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Abstract
Generating databases for testing database applications

(e.g., OLAP or business objects) is a daunting task in prac-
tice. There are a number of commercial tools to automati-
cally generate test databases. These tools take a database
schema (table layouts plus integrity constraints) and table
sizes as input in order to generate new tuples. However,
the databases generated by these tools are not adequate for
testing a database application. If an application query is
executed against such a synthetic database, then the result
of that application query is likely to be empty or contain
weird results, such as a report on the performance of a sales
person that contains negative sales. To solve this problem,
this paper proposes a new technique called Reverse Query
Processing (RQP). RQP gets a query and a result as input
and returns a possible database instance that could have
produced that result for that query. RQP also has other ap-
plications; most notably, testing the performance of DBMS
and debugging SQL queries.

1. Introduction
When designing a completely new database application

or a component of such an application (e.g., some report-
ing functionality) it is necessary to generate a test database
in order to carry out functional tests on the new applica-
tion logic. There are a number of commercial and acad-
emic tools [1, 4, 5, 21] which enable the generation of a test
database for a given database schema. Beside the database
schema, some tools support the input of the table sizes and
additional rules used for data instantiation (e.g. statistical
distributions, value ranges, data repositories).

However, these tools often generate test databases which
do not reflect the semantics of the application logic that
should be tested. In other words, if we pose the SQL
queries of an application against the test database, the
SQL queries often return no or non-meaningful results.
An example of that can be shown by the following query
which is extracted from a reporting application. The query
lists the total sales of ordered line items per day, if the
discounted price was less than a certain average and more
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than a certain sum (the database schema of the application
is given in Figure 2a):

SELECT orderdate, SUM(price*(1-discount))
FROM Lineitem, Orders WHERE l_oid=oid
GROUP BY orderdate
HAVING AVG(price*(1-discount))<=100
AND SUM(price*(1-discount))>=150;

The following tables show a real excerpt of the test data-
base generated by a commercial test database generation
tool1 for the example application:

lid name price discount l oid
103132 Kc1cqZlf 810503883 0.7 1214077
126522 hcTpT8ud34 994781460 0.1 1214077
397457 5SwWn9q3 436001336 0.0 1297288

... ... ... ... ...
TableLineitem

oid orderdate
1214077 1983-01-23
1297288 1995-01-01

... ...

TableOrders

It is obvious that the query above returns an empty result
for that test database because none of the generated tuples
satisfies the complexHAVING clause (including different
aggregations on arithmetic functions). Even though some
tools allow the user to specify additional rules in order to
constrain the generated databases (e.g., constraining thedo-
main ofdiscount), those constraints are defined on the
base tables only and there are no means to control the query
results directly. Therefore, those tools can hardly deal with
the complexity of SQL and application programs; not even
with the single SQL query above.

To generate meaningful test databases for applications,
this paper proposes to take the application query and the
desired query result (in addition to the database schema)
as input and to generate a database accordingly. More for-
mally, given a QueryQ and a TableR, the goal is to find a
DatabaseD (a set of tables) such thatQ(D) = R. We call
this problemreverse query processingor RQP, for short.
RQP turns traditional query processing around. For exam-
ple, RQP is based on a reverse relational algebra (RRA).
Logically, each operator of the relational algebra has a cor-
responding operator of the reverse relational algebra that
implements its reverse function. All reverse algebra oper-
ators must respect the integrity constraints of the database
schema in order to generate correct output. Furthermore,
unlike traditional query processing, iterators in RQP are
push-based. Thus the whole data processing is started by

1We do not disclose the name of the tool for legal reasons.



scanning the query result and pushing each tuple down to
the leaves (i.e., the base tables) of the query tree.

RQP has several applications. In this paper we focus
on using RQP to generate a test database based on an in-
dividual query of an application program in order to carry
out functional tests (N.B. the generated database is not for
testing the correctness of the queries in the application) .
For example, consider an application with anif-elseblock
where theif condition relies on the resultR of a queryQ.
Given that queryQ and different resultsR (e.g. oneR for
each branch of theif-elseblock), RQP can generate differ-
ent databases to test all code paths of that application (R

can be given by the testers manually or by some code analy-
sis tools, such as [20]). For some applications, it would be
beneficial to generate one database for all queries within a
single application program and to consider other SQL state-
ments such asUPDATE statements (which is not possible
for a mock object which simulates the query results). Usu-
ally, RQP can then be applied to each query and theWHERE
clauses ofUPDATE statements individually and the union of
all RQP results can be used as a test database for the whole
application. For some complex applications, the union of
RQP results may not be adequate and thus we have to merge
the RQP generated databases in order to fully test all the
facets of an application. Currently, based on the result of
this work, we are devising a set of formal criteria for such
database merging; however, presenting these criteria is be-
yond the scope of this paper.

Another application of RQP is to generate test databases
in order to test the performance of a RDBMS forany user
defined benchmark queries. In this application, in addition
to allowing the user to specify the target database size like
existing commercial test database generation tools, users
can specify thesize of the query resultsand theselectivity
of each predicate. This way, the performance of a RDBMS
can be studied thoroughly from a totally different angle.

There are a few more possible RQP applications. For
example, we can use RQP to debug SQL queries, or to gen-
erate databases from different materialized views in order
to test the confidentiality of the view data [19]. A detailed
discussion of all RQP applications can be found in [3].

The remainder of this paper is organized as follows: Sec-
tion 2 defines the problem and gives an overview of RQP.
Section 3 describes the logical reverse relational algebra
for RQP. Section 4 presents the physical implementation of
RRA for functional testing. Section 5 describes the results
of the experiments and Section 6 discusses related work.
Section 7 contains conclusions and future work.

