion of the possible-world se-
by (F150, Ea_st ) . All queries are dep|c_ted in Figure 1 as mantics underlying allocation is presented in Section 4, an
boxes enclosing the query region. For instance, the abo

i V&llocation algorithms are discussed in Section 6. Fortglari
example query correspondsto Q5 in Figure 1. of exposition, only the statements of the theoretical cgaim
are included in the main_body of the paper. Explanations

T and proofs can be found in [6].
c %Y e
}da\" oo Truck 2.5 Aggregating Uncertain Measures
o P9 PN

Civie  Camry "F150  Siera Consider a query of the type “How likely are brake

problems for sedans in TX?" This corresponds to query
Q2 where the aggregation is over the uncertain measure
‘Brake’. The answer to this query is an aggregation over
the pdfs for p5, p6, p7, p8. This notion of aggregating pdfs

State

East
NY MA
T
[s]
s

3 _ Qs is closely related to the problem studied in the statisttes |
:\,119,; :,p—ﬂ(’\pMS) P o erature l_Jnderth_e name@;ﬁln!on pooI|r_1q15]. Informa!ly,
e AV a7 the opinion pooling problemis to provideansensuspin-
§< (o) ion from a set of opinion®. The opinions iN® as well
R o as the consensus opinion are represented as pdfs over a dis-

crete domairQ.

Many pooling operators have been studied, and the
linear operator LinOp is among the most widely used.
LinOp(®) produces a consensus pdfthat is a weighted

For queries whose regions overlap only precise factslinéar combination of the pdfs in®, i.e., P(x) =

e.g., Q1 and Q2, the set of relevant facts is clear. For othex-peco wp - P(z), forz € O. Here, the weights are non-
queries, e.g., O, this is trickier. If we use thene op-  Negative quantities summing to one. Unless there is some

tion, the result of Q5 isd(p1,p2); the imprecise fact p9 for_m of prior knowledge, we assume that thg Welghts are
is ignored. If we use th&€ontains option, the result is  Uniform, i.e.,wp = 1/|®|, in which caseP(x) is just the
A(p1,p2,p9). Which answer is better? Using p9 to answefVerage of the probab|l|t|e@(:v_) for P € ©. I_t is stra|ght- _
Q5 seems reasonable since the region for Q5 contains p&rward to compute LinOp using aggregation functions in
and the result reflects all available data. However, there i§UTTent OLAP systems.

a subtle issue with using the&ontains option to determine _

relevant facts. In standard OLAP, the answer for Q5 isthe3 OLAP Requirements

aggregate of answers for Q3 and Q4, which is clearly is nof
the case now, since Q3.4(p2) and Q4 =A(pl).

Observing that p9 “overlaps” the cell$=( F150, NY)
and ¢2=( F150, MA) , we may choose tpartially assign
p9 to both cells, a process we refer toadwcation The
partial assignment is captured by the weights andw,.,
such thatv.; + w.e = 1, which reflect the effect p9 should
have on the aggregate value computed for edllandc2,
respectively. If theOverlaps option is used, then Q3 =

A(p2, werx p9) and Q4 =A(pl, we+ p9). Observe the these requirements to argue that only @erlaps option

users expected relatlonshlp b_etween ng' Q.4' and QSfor handling imprecision results in well-behaved quenes i
which we refer to agonsistencyis now maintained. In the context of OLAP

addition to consistency, there is a notion of result quality
relative to the quality of the data input to the query, which
we refer to adaithfulness For example, the answer com-
puted for Q3 should be of higher quality if p9 were pre- The intuition behind the consistency requirement is that a
cisely known. user expects to see some natural relationships hold between

Figure 1: Multidimensional view of the data

n providing support for OLAP-style queries in the pres-
ence of imprecision and uncertainty, we argue that the an-
swers to these queries should meet a reasonable set of re-
guirements that can be considered generalizations of re-
quirements met by queries in standard OLAP systems.
We propose two requirements for handling imprecision,
namelyconsistencyand faithfulness which apply to both
numeric and uncertain measures. (Some requirements for
handling uncertainty have been proposed in [14].) We use

3.1 Consistency
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the answers to aggregation queries associated with differe  Similar theorems can be shown for other aggregation
(connected) regions in a hierarchy. operators as well, but we omit them in the interest of space.

Definition 7 (a-consistency) Let a(x, 21, 22, . .., x,) be .
a predicate such that each argumentidfikes on Calues 3.3 Faithfulness

from the range of a fixed aggregation operator Con-  Starting with a databasb, suppose we increase impreci-
sider a collection of querie®, Q1,...,Q, such that (1)  sjon in D by mapping facts in the database to larger re-
the query region of) is partitioned by the query regions gions. We expect that the answer to any qu@rgn this

of Q1,...,Qp, i.e,reg(Q) = U;reg(Q;) andreg(Qi) N new databas®’ will be different from the original answer.
reg(Q;) = 0 for everyi # j, and (2) each query speci- Fajthfulness is intended to capture the intuitive property
fies that.A be applied to the same measure attribute. Lethat this difference should be as small as possible. Since an

