
X-Data: Generating Test Data for Killing SQL
Mutants

Bhanu Pratap Gupta, Devang Vira, S. Sudarshan

Indian Institute of Technology, Bombay
bhanupratap2006@gmail.com, devang.vira@gmail.com, sudarsha@cse.iitb.ac.in

Abstract— Checking if an SQL query has been written cor-
rectly is not an easy task. Formal verification is not applicable,
since it is based on comparing a specification with an imple-
mentation, whereas SQL queries are essentially a specification
without any implementation. Thus, the standard approach for
testing queries is to manually check query results on test datasets.
Intuitively, a mutant is a query variant that could have been the
correct query if the query was in error; a mutant is killed by
a dataset if the original query and the mutant return different
results on the dataset.

In this paper, we address the problem of generation of test
data for an SQL query, to kill mutants. Our work focuses in
particular on a class of join/outer-join mutants, which are a
common cause of error. To minimize human effort in testing, our
techniques generate a test suite containing small and intuitive test
datasets, combining them into a single dataset where possible.
In the absence of foreign-key constraints, and under certain
assumptions, the test suite is complete, i.e. it kills all non-
equivalent mutations, in the class of join-type mutations that we
consider. We also consider some common types of where-clause
predicate mutants. Our techniques have been implemented in a
prototype data generation tool.

I. INTRODUCTION

SQL queries are very widely used, but checking if a
query meets the intended goals is not an easy task. Formal
verification is not applicable, since it is based on comparing
a specification with an implementation, whereas SQL queries
are essentially a specification without any implementation. In
practical settings, programmers check the query results against
multiple test cases, to see if they give desired results. However,
if test cases are created in an ad-hoc manner, it is not clear if
all meaningful test cases have been covered, or there are cases
that have been omitted.

Mutation testing is a well known approach for checking
if test cases are adequate for a program. Mutation testing
involves generating mutants of the original program by mod-
ifying the program in a controlled manner [1]. A mutation of
a program is a single syntactically correct change; a mutant
of a program is the result of one or more mutations on the
program. Mutations model typical programming errors like
using the wrong operator or variable name. Mutation testing
is well known in imperative programming.

If the given program is faulty, it is possible that one of the
mutants was the intended program. A test case would detect
the fault if it gave different results on the correct program and

1Current affiliations of first two authors are Morgan Stanley and TIBCO
respectively, but this work was done while they were at IIT Bombay.

on the faulty program. A test case that gives different results
on the given program and the mutant program is said to kill
the mutant.

The notion of mutation testing can also be applied to
database queries. Query mutations model common mistakes
made by programmers when specifying queries, for example,
using a wrong relational operator in a where-clause condition,
a wrong join operator e.g. an inner join (1) used instead of a
left outer join (––1), missing joins conditions, etc. For example,
given the query

SELECT * FROM department d, student s
WHERE d.deptcode = s.deptcode

changing the join to a left outerjoin results in a mutant
SELECT * FROM department d LEFT OUTER JOIN

student s ON (d.deptcode = s.deptcode)
The results of the original query and the above mutant will
differ if there is a department with no student, but would be
identical otherwise.

The number of possible mutants of a program can be
extremely large if all possible mutations are considered, but
the space can be kept in control by considering mutants that
reflect common programming errors.

A test case is simply a (legal) database instance, while a
test suite may consist of one or more test cases.2 A mutant
query is said to be killed by a test case when the execution of
the mutant on a test case produces a different result than the
execution of the original query. In the above example, we need
a test case with a department that has no students, in order to
kill the mutant. In case the original query was incorrect, such
a test case would help detect the error in the original query.

Mutants that are syntactically different may in fact be
semantically equivalent to the given query. For example, under
certain integrity constraints on the database, a query r 1 s,
would always produce the same result as its mutant r ––1 s.
We say that such a mutant is equivalent to the original query.

A test suite for a query is said to be complete with respect
to a space of mutations if all non-equivalent mutants in the
space are killed by at least one of the test cases in the suite.