2. RQP Overview

2.1. Problem Statement

Given an SQL QueryQ, the SchemaSD of a relational
database (including integrity constraints), and a TableR
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Figure 1. RQP Architecture

(called RTable), find a database instanceD such that:

R = Q(D)

andD is compliant withSD and its integrity constraints.
In general, there are many different database instances

which can be generated for a givenQ andR. Depending
on the application, some of these instances might be better
than others. For functional testing, RQP should generate
a smallD that satisfies the correctness criteria above, so
that the running time of tests is reduced. Thus, the physical
implementation of the operators presented in Section 4 tries
to generate a minimalD.

2.2. RQP Architecture

Figure 1 gives an overview of the general architecture to
implement reverse query processing. It is applicable to all
RQP applications such as functional testing or performance
testing. A query is (reverse) processed in four steps by the
following components.

1. Parser: The SQL query is parsed into a query tree that
consists of operators of the relational algebra. This parsing
is carried out in exactly the same way as in a traditional SQL
processor. What makes RQP special is, that this query tree
is translated into areverse query tree. In the reverse query
tree, each operator of the relational algebra is translatedinto
a corresponding operator of thereverse relational algebra.
The reverse relational algebra is presented in more detail in
Section 3. In fact, in a strict mathematical sense, the reverse
relational algebra is not an algebra and its operators are not
operators because they allow different outputs for the same
input. Nevertheless, we use the termsalgebraandoperator
in order to demonstrate the analogies between reverse and
traditional query processing.
2. Bottom-up Query Annotation: The bottom-up query
annotation phase in Figure 1 annotates each operator of a
reverse query tree with aninput schemaSIN and anoutput
schemaSOUT . The input and output schema are defined



by a set of attributes (names and data types), integrity con-
straints, and functional dependencies. RQP considers the
integrity constraints of SQL (primary key, unique, foreign
key, not null, and check) as well as aggregation constraints
[22]. By enhancing [16], this step annotates each operator
with a set of these integrity constraints that its input and
output must fulfill. It is carried out in a bottom-up fashion,
i.e., the annotation starts from the leaves (tables) up to the
top of the query.SIN andSOUT are necessary for the top-
down data instantiation (Step 4): in this step, each operator
of the reverse query tree can check, if its input satisfies the
constraints of its subqueries and the database schema (by
SIN ). Moreover, none of the operatorsgenerates any out-
put data that violates any constraints(by SOUT ). Due to
space constraints, we explain the details in [3].

3. Query Optimization: In the last step of compilation, the
reverse query tree is transformed into anequivalentreverse
query tree that is expected to satisfy a certain optimization
goal (e.g., running time and/or database size). Traditional
query optimization is based on result-equivalence: after a
rewrite the same results should be produced. Query opti-
mization for RQP can be much more aggressive: it is ac-
ceptable to generate a differentD for the same input as long
as the criterionR = Q(D) is fulfilled. As a result, RQP al-
lows more rewrites. More details on query optimization in
RQP can be found in [3]. For example, [3] shows how to
fully unnest nested SQL queries for optimization. More-
over, it shows that it is not important to carry out join re-
ordering because joins in RQP are mostly cheap.

4. Top-down Data Instantiation: At run-time, the anno-
tated reverse query tree is interpreted using the RTableR

as input. Just as in traditional query processing, there is
a physical implementation for each operator of the reverse
relational algebra that is used for reverse query execution.
The physical algebra in this paper is to generate aD for
functional testing which tries to be minimal. Generating
databases for performance testing needs a different physi-
cal algebra. As part of this step, a model checker (more
precisely, the decision procedure of a model checker) [6] is
used in order to generate data. The physical algebra in this
paper is fully described in Section 4.

In many applications, queries have parameters (e.g.,
bound by a host variable). In order to process such queries,
values for the query parameters must be provided as input
to Top-down data instantiation. For functional testing, itis
possible to generate several test databases with differentpa-
rameter settings derived from the program code in order to
test different code paths. In this case, the first three phases
of query processing only have to be carried out once, and
the Top-down data instantiation can use the same annotated
reverse query tree for each set of parameter settings.

2.3. RQP Example

Figure 2 gives a detailed example of reverse query
processing. Figure 2a shows the database schema (defini-
tion of theLineitem andOrders tables with their in-
tegrity constraints) and an SQL query that asks for the sales
(SUM(price)) by orderdate. The query is parsed and
optimized and the result is a reverse query tree with opera-
tors of the reverse relational algebra (see Figure 2b). This
tree is very similar to the query tree used in traditional query
processors. The differences are that (1) operators of the re-
verse relational algebra (Section 3) are used and (2) that the
data flow through this tree is from top to bottom (rather than
from bottom to top).

The data flow at run-time is shown in Figure 2c. Starting
with an RTable that specifies that two result tuples should
be generated (Table (i) at the top of Figure 2c), each oper-
ator of the reverse relational algebra is interpreted by the
Top-down data instantiation component in order to pro-
duce intermediate results of reverse query processing. In
this phase, RQP uses the decision procedure of a model
checker in order to guess appropriate values (e.g., possible
AVG(price) values which are compliant with the predi-
cate of theHAVING clause of the query). Of course, sev-
eral solutions are possible and the decision procedure of the
model checker chooses possible values that match all con-
straints discovered in the Bottom-up annotation step. The
final result of RQP in this example are possible instantia-
tions for theLineitem andOrders tables. It is easy to
see that these instantiations meet the integrity constraints of
the database schema and that (forward) executing the SQL
query using these instantiations gives the RTable as a result.