4,41, - --,qm denote the associated set of answersion  aggregation algorithm only gets to sé¥ as its input and
We say that an algorithm satisfiesconsistency with re- s not aware of the “original” databage one cannot hope
spect toA if (g, q1,...,qp) holds for every database  in general to state precise lower and upper bounds for this
and for every such collection of queri€s Q1,...,Qp. U difference. Our aim instead will be to state weaker prop-

erties that characterize this difference, e.g., whethé& it

This notion of consistency is in the spirit smmariz- monotonic with respect to the amount of imprecision. The
ability, introduced in [18, 19], although the specific goals : 1th resp - torimp :
following definition is helpful in formalizing faithfulnes

are different. Given the nature of the underlying data, only
some aggregation functions are appropriate, or have the b

; Befinition 10 (Measure-similar Databases)Ve say that
havior the user expects.

two database® and D’ aremeasure-similaif D’ is ob-
tained fromD by (arbitrarily) modifying (only) the dimen-
sion attribute values in each factLetr’ € D’ denote the
We now define appropriate consistency predicates for théact obtained by modifying € D; we say that- corre-
aggregation operators considered in this paper, using thepondgo ' O
notations given in the definition ef-consistency.

3.2 Specific Forms of Consistency

Consider a query) such that every fact region is either
Definition 8 (Sum-consistency)Sum-consistency is de- completely contained within the query region@br com-
fined asj =}, ¢i. O pletely disjoint from it. In such a situation, it is reasoteab
to treat the facts as if it were precise with respeadtsince

The above is an intuitive notion of consistency for SUM the imprecision in the facts does not cause ambiguity with
and COUNT. Since SUM is a distributive function, SUM P ) . guity
respect to the query region §f. The first form of faithful-

for a query region should equal the value obtained b . . S I
adding?theyresglts of SUM fo(r]the query sub-regions tha):ness formalizes this property, and is illustrated in Fidtae

partition the region. All statements for SUM in this Paper pafinition 11 (Basic faithfulness) We say that two

are applicable to COUNT as well, and will notbe explicitly e a5 re-similar databasBsand D’ areidentically precise
mentioned in the interest of space. with respect to query) if for every pair of corresponding

Definiton 9 (Boundedness-consistencyfFor a nu- factsr € Dandr’ € D', either bothreg(r) andreg () are
meric measure, this consistency predicate is defined g&0mpletely contained ineg(Q) or both are completely are
min;{¢;} < ¢ < max;{q¢}. For an uncertain mea- disjoint fromreg(Q). We say that an algorithm satisfiea-
sure, the above inequalities should hold for the probabilSic faithfulnessvith respect to an aggregation functigrif
ities associated with all elements in the base domain. Forfor every quenq that uses4, the algorithm gives identical
mally, if o) is the probability for each element then ~ @nswers for every pair of measure-similar databdsesd
min; {§;(0)} < (o) < max;{d:(0)}. O D' thatare identically precise with respect@o O

Boundedness-consistency is intuitively appropriate for Basic faithfulness enables us to argue that Koge
any kind of averaging operator for numeric measures anéption of handling imprecision by ignoring all imprecise
aggregation operator for uncertain measures. In particularecords is inappropriate, as we intuitively expect:
AVERAGE for a query region should be within the bounds ] )
of AVERAGE for the query sub-regions that partition the Theorem 2. SUM, COUNT, AVERAGE and LinOp violate
region. In the case of LinOp, the same property should?asic faithfulness when thone option is used to handle
hold element-wise for the associated pdfs. Imprecision.

An important consequence of the variaugonsistency
properties defined above is that thentains option is un-
suitable for handling imprecision, as shown below:

Theorems 1 and 2 demonstrate the unsuitability of the
Contains andNone options for handling imprecision, and
we do not consider them further. The remaining option,
Theorem 1. There exists a SUM aggregate query which namelyOverlaps, is the focus of our efforts for the rest of
violates Sum-consistency when Guntains option is used the paper, and it raises the challenge of how to handle rele-
to find relevant imprecise facts FIND-RELEVANT. vant facts that partially overlap the query region. We tackl
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this problem in later sections using an allocation-based ap G e 2o e
proach to summarizing the “possible worlds” that may have —
led to the imprecise dataset.

The next form of faithfulness is intended to capture the
same intuition as basic faithfulness in the more complex
setting of imprecise facts that partially overlap a querg. W v ! i V
first define an ordering that compares the amount of impre- _ ove oam 710 sera - e Semy F158 Sere G ey F1%0 S e Gamy F120, S
cision in two databases with respect to a qu@ryn order =
to reason about the answersas the amount of impreci-
sion grows.

p1i |

o7 | ps |, P4
08| pe | B0}

p3

CA TX NY MA

pt

p7 | pS 10| p4
o8 | pe | P1O| P

p7 | p5 p10
p8 | p6 p4

o7 | ps o7 | p5 p10

10| P4
P p8 | p6 o4

CA TX NY MA
CA _TX_ NY MA
=
CA_TX NY MA
=
CA_TX NY MA
=X

p3
D, D, D, D,

Definition 12 (Partial order<g). Fix a query@. We say
that the relation/o (D, D’) holds on two measure-similar
database® andD’ if all pairs of corresponding facts iP
andD’ are identical, except for a single pair of facts D

andr’ € D’ such thateg(r’) is obtained fronreg(r) by A/ERAGE and LinOgitis difficult,unfortunately, to define
adding a celk ¢ reg(Q) Ureg(r). Define the partial order 55 anpropriate instance of-faithfulness for AVERAGE

