
Keyword Searching on Databases

Ramdas Rao

Indian Institute of Technology Bombay

CS632 Course Seminar Presentation
April 6, 2007

Outline

Motivation

BANKS - Introduction

BANKS - Bidirectional Expanding Search

SphereSearch

Summary

Outline

Motivation

BANKS - Introduction

BANKS - Bidirectional Expanding Search

SphereSearch

Summary

Motivation

I For searching db
I Knowledge of detailed schema, SQL needed
I Need to create separate UI forms for searching relations

I IR seems to be appropriate:
I But cannot be directly applied to databases
I Answer to a query typically split across multiple tuples
I Alternative: combine db data into a “document"
I Disadvantage: Duplication of data; Sync with db

DBLP Example

I Normalization ⇒ multiple tuples (through fk)

DBLP Example

I Note: 1 paper spread across 7 tuples

Outline

Motivation

BANKS - Introduction

BANKS - Bidirectional Expanding Search

SphereSearch

Summary

BANKS

I BANKS = Browsing and Keyword Searching
I Convergence of IR and searching structured databases
I User specifies keyword(s)

I no SQL, no detailed schema knowledge required
I Answers are ranked

I Further user interaction may be needed to narrow down info
I Useful for publishing data on web: no coding required!

System Architecture

I Java Servlets (for web interface)
I JDBC to communicate with the RDBMS
I Configuration by administrator

BANKS : Browsing

I Browsable view of database relations
I no content programming / user intervention required

I Drop-down menu with operations on column headers
I Projections, selections
I Joins for fk columns (or for pk used by a referencing fk)
I Grouping of results; drill-down
I Sorting
I Pagination and Schema browsing

BANKS : Templates

I Templates can be used for formatting display of tuples
I Can contain HTML code snippets
I Hyperlinks to attributes
I Relationships to be folded in

I Cross-tabs
I Group-by template
I Folder-tree views
I Pie, bar, line charts (with drill down)
I Templates can be composed together in visual manner

BANKS : Templates...contd

BANKS : Keyword Searching

I Specify keywords to be searched for
I Answers to query in relevance order
I Each answer displayed in hierarchical form
I Example answer tree
I Indentation and color used to depict the tree structure

BANKS Query Model

I DB as a directed graph
I Graph is in-memory

I Each tuple in the db corresponds to a node in the graph
I Each fk-pk link is a directed edge between the corr. tuples

I Can be easily extended for other types of connections

BANKS Query Model...contd

I Keyword query has n > 1 terms (t1, t2, t3, ... , tn)
I Locate the nodes matching the search terms

I Matching on attribute value or metadata (col name, tbl
name, view name)

I Use disk-resident indices to map keywords to RIDs
I Another (in-memory) index to map RIDs to graph nodes

I Si : set of nodes matching keyword ti
I Si ’s may overlap

BANKS Query Model...contd

I An answer is a subgraph connecting a set of nodes that
cover the keywords

I Important to identify a “central" node that connects all the
keyword nodes

I An answer is then a rooted directed tree
I at least one node from each Si
I edges are directed away from the root

I Tree may also contain nodes that are not in Si (a Steiner
tree)

Answer Relevance

I Two types of weights:
I Edge weights
I Node weights (Prestige ranking, such as PageRank)

Edge weights

I Importance of a link depends on the type of link (relations,
semantics)

I link between Paper and Writes v/s link between Paper and
Cites

I Semantically stronger links given lower weights
I Wt. of a tree ∝ sum of its edge weights
I Relevance of a tree inversely ∝ to its weight

I Sort Answer trees in increasing order of weight

Need for directionality

I Consider earlier example: some links point toward root of
tree, others away (e.g., Writes to Author and to Paper)

I we require paths from Paper to Author; that is, traverse fk
edge in opposite direction

I Can we ignore directionality?
I If we do, problem of “hubs"
I E.g., a dept. with large # of faculty and students
I Many nodes would be within a short distance of many other

nodes
I Reduces the effectiveness of tree-wt based scoring

mechanism

Backward Edges

I For each edge (u, v), create a backward edge (v, u)
I This ensures that a directed tree exists that is rooted at the

“paper" with a path to each leaf
I To solve the hub problem

I wt. of (v , u) = wt. of (u, v) * f(# of links to v from the nodes
of the same type as u)

I if an edge already exists from v to u, set the edge weight to
the lower of the 2 weights

I Experiments indicate that the function log(1 + x), where x
is the # of inlinks, provides good results.