3. Reverse Relational Algebra

The Reverse Relational Algebra (RRA) is a reverse vari-
ant of the traditional relational algebra [7] and its extensions
for group-by and aggregation [10]. Each operator of the re-
lational algebra has a corresponding operator in the reverse
relational algebra; the symbols are the same (e.g.,σ for se-
lection), but the operators of the RRA are marked asop−1

(e.g.,σ−1). Furthermore, the following equation holds for
all operators and all valid tables R:

op(op−1(R)) = R

However, reverse operators in RRA should not be confused
with inverseoperators becauseop−1(op(S)) = S is not
necessarily true for some valid tablesS.

In the traditional relational algebra, an operator has 0 or
more inputs and produces exactly one output relation. Con-
versely, an operator of the RRA has exactly one input and
produces 0 or more output relations. Just as in the tradi-
tional relational algebra, the operators of the RRA can be
composed. As shown in Figure 2b, the composition is car-
ried out according to the same rules as for the traditional



CREATE TABLE Orders(
oid INTEGER PRIMARY KEY,
orderdate DATE);

CREATE TABLE Lineitem (
lid INTEGER PRIMARY KEY,
name VARCHAR(20),
price FLOAT,
discount FLOAT

CHECK (1>= discount >=0),
l_oid INTEGER REFERENCES Orders);

SELECT SUM(price)
FROM Lineitem, Orders
WHERE l_oid=oid
GROUP BY orderdate
HAVING AVG(price)<=100;
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orderdateχ
−1
SUM(price),AV G(price)

⋊⋉
−1
l oid=oid

π
−1
SUM(price)

SUM(price)
100
120

(i) RTable

orderdate SUM(price) AVG(price)
1990-01-02 100 100
2006-07-31 120 60

(ii) Output ofπ−1; Input ofσ−1

orderdate SUM(price) AVG(price)
1990-01-02 100 100
2006-07-31 120 60

(iii) Output of σ−1; Input ofχ−1

lid name price discount l oid oid orderdate
1 productA 100.00 0.0 1 1 1990-01-02
2 productB 80.00 0.0 2 2 2006-07-31
3 productC 40.00 0.0 2 2 2006-07-31

(iv) Output ofχ−1; Input of⋊⋉−1

lid name price discount l oid
1 productA 100.00 0.0 1
2 productB 80.00 0.0 2
3 productC 40.00 0.0 2

Lineitem

oid orderdate
1 1990-01-02
2 2006-07-31

Orders

(a) Example Schema and Query (b) Reverse Relational AlgebraTree (c) Input and Output of Operators

Figure 2. Example Schema and Query for RRA

relational algebra. As a result, it is very easy to constructa
reverse query plan for RQP by using the same SQL parser
as for traditional query processing.

The close relationship between RRA and the traditional
relational algebra has two consequences: (1) The reverse
variants of the basic operators of the (extended) relational
algebra (selection, projection, rename, Cartesian product,
union, aggregation, and minus) form the basis of the RRA.
All other operators of the RRA (e.g., reverse outer joins)
can be expressed as compositions of these basic operators.
(2) The relational algebra has laws on associativity, commu-
tativity, etc. on many of its operators. Analogous versions
of most of these laws apply to the RRA. Some laws are
not applicable to the RRA (e.g., applying projections before
joins). These laws are listed in [16] and must be respected
for RQP optimization (see [3] for details).

The remainder of this section defines the seven basic op-
erators of the RRA The definition of RRA operators is in-
dependent of the application. A physical implementation of
RRA for generating test databases for functional testing is
described in Section 4.

3.1. Reverse Projection (π−1)

The reverse projection operatorπ−1 generates new
columns according to itsoutput schemaSOUT . As for all
operators of the reverse relational algebra,π(π−1(R)) = R

must apply for all validR.
In Figure 2, π−1 creates theorderdate and

AVG(price) columns. In order to generate correct val-
ues for these columns,π−1 needs to be aware of the con-
straints imposed by the aggregations (SUM andAVG) and
theHAVING clause of the query. That is, the values in the
AVG(price) column must be smaller or equal to 100 so
that theσ−1 does not fail. Furthermore, the value of the
orderdate column must be unique and the values in the

AVG(price) andSUM(price) columns must match so
that the reverse aggregation does not fail (that is why we
need the bottom-up phase to computeSOUT that includes
all the necessary constraints). In this example, there are
no other integrity constraints from the database schema that
must be respected as part of the reverse projection. In gen-
eral, such constraints must also be respected in an imple-
mentation of theπ−1 operator. If it is impossible to generate
values that fulfill all the constraints, it returnserror.

3.2. Reverse Selection (σ−1)

The simplest operator of the RRA is the reverse selec-
tion: It either returnserror or a superset (or identity) of
its input. The additional tuples not in the input must fulfill
the negation of the selection predicate.Error is returned if
the input of the reverse select operator does not match the
selection predicate. For example, if the query asks for all
employees with a salary greater than 10,000 and the RTable
contains an employee with a salary of 1,000, thenerror is
returned. Another example ofσ−1 is given in Figure 2c. In
that example no additional tuples are added to the output of
σ−1 (Table (iii) in Figure 2c).

3.3. Reverse Aggregation (χ−1)

Like theπ−1 operator, the reverse aggregation operator
generates columns. Furthermore, the reverse aggregation
operator possibly generates additional rows in order to meet
all constraints of its aggregate functions. Again, as for all
RRA operators, the goal is to make sure thatχ(χ−1(R)) =
R and that the output is compliant with all constraints of the
output schema (functional dependencies, predicates, etc.).
If this is not possible, then the reverse aggregation fails and
returnserror.

Tables (iii) and (iv) of Figure 2c show the input and out-
put of reverse aggregation of the running example. In that



example, the values of thelid, name, anddiscount
columns are generated obeying the integrity constraints of
theLineitem table (top of Figure 2a). The value of the
price column is generated using the input (the result of
the reverse selection) and the intrinsic mathematical prop-
erties of the aggregate functions. The values ofl oid and
oid are generated obeying the constraints imposed by the
join predicate of the query and theprimary key con-
straint of theOrders table.