Prior work by Tuya et al. [2] and Chan et al. [3] describe
techniques for generation of SQL query mutants, which are

2Queries generated by application programs may have parameters, but for
simplicity, we assume the parameters have been replaced by constants. Test
cases for an application containing queries would require input parameter
values in addition to a database instance; generating such test cases would
require program analysis, and is beyond the scope of this paper.



then executed on the given test datasets to determine the num-
ber of killed mutants, and thereby determine the effectiveness
of the given test dataset. However, neither of these papers
addresses the problem of generation of test datasets. Brass
and Goldberg [4] provide a rather exhaustive list of common
errors in SQL queries, but do not address data generation.

Prior approaches to automated generation of datasets such
as AGENDA [5] and RQP [6], generate datasets that ensure
results of specified queries are non-empty. However, generat-
ing datasets in such a fashion does not ensure completeness
of testing. For example, if a query used an inner join r 1 s
where it should have used a left outer join r ––1 s, the error
will be detected only if there is a test case where an r tuple
does not have a matching s tuple, otherwise the two queries
would generate the same result.

In this paper, we address the problem of test data generation
for SQL queries, taking mutants into account. Our contribu-
tions are as follows:

• We define a space of join/outer-join mutations which
models common programmer errors that are more than
trivial syntactic errors considered by [2]. We also con-
sider mutations of the SQL where-clause predicates.

• We show how to generate test cases to kill the above class
of mutations, taking into account foreign key constraints.
In the absence of foreign key constraints, under certain
assumptions about queries, we can prove that the collec-
tion of test cases generated kills all possible mutants in
the space of join/outer-join mutants that we consider. (We
are working on extending the proof for the case where
foreign key constraints are present.)

• Each individual test case we generate is designed to be
both small and intuitive. Both these properties are very
important, since ultimately a human has to examine each
test case, and decide if the query result is correct for that
test case. To generate realistic data, where possible we
extract a small subset of an existing database to create
each test case, and generate synthetic data otherwise.
In addition, where possible we also club multiple test
cases into a single database, to minimize the total data
size and the number of distinct datasets to be considered.

• The algorithms described have been implemented, as part
of a system for generating test data, which we call X-
Data.

Although more work is required to handle all features of
SQL, and to handle application programs (these are part of
our ongoing work), we believe our contributions in this paper
are the first step in generation of test databases in a principled
way, with completeness guarantees.

II. SPACE OF MUTANTS CONSIDERED

In this paper, we consider single block SQL queries with
join/outer-join operations and predicates in the where clause,
which correspond to select/project/join/outer-join queries in
relational algebra. We do not consider insert/delete/update
queries in this paper.

For such queries, we consider mutations to the join type
(inner vs outer-join) and where clause predicates. We consider
the following join types: inner join (1θ), left outer-join (––1

θ
),

right outer-join (1––
θ
), and full outer-join (––1––

θ
).

Join Type Mutations of Expressions and SQL Queries:
Given a relational algebra expression, the result of replacing
one occurrence of a join operator (1θ, ––1

θ
, 1––

θ
, ––1––

θ
) by

any one of the other join operators is a join-type mutation of
the expression.

An SQL query does not specify a particular evaluation
plan. To allow meaningful join-type mutations to the SQL
query, which reflect common programmer errors, we consider
mutations of all relational algebra expressions equivalent to
the given SQL query. Thus, any single join-type mutation to
any relational algebra expression equivalent to the given SQL
query is a single join-type mutation of the original query.
Selection Predicate Mutation: Any one occurrence of re-
lational operator (=, <, >, <=, >=, <>) in the WHERE
clause of a query is replaced with any of the other relational
operators to obtain a selection predicate mutant query.

We only consider single mutations in a query at a time,
although our definition of a join-type mutation goes well
beyond simple syntactic errors. It is standard in mutation
testing literature to consider mutants with a single change.
It is possible that an erroneous query may contain multiple
mistakes or variations at the same time; queries with multiple
mutations are likely, but not always guaranteed, to be killed
by the datasets we generate.