= to be the reflexive, transitive closure bf. L) and LinOp. Consider how the AVERAGE behave as facts
in a query region become more imprecise and grow outside
L : . . the query region: SUM for the query region diminishes,
(—the amount of imprecision for every fact € D' is but the count also decreases. Since both the numerator and

!arger than that .Of the correspond_mg face D but only . denominator are decreasing, the value of AVERAGE could
in the cells outside the query region. The reason for this

O A oo either increase or decrease. The same observation applies
restriction is that allowing”’ to have a larger projection .
e . - .. 1o LinOp as well.
inside the query region does not necessarily mean that it iS
less relevant t@) thanr (cf. basic faithfulness). .
4 Possible Worlds

Figure 3: Possible Worlds

Figure 2b illustrates the definition ofy for a query

Query Query 73 We now describe gossible-worldsinterpretation of a
region i databaseéD containing imprecise facts, similar to that pro-
i posed in [1], as a prelude to defining query semantics when
o o1 the Overlaps option is used to find relevant facts. Consider
““““““ an imprecise fact which maps to a regiof of cells. Re-
a: No partial overlap b: Partial order <, call from the discussion following Proposition 1 that each
cell in R represents a possible completionraat elimi-
Figure 2: Two forms of Faithfulness nates the imprecision in Repeating this process for every

imprecise fact inD leads to a database’ that contains
only precise facts. We cal)’ a possible worldfor D, and
the multiple choices for eliminating imprecision lead to a

Definition 13 (5-faithfulness) Let 5(z1,22,...,2,) be @ set of possible worlds fob. We illustrate possible worlds
predicate such that the value taken by each argumesit of jn the following example.

belongs to the range of a fixed aggregation operdtor

We say that an algorithm satisfigsaithfulness with re-  Example 1. Figure 3 shows a multidimensional view of
spect toA if for any query compatible with4, and for  the data in our running example (Figure 1), together with
any set of databasd®, <q Dz =g -+ 2 Dy, the pred-  all four possible worlds that can be generated by making

icate3(¢1, - . ., Gp) holds true wherg; denotes the answer the two imprecise facts9 andp10 precise. Facp9 can

computed by the algorithm ob;,iin1...p. O be made precise in two possible ways, placing it in cell
( MA, F150) or( NY, F150) . Similarly,p10 can be made

3.4 Specific Forms of Faithfulness precise in two possible ways, placing it(iTX, F150) or

. _ . (TX, Si erra). Different combinations of these & 2)
We now d|§cuss hoﬁ-fanhﬂ_]lnes_s applies to the aggrega- cpoices lead to the possible worlfi®:, Do, D3, Ds}. O
tion operations considered in this paper.
SUM: If we consider SUM over non-negative measure val- ~ We interpret the possible worldDs, D», ..., D} as
ues, the intuitive notion of faithfulness is that as the datghe collection of “true” databases from which the given
in a query region becomes imprecise and grows outside théatabase) was obtained; the likelihoods of each possible
query region, SUM should be non-increasing. world being the “true” one are not necessarily the same. To

capture this likelihood, we associate a non-negative weigh

Definition 14 (Sum-faithfulness) Sum-faithfulness is de- w; with eachD;, normalized so thap ", w; = 1. The
fined as follows: ifD; =g D-, thengp, > ¢p,. O weights give us flexibility to model the different behaviors
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that cause imprecision, while the normalization allows forleft with the problem of appropriate semantics for summa-

a probabilistic interpretation of the possible worlds. rizing {vi, ... vm}.
Recall that the weights give a probabilistic interpreta-
4.1 Extended Data Model tion of the possible worlds, i.e., databask is chosen

with probability w;. We summarize the possible answers
{v1,...v} by defining a discrete random variablg, as-
sociated with this distribution.

If there arek imprecise facts in a dataset, and the region
for the i*" imprecise fact containg; cells, the number of
possible worlds isf[f:l ¢;. To tackle the complexity due
to this exponential number of possible worlds, we consideDefinition 16 (Answer variable) Consider the multiset
each imprecise faetand assign a probability for its “true” {v;,...v,,} of possible answers to a quey. We define
value beingc, for each cellc in its region. The assign- the answer variableZ associated with Q to be a random
ments for all imprecise facts collectively (and implicjtly variable with pdfPr[Z = v;] = Zj st vy Wiyt J €
associate probabilities (weights) with each possibledvorl 1 . . Y O
as we explain below.