3.4. Other operators
The reverse join operator (⋊⋉

−1) completes the running
example. It takes one relation as input and generates
two output relations. Like all other operators, the reverse
join makes sure that its outputs meet the specified output
schemas (the database schemas for theLineitem and
Orders tables in the example of Figure 2) and that the
join of its outputs gives the correct result. If it is not pos-
sible to fulfill all these constraints, anerror is raised. The
only thing that is special about the⋊⋉−1 operator is that it
has two outputs. The reverse Cartesian product is a variant
of the reverse join withtrueas a join predicate.

The reverse union operator (∪−1) takes one relation as
input and generates two output relations. According to the
constraints of the two output schemas of the two output re-
lations (computed during the bottom-up query annotation
phase), the reverse union distributes the tuples of the input
relation accordingly to one or even to both output relations.
If the input of a reverse union involves a tuple that does not
fulfill the constraints of any branch, then the reverse union
fails and returnserror.

The reverse minus operators (−−1) always routes the in-
put tuples to the left branch or returns an error, if this is not
possible. Furthermore, it is possible that the−−1 generates
additional tuples for both branches.

The reverse rename operator has the same semantics as
in the traditional relational model. Thus, only the output
schema is affected; no data manipulation is carried out. Ex-
amples of all these operators are shown in [3].

4. Top-down Data Instantiation
The Top-down data instantiation component in Figure 1

interprets the optimized reverse query execution plan us-
ing an RTableR and possibly query parameters as input. It
generates a database instanceD as output. The generated
databaseD fulfills the constraints of the database schema
and the overall correctness criterion of RQP. If this is not
possible, thenerror is returned.

The reverse query execution plan consists of a set of
physical RRA operators. As in traditional query process-
ing, each operator in the execution plan is implemented as
an iterator [11]. Unlike traditional query processing, the
iterators are push-based. That is, whenever an operator pro-
duces a tuple, it calls thepushNextmethod of the relevant

child (output) operator and continues processing once the
child operator is ready. Thus, the whole data instantiation
is started by scanning the RTable and pushing each tuple
of the RTable one at a time to the children operators of the
reverse query plan. Such a push-based model is required be-
cause operators of the RRA can have multiple outputs; the
alternative would be to implement a pull-based model with
buffering which is significantly more complex [17]. All iter-
ators have the same interface which contains the following
three methods:
• open(): prepare the iterator for producing data as in tra-
ditional query processing;
• pushNext(Tuplet): (a) receive a tuplet, (b) check if t
satisfies the input schemaSIN of the operator, (c) produce
zero or more output tuples, and (d) for each output tuple,
call thepushNextmethod of the relevant children operators;
• close(): clean up everything as in traditional query
processing.

As in traditional query processing, the set of physical
RRA operators is called the physical reverse relational alge-
bra. Each logical RRA operator may have different counter-
parts in the physical RRA. The choice is application depen-
dent; for example, different physical implementations are
used for SQL debugging and for performance testing. This
section presents the physical algebra of SPQR. SPQR is a
RQP prototype for functional testing. The physical algebra
of SPQR tries to keep the generated database as small as
possible. This section presents the physical algebra used in
SPQR that generates databases for functional testing which
strictly follows the RRA in Section 3.This physical algebra
tries to keep the generated database as small as possible.
The following subsections show how the operators produce
tuples in theirpushNextmethod. All other aspects (e.g.,
openandclose) are straightforward so that the details are
omitted for brevity.

4.1. Reverse Projection in SPQR
In SPQR, the reverse project operator produces exactly

one output tuple for each input tuple. In order to generate
values for new columns, the reverse project operator calls
the decision procedure of a model checker. The idea is
to create a formula which represents the constraints which
have to be satisfied by the output. These constraints repre-
sent the values known from the input tuple on the one hand
and the output schema on the other hand. For example, if
the input schema has one column (A), the input tuple is〈3〉,
and the output schema has two columns (A andB) and an
additional constraint thatA + B < 30, then the following
constraint formula is generated:

A = 3 & A+B < 30
This constraint formula is passed to the model checker. In
SPQR, we treat the model checker as a black box. It takes
a constraint formula as input and returns one of the possi-
ble data instantiations on all variables as output (if the con-



π−1.pushNext(Tuple t)

(1) //Instantiate output data
(2) (I,count):=instantiateData(t,SOUT )
(3) IF(I=NULL) //no instantiation found
(4) RETURN error
(5) ELSE
(6) tout:=createTuple(I,SOUT ,1)
(7) //push down the new tuple tout

(8) nextOperator.pushNext(tout)
(9) END IF

Figure 3. Method pushNext of π−1

straint formula is satisfiable). In this example, the model
checker would return, say,A = 3, B = 20 and these values
would be used to generate an output tuple.

Figure 3 shows the pseudocode of how theπ−1 operator
generates an output tuple from an input tuple. The most im-
portant statement is the call of theinstantiateDatafunction
(Line 2) which does the actual work. Since this function is
also used by the implementation of theχ−1 operator, it has
two return parameters: one which defines the instantiated
data (variable, value pairs) and another which indicates how
many tuples are used to solve aggregations which might be
part of the formula (see below). The second return value is
only needed for theχ−1 operator so that it can be ignored
for the moment. If the call toinstantiateDatawas success-
ful (i.e., I 6= NULL in Line 3), then a new output tuple is
created according to the output schema of theπ−1 opera-
tor and passed to the next reverse operator (Lines 6 to 8).
Otherwise,error is returned (Line 4).