III. KILLING JOIN MUTANTS: BASICS

We make the following assumptions about the database
schema and queries (a) the only constraints are primary and
foreign key constraints, (b) foreign key columns are not
nullable, (c) queries are single block SQL queries without
nested subqueries or aggregation (however, we do allow outer
join expressions), (d) all join conditions are conjunctions
of equijoin conditions, (e) all selections are conjuncts of
conditions of the form attr1 op attr2 or attr op constant,
where op is a comparison operation (=, <,>, <=, >=, <>),
(f) the select clause of the query does not include functions
or expressions, and (g) there are no natural join operations
(natural joins complicate the presentation since they combine
multiple attributes into one). Our algorithms allow a relation to
occur more than once in a query, but we ignore this possibility
in some cases to simplify the presentation. Our techniques can
be extended to handle linear arithmetic functions, and some
string functions in where clause predicates, and in the select
clause, but we omit details for simplicity.

Consider an arbitrary relational algebra tree equivalent to the
given query, and a single join mutation between a join and a
left outer join on a single node on that tree; the node need not
be the root of the expression. Let us denote the join version
of the node as L 1 E where L denotes the left input and E
the right input. Suppose the mutant is not equivalent to the
original tree, that is there exists some dataset where the overall
expression gives different results; for that dataset, L 1θ E



must differ from L ––1
θ

E, in order to change the overall
result. Further, for the class of select/project/join/outer-join
queries that we consider, there must then be a minimal dataset,
which assigns at most one tuple to each relation occurrence,
which demonstrates non-equivalence. Our goal is ensure we
have generated at least one such a dataset for each possible
mutation.

Since the minimal dataset must differentiate L 1θ E from
L ––1

θ
E, it must be the case that there is an L tuple with

no matching tuple in E. Suppose there is a join predicate at
the node, equating L.A from the left hand side to s.B from
the right hand side. If we ensure that for a particular tuple
of L, there is no s tuple with s.B = L.A, then there will be
a difference in the join and outer-join result at the mutated
node. However, we need to do more to ensure that there is
a difference in the overall result, since even if L 1 E is not
equivalent to L ––1 E, it is possible that the overall expressions
are equivalent.

To do so, we first generate a set of tuples, one per relation
occurrence, such that the overall query has a result using this
set of tuples, and then delete the s tuple from the dataset. If a
relation can occur more than once in a query, we must ensure
that a tuple inserted for another occurrence of a relation s does
not result in the L tuple having a matching E tuple.

Unfortunately, the task of ensuring there is no matching
tuple is complicated by the presence of foreign key constraints.
Suppose for example there is a foreign key constraint r.A→
s.B in the preceding example (or in general, a foreign key
reference such that the join condition exactly matches the
foreign key). If the right hand side of the mutated node consists
of just the relation s, there is no dataset where r.A does
not have a matching tuple in s, and the original and mutated
queries are equivalent.

On the other hand, suppose there is an extra selection such
as s.C = 4 on the right hand side. Then we can create an s
tuple which matches the r tuple on the foreign key reference,
but which has s.C = 5, for example, so the selection condition
is not met. In this case, the join and outer join would generate
different results.

As a more complex example, if E consists of an inner join
of s with another relation t, if there is no foreign key reference
from s to t we could ensure there is no matching t tuple
and thus E will be empty. However, if there is a foreign key
reference from s to t, and the join condition is exactly on the
foreign key, there is no way to generate a non-matching result
for the right hand side. But if in addition, there is a selection
on t, we can ensure that the result of E has no matching value
for the r tuple.

Definition 1: Join Graph: A join graph for a query Q is a
graph, with relation occurrences in the query as nodes, and an
edge between two nodes if there is a join condition between
the two relations, with the edge label being the join predicate.
Note that it is standard in query optimization, if there are two
join condition say (r.A = s.A) and (s.A = t.A), then we also
consider (r.A = t.A) as another join condition and add will
add corresponding edge in the join graph.

Definition 2: Nullable Join Expression: Given expressions
L and E we say that E is nullable with respect to L if it
is possible to create a dataset where the result of L is non-
empty, while L 1 E is empty, while satisfying all foreign key
constraints.