o _ The answer to a query can be summarized as the first
Definition 15 (Allocation). For a factr and a cellc €  and the second moments (expected value and variance) of

reg(r), letp.,. denote the probability thatis completed  the answer variabl&. Using E[Z] to answer queries is
to ¢ in the underlying “true” world. We calb., thealloca- jystified by the following theorem:

tion of factr to cellc, and require thal ...,y Pe.r = 1. o . o
Consider the fo”owing probabi“stic pi‘oceSS, Starting Theorem 3. Basic faithfulness is satisfied if answers to
with a databaseD containingk imprecise facts: Inde- queries are computed using the expected value of the an-

pendently for each imprecise faet, pick a cellc; with ~ Swer variable.

probability p., », and modify the dimension attributes in
r; SO that the resulting fact belongs to cell The set of
databases that can arise via this process constitute the p
sible worlds. The weight associated with a possible worl

The above approach of summarizing possible worlds

for answering aggregation queries, though intuitively ap-
ealing, complicates matters because the number of possi-

, & le worlds grows exponentially in the number of imprecise
D’ equals[[;_, pe,r,- _ facts. Allocations can compactly encode this exponestiall

Any procedure for assigning. . is referred to as aal-  |5rge set but the challenge now is to summarize without
location policy The result of applying such a policy 10 @ haying to explicitly use the allocations to iterate over all
databaseD is anallocated databas&)”. The schema of ,ssible worlds. We now proceed to design efficient algo-

D contains all the columns d plus additional columns  yithms for summarizing various aggregation operators us-
to keep track of the cells that have strictly positive allo- ing the extended data model.

cations. Suppose that factin D has a unique identifier — “The following notation is useful in the description of
denoted by Ir). Corresponding to each fact € D,  he algorithms below. Fix a query whose associated re-
we create a set of fact(e)D (r), 7, ¢, pc.») In D* forevery  gion is4. The set of facts that potentially contribute to
¢ € reg(r) such thap,, > 0 and}_ pc,» = 1. 0 the answer are those that have positive allocatioq téf

Allocation policies are described in detail in Section 6.C(") = {¢ | pe,r > 0} denotes the set of cells to which
The size ofD* increases only linearly in the number of im- fact r has strictly positive allocations, the desired set of

precise facts. However, since the region of an imprecisd@Cts s given byR(Q) = {r | C(r) Ng # 0}. We say
fact is exponentially large in the number of dimension at-tNatR(Q) is the set otandidatefacts for the query). For

tributes which are assigned non-leaf nodes, care must J¥"Y candidate fact, letY, = Y, q be the 0-1 indicator
taken in determining the cells that get positive allocation random variable for the event that a possible completion of
r belongs tg;. We have,

Example 2. For the example in Figure 3, suppose that the PrlY. — 1] —

probabilities forp9 are 0.6 and 0.4 for cellsMA, F150) Y, =1] = Zcec(r)ﬂq Pe,r

and ( NY, F150) respectively. Then irD* we will cre- SinceY, is a 0-1 random variabl@r[Y, = 1] = E[Y;];
ate two facts corresponding tpl1—one belonging to the above equation says tHalY;] equals the sum of the
(MA, F150) with weight 0.6 and another {ONY, F150)  gallocations ofr to the query region of). With a slight
with Welght 0.4 both tagged with the same identifier. Sim-abuse of notation, we say thE‘[[)/T] is the allocation of
ilarly there are 2 facts fop10, belonging to( TX, F150) to the queryQ; it is full if E[Y,] = 1 andpartial other-

and( TX, Si erra) with the same id, p10. 0 wise. Finally, note that the independence assumption in our
modeling of imprecision implies that the random variables
5 Summarizing Possible Worlds Y, for the different's are statistically independent.
We answer query) in the extended data model in two

The allocation weights encode a set of possible worlds
{D,..., Dy} with associated weights, . .., w,,. The
answer to a query) is a multiset {v1,...,v,,}. We are

Steps:

Step 1: We identify the set of candidate fast R(Q)
and compute the corresponding allocationg)toThe for-
LA multiset because many possible worlds may give the sameeans mer is accomplished by using a filter for the query region
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whereas the latter is accomplished by identifying groups 06.2 AVERAGE
facts that share the same identifier in the ID column ano, hi h q iabl di th
then summing up the allocations within each group. At the' " tis ¢ase, the random variable corresponding to the an-

. . 7‘3/7‘
end of this step, we have a set of facts that contains foswer is given byZ = %- Unfortunately, com-

each fact € R(Q), the allocation of- to @ and the mea-  pyting even the expectation becomes difficult because of
sure value associated with Note that this step depends the appearance df’r in both the numerator and denom-
only on the query region. inator. As shown in the following theorem, we device a

Step 2: This step is specialized to the aggregation op-non-trivial algorithm for AVERAGE.
erator, and two comments are in order. First, we seek to
identify the information necessary to compute the summaTheorem 6. Let n andm be the number of partially and
rization while circumventing the enumeration of possiblecompletely allocated facts in a query region, respectively
worlds. Second, it is possible in some cases to merge thiShe exact expected value of AVERAGE can be computed in
second step with the first in order to gain further savingstime O(m + n?), with n passes over the set of candidate
e.g., the expected value of SUM can be computed thudacts.

This extra optimization step will not be discussed further.