The pseudocode of a simplified version of theinstanti-
ateDatafunction is shown in Figure 4. This function cre-
ates a constraint formulaL (Line 9) following the semantics
of the reverse operator and executes the decision procedure
of the model checker onL (Line 10). As part of the cre-
ation of the constraint formula, restrictions of the model
checker need to be taken into account. For example, the
model checker used in the performance experiments (Sec-
tion 5) does not support SQL numbers and dates. As a
result, all SQL numbers and dates must be converted into
(long) integers and the constraints must be adjusted accord-
ingly. Furthermore, arithmetic expressions (e.g.,A + B)
which might appear in the input and output schemas of the
reverse projection must be taken into account.

The most complex part of theinstantiateDatafunction
deals with the generation of columns that involve aggrega-
tions. In Figure 2, for example, theπ−1 operator needs
to generate values for theAVG(price) column. In or-
der to generate correct values, theinstantiateDatafunction
needs to guess how many tuples are aggregated by the ag-
gregate function; for instance, two tuples are aggregated for
the second tuple of the RTable in Figure 2. The two tu-
ples are generated by theχ−1 operator, but theπ−1 oper-
ator which only generates one output tuple per input tuple
must be aware of this fact in order not to generate values
that cannot be matched by theχ−1 operator. Unfortunately,

instantiateData(Tuple t, Schema SOUT )

Output:
-instantiation I //data instantiation
-int n //number of tuples for aggregation

(1) //number of tuples for aggregation
(2) IF t includes COUNT of aggregation
(3) count,maxcount:=COUNT value in t

(4) ELSE //USER THREHOLD=1 if no aggregation
(5) count:=1; maxcount:=USER THRESHOLD
(6) END IF
(7) FOR(n=count TO maxcount)
(8) //Create constraint formula L

(9) L:=createConstraint(t,SOUT ,n)
(10) I:=decisionProcedure(L)
(11) IF(I!=NULL) RETURN (I,n)
(12) END FOR //Trial-and-error
(13) RETURN (NULL,0)

Figure 4. Function instantiateData

today’s publicly available model checkers have not been de-
signed for aggregation so that this guessing must be carried
out as part of theinstantiateDatafunction in a trial-and-
error phase (Lines 7 to 12). The guessing iteratively tries
different values ofn (the number of tuples aggregated) and
calls the decision procedure for each value until the decision
procedure of the model checker was successful to instanti-
ate data.

Continuing the example in Figure 2 for the sec-
ond tuple of the RTable (SUM(price) = 120), the
following formula is generated forn = 1:2
sum price=120 &
orderdate!=19900102 & avg price<=100 &
sum price=price1 & avg price=sum price/1

This formula is given to the decision procedure of the model
checker and obviously, the model checker cannot find val-
ues for the variablesprice1 andavg price that meet all
constraints. In the second attempt forn = 2, the following
formula is passed to the decision procedure:
sum price=120 &
orderdate!=19900102 & avg price<=100
sum price=price1+price2 & avg price=sum price/2

This time, the decision procedure finds an instantiation:3

sum price=120, avg price=60,
price1=80, price2=40,
orderdate=20060731

From this instantiation, the values oforderdate,
avg price, andsum price are used in order to generate
the output tuple of the reverse project operator. In the SPQR
prototype, the maximum number of attempts (maxcount in
Figure 4) can be constrained by the user in order to make
sure that the whole process does not run for ever. More-
over, all the guessing is not necessary, if the query involves
a COUNT aggregation, because the values (or constraints)
of the correspondingCOUNT column in the tuple (t) can be
used (Lines 2 and 3 of Figure 4). Furthermore, in order

2The constraint onorderdate is generated becauseorderdate is
the primary key of the output schema and, thus, a differentorderdate
value must be generated for theSUM(price) = 120 than for the
SUM(price) = 100 tuple. 19900102 is the integer representation for
the date January 2, 1990, theorderdate value of theSUM(price) =
100 tuple.

320060731 is the integer representation of the date July 7, 2006.



χ−1.pushNext(Tuple t)

(1) //Instantiate data
(2) (I,count):=instantiateData(t,SOUT )
(3) IF(I=NULL) //no instantiation found
(4) RETURN error;
(5) ELSE
(6) FOR(n=1 TO count)
(7) tout :=createTuple(I,SOUT ,n)
(8) nextOperator.pushNext(tout)
(9) END FOR
(10) END IF

Figure 5. Method pushNext of χ−1

to avoid the guessing, several optimizations can be applied
(Section 4.5). These optimization techniques work very
well so that in practice guessing is eliminated very often;
in fact, the experimental results in Section 5 show that all
guessing is eliminated by the proposed optimization for the
whole TPC-H benchmark.

The pseudocode of Figure 4 is a simplification for the
special case that there are no nested aggregations (e.g.,
SUM(AVG(price))) and no joins on aggregated values
(e.g., aggregations in several subqueries). However, the
code can easily be generalized for all cases. This gener-
alization is not shown because it is fairly straightforward.
SPQR indeed implements such a generalized version of the
instantiateDatafunction.

4.2. Reverse Aggregation in SPQR

The reverse aggregation operator can be implemented in
an analogous way to the reverse projection. The difference
is that while theπ−1 operator only guesses how many tuples
are potentially involved in an aggregation, theχ−1 operator
actually generates these tuples. The key idea to use the de-
cision procedure of a model checker, however, is the same.

Figure 5 shows the pseudo-code. TheinstantiateData
function is called in the same way as forπ−1. The only dif-
ference is that the return parametercount is now initialized
(Line 2) which defines the number of output tuples. If the
instantiateDatafunction was successful, thencount tuples
are generated (Lines 6 to 9) using the values returned by
the instantiateDatafunction. If not, thenerror is generated
(Lines 3 and 4). Again, an example that shows this code in
action can be seen in Figure 2c (Tables (iii) and (iv)).