In cases where the foreign key constraints from L make it
impossible to make the result of L 1 E empty, we say that E
is not nullable with respect to L.

Definition 3: Nullable Pattern: Given a query Q, let SQ
be the set of relation occurrences in Q. We say that S ⊂ SQ
is a nullable pattern if there is a subset SL of the relations in
SQ−S such that E is nullable with respect to L, where L is
the join of relations in SL with join conditions from the join
graph of Q, and E is the inner join of relations in S, with join
conditions from the join graph, and including all selections on
relations in S.

If E as defined above is not nullable, then no other join
expression on the set of relations S, where the join and
selection conditions are a subset of those in E, will be nullable.
Thus, if even E is not nullable, the pattern S need not be
considered as a nullable pattern.

Definition 4: Subsumed Join Condition: If there is a
foreign key constraint from r to s, then a condition equating
a foreign key attribute in r to the corresponding referenced
attribute in s is said to be subsumed by the foreign key
constraint.

Lemma 5: Given a query Q whose set of relation occur-
rences is SQ, where S ⊂ SQ, and (as in the definition of
nullable pattern) let E be the inner-join of relations in S,
with join conditions from the join graph, and including all
selections on relations in S.

Then S is a nullable pattern if and only if either E has
a selection operation, or there is at least one join condition
either between relations in S, or between a relation in S and
one in SQ− S, such that the join condition is not subsumed
by any foreign key constraint referencing a relation in S. 2

We omit a formal proof, but note that if none of these
conditions apply, foreign key constraints will force a matching
set of tuples in E. If any of these conditions apply, in the
absence of foreign keys we can either create a test case where
all relations from S are empty. In the presence of foreign
keys, we can make some of the relations empty and/or modify
attribute values so that the selection/join conditions fail, while
foreign key constraints are preserved.

IV. DATA GENERATION FOR KILLING MUTANTS

The algorithm for data generation first modifies the original
query by replacing all outer joins with inner joins. The query
is further modified to include in the result the tuple-identifiers
of all relations in the query. The results of this modified
query are used to generate data. (There are cases where the
modified query cannot generate an answer, e.g. if it has a
is null condition; to handle such queries, we can modify the
algorithm to consider a separate query for each pattern, but
omit details for lack of space.) For a particular result tuple t
of the modified query, let t.Ri denote the tuple from Ri, the



ith relation occurrence in the query, that joined with tuples of
other relations to form t.

The algorithm maintains for each relation a set of in-
cluded tuples, and a set of exclusion predicates of the form
(ai1, ai2, . . . , ain) 6= (v1, v2, . . . , vn). The exclusion predi-
cates allow us to handle multiple occurrences of a relation,
and (in some cases, as we shall see) to combine datasets for
multiple patterns into a single dataset, thereby reducing the
effort for testing.

Our algorithm creates a dataset corresponding to each
nullable pattern. In some cases, such as if the initial query
uses only inner joins, and there are no foreign key constraints,
we need create datasets only for patterns consisting of a single
relation. However, if the original query had outerjoins, there
are cases where we need to consider nullable patterns with
multiple relations; and in order to consider mutations with
multiple joins converted to outerjoins, we need to consider all
nullable patterns. We leave the issue of minimization of the
set of patterns, and correspondingly the number of datasets
generated, to future work.

For a pattern, if the foreign key constraints permit the tuples
for the relations in the pattern to be excluded, the following
steps are taken. A tuple t is found from the query result such
that the following constraints are satisfied for each relation
occurrence Ri in the query (if no such tuple exists, it is
generated synthetically, using techniques similar to those in
[6]):

1) If Ri is not in pattern, t.Ri has not been excluded by an
exclusion predicate; to handle foreign key constraints,
we also need to ensure that any tuples referenced from
t.Ri have not been excluded by an exclusion predicate.

2) If Ri is in the pattern, ensure that t.Ri has not been
included.