While the above algorithm is feasible, the cost of com-
puting the exact AVERAGE is high if the number of par-
tially allocated facts forQ is high. To address this, the
The random variable corresponding to the answer for dollowing theorem shows that we can efficiently com-
SUM queryQ is given byZ = ZTGR(Q) v, Y,, wWherev, pute an approximation for the AVERAGE, given by =

51 SUM

is the value of the numerical measure for record . %
Using this expression, we can efficiently compute the =~ —"<*@ "
expectation and variance for SUM: Theorem 7. An approximate estimate for AVERAGE can

_ ) be computed in tim@(m +n) using a single pass over the
Theorem 4. Expectation and variance can be computedget of candidate facts. The relative error of the estimate is
exactly for SUM by a single pass over the set of candldat(f,]eg"gime whem < m.

facts. The expectation of the sum computed from the ex-

tended data model satisfies Sum-consistency. The assumption af < m in the theorem above is rea-
. ] . sonable for most databases since we expect that the fraction
For SUM, 5-faithfulness can be violated if the extended of facts with missing values that contribute to any query
data model was built using arbitrary allocation policies. i pe small.
We define a class of allocation policies for which we can  \we now compare our two solutions for AVERAGE,
guarantee faith_fulness. Such allocation policies will ke d namely the exact and the approximate estimate in terms of
cussed in Section 6. the requirements. First, we can show that:

Definition 17 (Monotone Allocation Policy) Let D and  Thegrem 8. The expectation of the AVERAGE computed
D' be two similar data sets with the property that the assofrom the extended data model satisfies basic faithfulness

ciated regions are identical for every pair of correspogdin pt violates Boundedness-consistency.
facts, except for a single pajir,r’), r € D,r’ € D’ such

thatreg(r’) = reg(r) U {c*}, for some cellc*. Fix an On the other hand:

allocation policyA, and letp,. . (resp.p;. ) denote the re-

sulting allocations inD (resp. D) computed with respect Theorem 9. The approximate estimate for AVERAGE de-
to A. We say thatd is a monotonicallocation policy if  fined above satisfies Boundedness-consistency and basic
De,s > pf:_rs for every facts and for every celt # ¢*. 0O faithfulness.

Monotonicity is a strong but reasonable and intuitive The above theorems show the tradeoff between being
property of allocation policies. When the database has naccurate in answering queries and being consistent. Given
imprecision, there is a unique possible world with weightthe efficiency aspects and the small relative error (under
1. But as the amount of imprecision increases, the set afeasonable conditions) for the approximate estimate, we
possible worlds will increase as well. Monotone allocationpropose using this estimate for answering queries.
policies restrict the way in which the weights for the larger
set of possible worlds are defined. In particular, as aregiog 3 ncertain Measures
gets larger, allocations for the old cells are redistridute
the new cells. In Section 2.5 we proposed LinOP as a reasonable aggrega-

tion operator for uncertain measures. We now address the
Theorem 5. The expectation of SUM satisfies Sum-issue of summarizing LinOp over the possible worlds. One
faithfulness if the allocation policy used to build the ex- approach is to compute LinOp over all the facts in all the
tended data model is monotone. worlds simultaneously, where the facts in a woflg are
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weighted by the probability of that world;. This is some- cellcis chosen by this process.uhiform allocationpolicy
what analogous to the approximate estimate for AVERAGHES one where each faetis uniformly allocated to every cell
described above. in reg(r), and is perhaps the simplest of all policies. We

_— . can show that:
Definition 18 (AggLinOp). Let Dy, Do,...D,, be the

possible worlds with weights, ws, . . . w,, respectively. Theorem 11. Uniform allocation is a dimension-
Fix a query@, and letWW (r) denote the set afs such that  independent and monotone allocation policy.
the cell to which- is mapped inD; belongs taeg(Q). Ag-

gLinOp is defined as Even though this policy is simple to implement, a draw-
back is that the size of the extended data model (which de-
ZTGR(Q) Ziew(r) VW, pends on the number of cells with non-zero probabilities)
; becomes prohibitively large when there are imprecise facts
2orer(Q) 2iew (r) Wi with large regions.

where the vector, represent the measure pdfrof [ pefinition 20 (Measure-oblivious Allocation)An alloca-

- . . tion policy is said to beneasure-oblivioug the followin
_Slmllar to the approximate estimate forAVERAGE,_ Ag- holdg LeytD be any database and Bt be obtained frogm
gLinOp can be computed efficiently, and satisfies similar '

Kinds of requirements D by possibly modifying the measure attribute values in
q ' each fact- arbitrarily but keeping the dimension attribute

Theorem 10. AggLinOp can be computed in a single passvall_Jes inr intact. Then, the allocations produced/ by the
over the set of candidate facts, and satisfies BoundednesRolicy are identical for corresponding factsinandD’. [

consistency and basic faithfulness. Strictly speaking uniform allocation is also a measure-

. .. oblivious policy. However, in general, policies in thissda
6 Allocation Policies do not require the dimensions to be independent. An ex-