4.3. Other Operators in SPQR

The reverse join operator can be implemented in differ-
ent ways, depending on the join predicate. The simplest
(and cheapest) implementation is the implementation of an
equi-join that involves a primary key or an attribute with
a unique constraint in the join predicate. Such joins are the
most frequent joins in practice. They can be implemented as
a simple projection with duplicate elimination. The imple-
mentation of general joins and Cartesian products is more
complex; the full algorithms are given in [3]. In any case,
the implementation of reverse joins and Cartesian products

does not involve calls to the model checker. So these oper-
ators are much cheaper thanπ−1 andχ−1.

The other operators of the reverse relational algebra (re-
verse selection, rename, minus, and union) are trivial to im-
plement. For example, the reverse selection can be imple-
mented as the identity function. Due to space constraints,
the implementation details for these operators are given in
[3]. [3] also contains some fine points on the implemen-
tation of the reverse projection and aggregation operator.
Moreover, [3] also shows that there is a limitation on imple-
menting some physical RRA operators: If the same data-
base table is referenced multiple times in a reverse query
tree, then the physical implementations ofσ−1, ⋊⋉

−1 and
−−1 are not allowed to generate additional tuples for this
table. This limitation does not affect the physical RRA in
this paper as these operators generate no additional tuples
in order to keepD as small as possible. But this limita-
tion does affect physical algebras which generate additional
tuples (e.g., the physical algebra for performance testing).

4.4. Processing Nested Queries

In order to reverse process a nested query, SPQR uses
the concept of nested iterations (with specialapply oper-
ators) which are known from traditional query processing
[9], in a reverse way: The inner subquery can be thought of
as a reverse query tree whose input is parameterized on val-
ues generated for correlation variables of the outer query.
Just as in traditional query processing, reverse processing
of nested queries is expensive: it has quadratic complexity
with the size of the RTable.

4.5. Optimization of Data Instantiation

The previous subsections showed that reverse query
processing heavily relies on calls to a model checker.
Unfortunately, those calls are expensive. Furthermore,
the cost of a call grows with the length of the formula; in
the worst case, the cost is exponential to the size of the
formula. The remainder of this section lists techniques in
order to reduce the number of calls to the model checker
and to reduce the size of the formulae (in particular, the
number of variables in the formulae). The optimizations
are illustrated using the example of Figure 2.

Definition - Independent attribute: An attribute a is
independentwith regard to an output schemaSOUT of an
operator iffSOUT has no integrity constraints limiting the
domain ofa anda is not correlated with another attribute
a′ (e.g. bya > a′) which is not independent.

Definition - Constrictive independent attribute: An
attributea is constrictive independent, if it is independent
with regard to an output schemaSOUT disregarding certain
optimization-dependent integrity constraints.

The following optimizations use these definitions:



OP 1 - Default-value Optimization: This optimization as-
signs a default (fixed) value to an independent attributea.
The default value assigned toa depends on the type of the
attribute. Attributes which use this optimization are not
included in the constraint formula. An example attribute
which could use this optimization is the attributename of
Lineitem; it could use a default value; e.g., “product”.
OP 2 - Unique-value Optimization: This optimization as-
signs a unique increment counter value to a constrictive in-
dependent attributea, which is only bound by unique or
primary key constraints. Here, the optimization-dependent
integrity constraints, which are disregarded by the constric-
tive independent attributea, are unique and primary key
constraints. Attributes which use this optimization are not
included in the constraint formula. In the running example,
values for thelid attribute could be generated using this
optimization. If another attributea′ of the same schema ex-
ists which is correlated by equality (e.g.a = a′ from an
equi-join) anda′ is an independent or a constrictive inde-
pendent attribute which is only bound by unique or primary
key constraints, then attributea′ is set to the same unique
value asa and constraints involvinga′ need not be included
in calls to the model checker either.
OP 3 - Single-value Optimization: This optimization can
be applied to a constrictive independent attributea which is
only bound byCHECK constraints. An example of such an
attribute is the attributediscount of Lineitem. Such
attributes are only included in a constraint formula, the first
time the top-down phase needs to instantiate a value for
them. Afterwards, the instantiated value is reused.
OP 4 - Aggregation-value Optimization: This optimiza-
tion can be applied to constrictive independent attributesa

which are involved in an aggregation. If the attributea is
used in an aggregation function, e.g.,SUM(a) and a result
value for the aggregation function is given, then we can use
the following arithmetics to instantiatea directly:

1. If SUM(a) is an attribute in the operator’s input
schema,MIN(a) andMAX(a) are not in the opera-
tor’s input schema, anda has type float: Instantiate
a value fora by solving a=SUM(a)/n with n the
number of tuples used to solve the aggregation in the
instantiateData function. In this case, no vari-
ablesa1, a2, . . . , an need to be generated and used in
the constraint formula passed to the model checker.

2. Same as (1), butMIN(a) or MAX(a) are in the
operator’s input schema, andn ≥ 3: Use val-
ues for MIN(a) or MAX(a) once to instantiate
a. Instantiate the other values fora by solving
a=(SUM(a)-MIN(a)-MAX(a))/(n-2).

3. Same as (1), buta is of data type integer: Again, we
can directly computea by solvingSUM(a)=n1×a1+
n2 × a2, wherea1=⌊sum(a)/n⌋, a2=⌈sum(a)/n⌉,
n1=n − n2 andn2=(SUM(a) modulo n).

4. If only COUNT(a) is in the operator’s input schema,
a can be set using the Default-value optimization (OP
1) becausea is independent in this case.