If the above test is satisfied, for each Ri not in the pattern,
include t.Ri; for each Ri in the pattern, for each join condition
with another relation Rj not in the pattern, add an exclusion
predicate on the join attributes JA, of the form (JA) 6=
t.Ri[JA]. This ensures that no tuple will get added to Ri

that matches t.Rj on the join conditions.
If foreign key constraints from relations outside the pattern

to relations in the pattern, combined with the join conditions
prevent exclusion of tuples for all the relations in the pattern,
the tuples in the pattern are modified so that the selection
and non-subsumed join conditions are not satisfied, while the
foreign key and primary constraints are satisfied. Exclusion
predicates are also added to ensure no other tuples are added
subsequently that can satisfy the selection/non-subsumed join
conditions. We omit details for lack of space.

In the full version of the paper we show that any non-
equivalent mutation in the space of join-type mutations defined
in Section II is killed by our data generation algorithm, in
the absence of foreign-key constraints. Intuitively, given any
join tree, and a particular node of the join tree, there is
a dataset that nullifies only (one or more of) the relations
on one input of the node; if a mutation at the node is a
non-equivalent mutation, this dataset will kill the mutation.

Foreign key constraints complicate the proof; we conjecture
completeness in the presence of foreign-key constraints.

To kill comparison operator mutants for a predicate of
the form Aopv, where op is a comparison operation, we
generate three different tuples, with A value less than, equal
to, and greater than v. When generating data from an existing
database, we take an existing tuple and modify its A value as
above.

Our algorithms do not require that any specific attributes
be included in the query result projection. However, in case
the query result contains attributes that form a super key for
one of the input relations, and these attributes are guaranteed
to be non-null, then instead of creating a different dataset for
each pattern, we can create a single dataset for all patterns.
We omit details for brevity.

V. IMPLEMENTATION AND EXPERIMENTAL RESULTS

Our algorithms were implemented using Java as the pro-
gramming language, and PostgreSQL as the database. Modi-
fication of tuples based on selection and non-subsumed join
conditions, and generation of synthetic data are ongoing tasks.

We ran our algorithms on sample queries with three or four
relations on a sample schema. Execution times for generating
datasets were within 10 to 15 seconds on a database with
about 50,000 to 200,000 records on a x86 machine with 2GB
main memory and a 2GHz processor. Each generated test case
was, as expected, very small, and the merged dataset killed all
non-equivalent mutants of the sample queries.

VI. CONCLUSIONS AND FUTURE WORK

Our work is merely a first step in test data generation
for killing query mutants. We are currently extending our
techniques to handle more SQL features, such as aggre-
gation and nested subqueries, to minimize the number of
datasets generated, and to allow certain kinds of expressions
in select/where clauses. We are also currently completing the
implementation of tuple modification to handle foreign-key
constraints, and working on a proof of completeness with
foreign-key constraints. Test data generation for application
programs containing SQL queries is an important area of
future work.

REFERENCES

[1] R. DeMillo, R. Lipton, and F. Sayward, “Hints on test data selection:
Help for the practicing programmer,” Computer, vol. 11, no. 4, pp. 34–
41, April 1978.

[2] C. d. l. R. Javier Tuya, M Jose Suarez-Cabal, “Mutating database queries,”
Information and Software Technology, vol. 49, no. 4, pp. 398–417, 2007.

[3] W. K. Chan, S. C. Cheung, and T. H. Tse, “Fault-based testing of
database application programs with conceptual data model,” in Int’l Conf.
on Quality Software (QSIC). Washington, DC, USA: IEEE Computer
Society, 2005, pp. 187–196.

[4] S. Brass and C. Goldberg, “Semantic errors in SQL queries: a quite
complete list,” in Int’l Conf. on Quality Software (QSIC), 2004, pp. 250–
257.

[5] D. Chays, Y. Deng, P. G. Frankl, S. Dan, F. I. Vokolos, and E. J. Weyuker,
“An AGENDA for testing relational database applications.” Software
Testing, Verification and Reliability, vol. 14, no. 1, pp. 17–44, 2004.

[6] C. Binnig, D. Kossmann, and E. Lo., “Reverse query processing.” in Inte’l
Conf. on Data Engineering (ICDE), 2007, pp. 506–515.