In the previous section, we designed efficient algorithmg@mple of such a policy isount-based allocatiarHere, the
for various aggregation operators in the extended datflata is divided into two groups consisting of precise and
model, and proved several consistency and faithfulnesénprecise facts. LeN. denote the number of precise facts
properties. We now turn to the task of building the extendedhat map to celt. For each imprecise faetand cellc,

data model from the imprecise data via appropriate alloca- N

tion policies; i.e., design algorithms to obtain, for every Por = =——
imprecise fact and every celt € reg(r). Zc’Ereg(r) Ner

As before letd,, A,, ..., A, denote the dimension at- i ) ) . .
tributes. For any fact, recall from Proposition 1 that Thus, the allocation of imprecise facts is determined by the

reg(r) equals some-dimensional hyper-rectangte; x distrib_ution of the precise facts in the cells of the mukidi
Cy % ...C, of cells, where eaclt; is a subset of the Mensional space.

leaf nodes in doif¥;). Each celle € reg(r) is defined
by a tuple(c, ca, ..., ck) wheree; € C;. Therefore, al-
locatingr to the cellc amounts to replacing theth at-
tribute value withc; for everyi. The space of allocation A potential drawback of count-based allocation is that
policies is very large, and to facilitate the discussion, weonce the imprecise facts have been allocated, there is a
categorize allocation policies as dimension-independentrich get richer” effect. To understand this, consider a re-
measure-oblivious, or correlation-preserving. gion. Before allocation, this region has a certain distri-
bution of precise facts over the cells of the region. Af-
ter count-based allocation, it is highly conceivable thé t
distribution might be significantly different. In some case

) it may be desirable to retain the original distribution dxhi
reg(r) = C1x Gy x... Cy. Then, foreveryand everp € jio 1y the precise facts. Applying this requirement to the
C;, there exist values; (b) such that (1) .., 7%i(b) =1 antire multi-dimensional space motivates the introdurctio
and (2) ifc = (c1, ¢z, .-, cx), thenpe,r = [T;7i(ci). T of thecorrelation-preservinglass of policies.

The above definition can be interpreted in probabilisticpefinition 21 (Correlation-Preserving Allocation)Let
terms as choosingdependentlfor eachi, a leaf node; € corr() be a correlation function that can be applied to any
Ci with probabilityy;(c;). Part (1) in the above definition gatabase consisting only of precise facts. e be a
ensures that; defines a legal probability distribution on  fnction that can be used to compute the distance between
Ci. Part (2) says that allocatign . equals the probability  the results of applying cof) to precise databases.

2A summarizing estimate for uncertain measures that is gnakto Let A be any allocation pO“Cy' Forany databd3eon-

the exact estimate for AVERAGE can also be defined butis mutidered ~ Sisting of precise and imprecise facts, Ief, D5, ..., D,
here because it has the same drawbacks. be the set of possible worlds far. Letthep, ,’s denote the

Theorem 12. Count-based allocation is a measure-
oblivious and monotone allocation policy.

Definition 19 (Dimension-independent Allocationjn al-
location policy is said to bedimension independerit
the following property holds for every faet Suppose
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allocations produced byl on D. Recall by definition 15,
that thep. ,’s define a weightv; for D;, i € 1...m. The
quantity A(corr(Dy), >, w; - corr(D;)) is called thecor-
relation distanceof A with respect taD. We say that an
allocation policy A is correlation-preservingf for every
databasé), the correlation distance of with respectD is
the minimum over all policies.

O

By instantiating corr() with the pdf over dimen-
sion and measure attributesdy(, ..., Ax, M) and A
with the Kullback-Leibler divergené®y, follow-
ing Definition 21, we can obtainy; by minimizing
Dir(Po, ), wiP;), whereP; cornD;), i € 0...m.
Unfortunately, this is a difficult optimization problem sim

weights thus providing a convenient link back to thessi-
ble world semanticsFigure 4 presents the EM algorithm
for the likelihood function. The details of the fairly stan-
dard derivation are omitted in the interest of space.

Repeat until Converged: E-step For all factsr,
cellsc € reg(r), base domain element

P(0)
Zc/Greg('r) P(,[f] (O)
M-step: For all cellsc, o

2o vr(0)Q(clr, 0)
° [t+1] — ric€reg(r)
Pc (0) . Zo’ Zr:cErcg(r) vT'(O,)Q(dT? O,)

o Q(c|r, o) :

there are an exponentially large number of possible worlds.

6.1 Surrogate Objective Function

Let P denote the pdf_, w;P; in the above expression
Dk r(Po, ), w;P;), where thew;’s are determined from
the unknownp, ,'s. SinceP is a pdf, an appropriate di-
rection that is taken in statistical learning is to tré&aas a
“statistical model” and obtain the parameterglby max-
imizing the likelihood of given datd with respect taP.
We will later show how to obtain the allocation weights
once we have solved for the parameterg’ofThe advan-

tage of this method is that it also generalizes very well to

the case of uncertain measures, which we now proceed
derive below.