OP 5 - Count heuristics: Unlike the previous four opti-
mizations, this optimization does not find instantiations.In-
stead, this optimization reduces the number of attempts for
guessing the number of tuples (n in Figure 4) to reverse
process an aggregation by constraining the value ofn. The
heuristics for this purpose are shown below. The theoretical
foundations for these heuristics are given in [22].

1. If SUM(a) andAVG(a) are attributes of the opera-
tor’s input schema, thenn=SUM(a)/AVG(a).

2. If SUM(a) andMAX(a) are attributes of the opera-
tor’s input schema, thenn ≥ SUM(a)/MAX(a) (if
SUM(a) andMAX(a) ≥ 0; if SUM(a) andMAX(a)
≤ 0 usen ≤ SUM(a)/MAX(a)).

3. If SUM(a) andMIN(a) are attributes of the opera-
tor’s input schema, thenn ≤ SUM(a)/MIN(a) (if
SUM(a) andMIN(a) ≥ 0; if SUM(a) andMIN(a)
≤ 0 usen ≥ SUM(a)/MIN(a)).

OP 6 - Tolerance on precision:Depending on the applica-
tion of RQP, tolerances can be exploited in order to speed
up model checking. That is, rather than, say, specifyinga
= 100, a more flexible constraint90 ≤ a ≤ 110 can
be used. Of course, this optimization is only legal for cer-
tain applications. Our prototype, SPQR has a user-defined
tolerance range which is set to 0 percent by default.
OP 7 - Memoization: Another general optimization tech-
nique is to cache calls to the model checker. For example,
π−1 andχ−1 often solve similar constraints and carry out
the same kind of guessing. In Figure 2, for instance, the re-
sults of guessing for theπ−1 operator can be re-used by the
χ−1 operator. Memoization at run-time has been studied in
[14] for traditional query processing; that work is directly
applied in SPQR.

5. Performance Experiments and Results
This section presents the results of performance exper-

iments with our prototype system SPQR and the TPC-H
benchmark [2]. We used TPC-H in order to show that SPQR
can reverse process complex SQL queries and that SPQR
scales for different sizes of generated databases.

The SPQR system was implemented in Java 1.4 and in-
stalled on a Linux AMD Opteron 2.2 GHz Server with 4 GB
of main memory. In all experiments reported here, SPQR
was configured to allow 0 percent tolerance; that is, OP
6 of Section 4 was disabled. As a backend database sys-
tem, PostgreSQL 7.4.8 was used and installed on the same
machine. As a decision procedure, Cogent [8] was used.
Cogent is a decision procedure that is publicly available
and has been used in several projects world-wide. For our
purposes, it was configured to generateerror, if numerical
overflows occurred.



100M 1G 10G

Query RTable Generated RTable Generated RTable Generated
1 4 600,572 4 6,001,215 4 59,986,052
2 44 220 460 2,300 4,667 23,335
3 1216 3,648 11,620 34,860 114,003 342,009
4 5 10,186 5 105,046 5 1,052,080
5 5 30 5 30 5 30
6 1 1 1 1 1 1
7 4 24 4 24 4 24
8 2 32 2 32 2 32
9 175 1,050 175 1,050 175 1,050

10 3767 15,068 37,967 151,868 381,105 1,524,420
11 2541 7,623 1,048 3,144 289,022 867,066
12 2 6,310 2 61,976 2 621,606
13 38 162,576 42 1,629,964 46 16,298,997
14 1 4 1 4 1 4
15 1 2 1 2 1 2
16 2762 23,264 18,314 236,500 27,840 2,372,678
17 1 3 1 3 1 3
18 5 15 57 171 624 1,871
19 1 2 1 2 1 2
20 21 105 204 1,020 1,968 9,840
21 47 2,325 411 20,705 4,009 197,240
22 7 1,282 7 12,768 7 127,828

Table 1. Size of RTable/Generated D (rows)

The TPC-H benchmark is a decision support benchmark
and consists of 22 business oriented queries and a database
schema with eight tables. The queries have a high degree
of complexity: all of them include at least one aggregate
function with a complex formula, and many queries involve
subqueries. Some queries (e.g., Q11) are parametrized and
their results and running times depend on random settings
of the parameters. The experiments were carried out in the
following way: First, a benchmark database was generated
using thedbgenfunction as specified in the TPC-H bench-
mark. As scaling factors, we used 0.1 (100 MB database;
860K rows), 1 (1 GB; 8.6 million rows), and 10 (10 GB;
86 million rows). Then, the 22 queries were run, again as
specified in the original TPC-H benchmark. The query re-
sults were then used as inputs (RTables) for reverse query
processing of each of the 22 queries. We measured the size
of the resulting database instance for each single query and
the running time of reverse query processing.

5.1. Size of Generated Databases
Table 1 shows the size of the databases generated by

SPQR for all queries on the three scaling factors. For
queries which include an explicit or implicit4 COUNT value
in R, the size of the generated database for different scaling
factors depends on that COUNT value. For example, Q1
generates many tuples (600,572 tuples for SF=0.1) from a
small RTableR because Q1 is an aggregate query where
R explicitly defines big COUNT values for each input tu-
ple. For those queries which do not define a COUNT value,
only a small number of tuples are generated because the
trial-and-error phase starts from creating one output tuple
per input tuple (e.g., Q6). In that case, the size of the gen-
erated database is independent of the scaling factor. As a
summary, we see that the generated databases are already

4Implicit means that the COUNT value can be calculated by the opti-
mization ruleOP 5 in Section 4.5.