Recall that the value for a fixed uncertain measure at-

Figure 4: EM method

Consider now the result of the E-step where we ob-
tain Q(c|r,0). At convergence of the algorithm this rep-
resents the posterior distribution over the different galu
of ¢ € reg(r). An alternate pleasing interpretation, in our
context, is to view them as thtrial variableqSee [21]). In
either view,Q(c|r, 0), almost meets our requirements for
allocations. One complication is the added dependency on
the measure domain Each fact now has as many alloca-
tion weights as the number of possible values.of his is
inconsistent with our extended data model. However, this

n be easily rectified by marginalizigy c|r, o) overo re-
sulting in the following expression.

P (o)

tribute in factr is denoted by the vectar,., wherev,.(0) Per = Q(c|r) = Z — 7 v,(0)
is the probability associated with the base domain element ' o Do Pc[f’o] (0)

o. If v.(0) are viewed as empirical distributions induced  Ajiocation policies for numeric measures can also be de-
by a given sample (i.e., defined by frequencies of events ifjyed along the lines of the algorithm described above in a

the sample) then uncertain measures are simply summariggajightforward manner and are omitted in the interests of
of several individual observations for each fact. Consegpace,

qguently, the likelihood function for this case can written
as well. After some simple but not obvious algebra, we ob-7 Experiments
tain the following objective function that is equivalent to
the likelihood function:

1)

In this section we evaluate the main contributions of this
paper, namely our extensions to OLAP for handling impre-

ZcErcg(r) P, cision and uncertainty. To this end we designed and con-
Z Dgr | vr, W ) ducted experiments to evaluate both scalability and gualit
r The scalability experiments targeted the construction and

the querying of the extended data model; the quality ex-
periments targeted the performance of different allocatio
policies under varying characteristics of the data.

whereP, is the measure distribution for celli.e., the pdf
over the base domain)

The vast literature on nonlinear optimization [5] pro-
vid(_es _sev_eral algorithms to obtain a solution fqr the above; Scalability of the Extended Data Model
optimization problem. But our goal is to obtain the allo- ) ]
cation weights.. ., which do not appear in this objective The experiments were conducted on a 2.4GHz Pentium 4
function. Fortunately, the mechanics of the Expectationmachine with 1 GB physical memory and a single IDE disk.
Maximization (EM) algorithm [11] provides an elegant so- The back-end was a commercial relational database system
lution. As described below theual variablesin the EM  With buffer pool size set to 100 MB. No materialized views
algorithm can be naturally associated with the allocatiorPr indices were built on the data.

To provide a controlled environment for evaluation, we
used synthetically generated data consisting of 4 dimen-
sions. Experiments using both a numeric measure and an

SKullback-Leibler divergence [10] is defined over two distriions P

andQ over the same domain 3s , P(x) log g&i; .
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uncertain measure (over a base domain of size 2) wereode for each dimension. Figure 5b shows the average
conducted. All dimensions had hierarchical domains withquery running time for SUM. Since the runtime behavior of
three levels. For three of these hierarchical domains, th&inOp and AVERAGE (approximate estimate) were simi-
root of the corresponding tree had 5 children; every rootar, they are omitted in the interests of space. In general
child had 10 children each (resulting in 50 leaf nodes); thehe running time was dominated by the 1/0O cost for scan-
corresponding branching factors for the remaining dimenning the extended data model. As seen above, this is much
sion was 10 and 10, respectively (100 leaf nodes). Thushigher for Uniform than for Count or EM.

there are 12.5 million cells in the multidimensional space.

The initial data consisted of 1 million facts (density=1A2 7.2 Quality of the Allocation Policies

= 8%), each generated by choosing (with uniform proba- . -
bility) a leaf node from the appropriate hierarchy for eachhese experiments evaluate how data characteristics af-

dimension. Imprecision was introduced by replacing thefect the behavior of our proposed allocation policies. If

leaf node for a dimension with an appropriate parent in théll facts are precise, dependencies between dimensions are
hierarchy. For 50% of the imprecise facts, a second dimenPe'fectly encoded in the cell counts. As facts become im-

sion was made imprecise as well (e.g., if 10% of the factPrecise, a portion of this correlation informationis [obhe

were imprecise, 5% were imprecise in 1 dimension and 5ogtrength of this encoding agalnstsuqh loss can be measured

imprecise in 2 dimensions). as the expected number of records in each non-empty cell.
Figure 5a plots the running time for the different alloca- :N_?_delfln(re]_tht;s new (r;ot:}cl)n oftdensny pseudo—dert15|tyr|1|—

tion policies. Note that they all increase (almost) lingarl uitively, high pseudo-densily ensures no eémply cells are

with respect to the number of imprecise records. The rungrgatgd as records become Imprecise. The other cha_\rac-
inpUgristic that we chose to examine is measure correlation,

avhich captures the effect of dimension values on the mea-
sure value.
We used synthetically generated data consisting of 2

data and the other for writing out the facts to the extende
data model. For EM the first component is high, since it

is an iterative algorithm requiring multiple scans. This ex . X : . . ;
plains the reason for longer running time than Uniform angdimensions with 128 leafs in each dimension (128x128

Count which require only a single scan. The larger runninggrid) and a single un(t:)ertain measure over thedbase do”.“';‘]‘“
time for Uniform with respect to Count is due to the secondY €5, No}. We start by generating a precise data set wit
component. Since the input data density is low, Uniformthe deglred pseudo-density and measure correlatlpn. Of the
allocates to many empty cells, so the number of aIIocate&citalgr'd’.on.ly ]} Olg of 8 cell!s have dﬁta reclords (ie., (rjeg-
facts created by Uniform is significantly larger than CountUlar density is fixed at 12.5%). We then select at random
and EM. For example, with 25% imprecision, Uniform had & Percentage of records to make imprecise (between 10 -
14.5 million facts whereas Count and EM each had 2.3 mil-30%)- A record is made imprecise by ex}endmg it horizon-
lion facts. This relative difference between Uniform and t@lly over 64 cells. From the resulting imprecise dataset,

Count should increase as the input data density decrease§Xtended data models are created using different alloca-
tion policies (Uniform, Count, EM). For each extended data

1000 200 model, we compute the LinOp aggregate at each cell in the

R —— Uniform - —&— Uniform ) . . . . )
3 800 | - Count g 150 o Cpme grid. If a cell is empty, then we assign a uniform distribu-
E 600 1 2 100 tion over the uncertain measure domain (e.g., empty cells
£ ‘2‘82 ./._/’.//.ﬁ E . are assigned the value (.5, .5) in this case). The quality
o ‘ ‘ 0 metric is the average absolute difference for the results as
0 10 20 20 0 10 20 30 compared to the original precise data set.
% Imprecise % Imprecise
15 5 15
(a) Allocation Algorithm (b) Query Running Time 2 ol R4 2 o e,
Running Time Performance g %./. g3 \\/ & = -
= —&— Uniform = 2 -/.\'/.:u.mlmm = 51 A
L Lar|E) e | T
Figure 5: Performance Results s 5 s s s 5 2 3 s 15 se s
% Imprecision % Imprecision % Imprecision
(a) Low Pseudo (b) High Pseudo (c) Measure Correlated
The second experiment evaluated the performance of  Density Dataset Density Dataset Dataset

standard OLAP point queries using the extended data mod-
els created above. For example, SUM can be calculated in

SQL using the following template: Figure 6: Results for Quality Experiments

Figure 6a shows the results for an experiment demon-
; strating the effects of pseudo-density. The data was gener-
FROM fact-ta_ik_JIe, _dlm-_tables . ated so no correlation exists between the measure and di-
VHERE qualification-list GROUP BY dim-values mensions. The pseudo-density was set to 1 (i.e., each non-

To understand runtime behavior we randomly generempty cell contains a single record). The results show that
ated a total of 25 queries by choosing a random level andJniform allocation policy has a lower relative error com-

SELECT dim-values, SUM (measure * weight),
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pared to Count and EM. The reason for this is the loss of[3]
dimension-value correlation information when a record is
made imprecise. For example, if a recoiid cell cis made
imprecisec becomes empty, sincevas the only record in
that cell. During allocation, Count and EM will not allo-
cate any portion of to c. On the other hand, Uniform will
allocate some aof to ¢, resulting in a better allocation (i.e.,
one that better reflects the correct answer).

Figure 6b shows the results for a similar experiment, but
with a dataset having a pseudo-density of 4. Again, there is
no correlation between the measure and dimensions. Sinc?s]
the pseudo-density is higher, less dimension-value airel
tion information is lost as more records become imprecise. g
Thus Count and EM result in better allocations, whereas
Uniform suffers since it ignores the available correlation[10]
information and allocates to empty cells as well.

Figure 6¢ shows the results for a data set that has B1l
high correlation between the measure and dimension val-
ues. The data was generated so that records in the left he}_lsz]
of the grid have measure probability that is high 16¢s
whereas those in the right half have probability thatiséarg [13]
for No. The pseudo-density was still set to 4. The results
show that EM now significantly outperforms both Count [14]
and Uniform. This is because EM uses the correlation be-
tween the measure and dimensions while performing a”°f15]
cation, whereas Count does not. For example, consider a
recordr in the left half of the grid that is made imprecise to
overlap some cells in the right half. Count will allocate
the cells in the right half, whereas EM will allocatenly
to the cells in the left half since it notices the correlation17]
between the measure valueradnd cells in the left half.

(4

(5]
(6]

[7]

[16]

) . [18]
8 Future Directions

19
An important aspect of this paper is handling uncertain[ ]

measures as probability distribution functions (pdfs)eTh [2g
example data in Table 1 provides a conceptual view of this
model with a“pdf” type column for Brake. Under the as-
sumptions of the model discussed in this paper, adding &!
new uncertain measure (e.g., Transmission) would resu[gz]
in another column with the same typpdf” . An obvi-

ous generalization is to capture the relationships betweeﬂ?,]
these two uncertain measures. Consider a query of the type
"How likely are Brake and Transmission problems in Cam-
rys driven in Texas ?”This more complicated aggregation [24]
query requires additional dependency information between
the two uncertain measures and this can be captured as a %21]
of constraints either provided by the user or learned from
the data. More generally we believe that the approach inifg)
tiated here generalizes to handle more general aspects of
uncertainty-handling in a DBMS, and we are actively in-
vestigating this generalization. (27]
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