Query #M-Inv MC QP DB Total

1 4 6:06 12:01 8:42 26:51
2 44 0:02 < 1ms 0:21 0:24
3 1216 18:55 0:14 0:11 19:20
4 5 < 1ms 0:05 0:14 0:20
5 10 0:11 < 1ms < 1ms 0:12
6 2 0:1 < 1ms < 1ms 0:02
7 8 0:9 < 1ms 0:01 0:10
8 12 0:13 < 1ms 0:02 0:15
9 175 4:17 0:02 0:03 4:23

10 3767 55:13 0:42 0:37 56:33
11 2541 41:43 0:13 0:14 42:11
12 3155 6:57 0:16 0:11 7:25
13 21 < 1ms 1:38 1:16 2:56
14 6 0:07 < 1ms 0:01 0:08
15 3 0:03 < 1ms < 1ms 0:03
16 0 < 1ms 0:15 0:14 0:29
17 2 0:01 < 1ms < 1ms 0:02
18 15 < 1ms < 1ms < 1ms 0:01
19 2 0:01 < 1ms < 1ms 0:02
20 42 0:20 < 1ms < 1ms 0:21
21 465 1:34 0:04 0:05 1:43
22 641 0:23 0:01 0:01 0:26

a) SF=0.1

Total Total

207:11 2054:19
0:47 4:02

183:49 1819:48
2:26 24:15
0:12 0:12
0:01 0:01
0:10 0:09
0:17 0:14
4:33 10:20

566:45 5639:13
18:15 4472:00
83:09 719:56
27:47 276:05
0:08 0:15
0:03 0:04
4:04 36:37
0:02 0:08
0:10 1:54
0:02 0:02
3:24 32:27

14:44 140:47
4:08 42:00

b) SF=1 SF=10

Table 2. Running Time (mm:ss): Varying SF

as small as possible. Huge databases are only generated by
SPQR, if the query result explicitly states the size.

5.2. Running Time (SF=0.1)

Table 2a shows the running times of SPQR for the TPC-
H benchmark with the scaling factor 0.1. In the worst case,
theTotal running time is up to one hour (Query 10). How-
ever, most queries can be reverse processed in a few sec-
onds. Table 2a also shows the cost break-down of reverse
query processing.QP is the time spent processing tuples in
SPQR (e.g., constructing the constraint formulae and call-
ing thepushNextfunction). For all queries (except Q1), this
time is below a minute. Q1 is an exception, because it gen-
erates many tuples.DB shows the time that is spent by Post-
greSQL in order to generate new tuples (processing SQL
INSERT statements through JDBC). Obviously, this time
is proportional to the size of the database instance gener-
ated as part of SPQR. TheMC column shows the time spent
by the decision procedure of the model checker. It can be
seen that this time dominates the overall cost of RQP in
most cases; in particular, it dominates the cost for the ex-
pensive queries (Q10 and Q11). This observation justifies
the decision to focus all optimization efforts on calls to the
decision procedure (Sections 4).#M-Inv shows the num-
ber of times the decision procedure is invoked. Comparing
theMC and#M-Inv columns, it can be seen that the cost
per call varies significantly. Obviously, the decision proce-
dure needs more time for long constraints (e.g., Q10) than
for simple constraints (e.g., Q22). As a future work, we
hope to find a way to predict the cost per call in order to
carry out even better optimization.

We also measured the number of attempts each TPC-H
query needed for guessing the number of tuples in aggre-
gations (Section 4). These results are not shown in Table
2, but the results are encouraging: in fact, none of the 22
required any trial-and-error (because OP 5 in Section 4.5



made it possible to pre-compute the right number of tuples
for all queries) or trial-and-error was successful forn = 1.

5.3. Running Time: Varying SF
Table 2 (refer to theTotal columns) shows the running

times of reverse processing the 22 TPC-H queries for the
three different scaling factors. In some cases, due to the
nature of the queries, the running times (and the size of the
generated databases) is independent of the scaling factor;
example queries are Q5 and Q6. For all those queries which
have higher running times for a larger scaling factor, the
running time increased linearly. Examples are queries Q10
and Q21. Again, these results are encouraging because they
show that SPQR potentially scales linearly and that even
large test databases can be generated using SPQR. Note that
Q11 has a parameter that is set randomly; this observation
explains the anomaly that the running time for SF=0.1 is
higher than for SF=1 for that query.

6. Related Work
To the best of our knowledge, there has not been any pre-

vious work on reverse query processing. The closest related
work is the work on model checking which finds instanti-
ations of logical expressions. However, the model check-
ing community has not addressed issues involving SQL and
has not addressed any scalability issues that arise if millions
of tuples need to be generated. Consequently, our solution
combines techniques of traditional query processing (e.g.,
[13, 11]) with model checking [6].

In the area of generating test databases, [18] shows how
functional dependencies can be processed for generating
test databases. The bottom-up phase of RQP extends the
work in [16] for the complete SQL specification. Other
work on test databases generation (e.g., [21, 5]) focuses on
one aspect only and falls short on most other aspects of
RQP. [15] discusses a similar problem statement as RQP
but only applicable to a very restricted set of relational ex-
pressions. There has also been work on efficient algorithms
and frameworks to produce large amounts of test data for a
given statistical distribution [12, 4]. That work is orthogo-
nal to our work.

7. Conclusion and Future Work
This work presented a new technique called reverse

query processing or RQP, for short. RQP combines tech-
niques from traditional query processing (e.g., query rewrite
and iterator model) and model checking (e.g., data instanti-
ation based on constraint formulae of propositional logic).
RQP has several applications. This paper shows that a full-
fledged RQP system (SPQR) for SQL can be built in order
to generate test databases for functional testing databaseap-
plications. SPQR scales linearly with the size of the data-
base that is generated for the TPC-H benchmark.

We believe that this work is only the first step into a
new research direction. One future work is to explore the

possible applications of RQP as mentioned in the introduc-
tion. Now, we are extending SPQR to support multiple SQL
statements for complex applications. In addition, we are
also building another RQP system for RDBMS performance
testing.
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