Node Weights

I Inspired by prestige rankings (Google PageRank)
I Nodes with more inlinks get higher node weight (higher

prestige)
I DBLP: More citations for paper, more inlinks

I Node weight function could be log(1 + x), where x is the
in-degree

Overall relevance score

I Combine node weights and tree weights (total of edge
weights)

I Additive or multiplicative combination
I λ controls relative weightage
I Additive:

(1− λ)Escore + λNscore

I Multiplicative:
Escore · Nscoreλ

I Both + and ∗ work well when relative weights are
appropriately chosen

Algo

I First, for each keyword
I find the set of nodes Si that satisfy the keyword term ti

I Let S = ∪Si
I Backward Expanding Search algo (Heuristic incremental

solution)
I Concurrently run | S | copies of Djikstra’s single src shortest

path algo
I One copy for each node n in S, with n as the source

Algo...contd

I Each copy of the single src SP algo traverses the graph
edges in the reverse direction

I Try to find a common vertex from which forward path exists
to at least one node in each set Si

I Rooted directed tree (connection tree):
I info node as root
I keyword nodes as leaves

Algo...contd

I Connection trees approximately sorted in increasing order
of weights

I All connection trees could be generated and then sorted in
decreasing relevance order

I Better alternative:
I When output heap is full, output highest relevance tree and

replace it
I No guarantees trees sorted in decreasing relevance order,

but works well

Isomorphic trees

I Trees with similar structure modulo direction (“duplicate
trees")

I These represent the same result, with diff. info. nodes.
I Retain only one with the highest relevance

I Note: Results are output when the heap is full

Implementation

I Efficiency of graph traversals important
I Entire db graph is stored in memory. Acts as an index on

the db
I Graph stores only id for each node and edge plus pointers

I Each graph node: 30 bytes
I No strings in memory

I Tens of millions records using modest amount of memory

Results

I Most intuitive answers ahead of less intuitive ones in
almost all cases

I Space and Time:
I For a bib. db with 100K nodes and 300K edges, mem. util

around 120 MB
I 2 minutes initial loading time
I Once loaded, queries take a second / few seconds
I Feasible to use BANKS for moderately large db

Effect of Parameters : Settings

I 7 different queries; for each, ∼4 ideal answers were listed
I Each query run with diff. param combinations (10 answers)
I Rank diffs computed for each run
I Raw error score =

∑
rankdiffs

I For missing answers
I rank diff = 11

Effect of Parameters

I Important to keep the effect of node ranking relatively
small, but non-zero

I λ = 0.2, EdgeLog = 1 did best with error score of 0.0
I λ = 0.5, EdgeLog = 1 - almost well with error scores of

around 3
I λ = 1, (ignore edge weights) - error score 15

I Conclusion: λ = 0.2, EdgeLog = 1 - does best

Effect of Parameters...contd

Effect of Parameters...contd

I Reducing edge wt. range by log scaling important
I else

I back edges from some popular nodes get high weights
I some intuitive answers got a very poor relevance ranking

I Mode of score combination has almost no impact on the
ranking

I For node weights, log scaling gave same results as no log
scaling

Extensions

I Extended to handle XML???
I Selection conditions (year = 2007), (year ∼ 2007)

I Ranking function: “near" movies (near hitchcock,
reagan)

I User Feedback:
I Disambiguation of nodes
I Selecting answer tree patterns
I Re-scoring

Related Work

I DataSpot system
I similar model, relevance scores, trees of max relevance

returned
I Back edges based on in-degree and node weights not

present in DataSpot
I Proximity search in db - Goldman

I find object near object
I EasyAsk:

I keyword search on data stored in RDBMS
I but details are not available publicly

BANKS and related work

I BANKS differs from prior work:
I Techniques for edge wt. computation and prestige ranking
I Use of an in-memory graph structure for very efficient

searching

Future Work

I Improved user feedback
I Querying across multiple data sources using different data

models
I XML data
I attribute:keyword queries (e.g., author:Levy)

Outline

Motivation

BANKS - Introduction

BANKS - Bidirectional Expanding Search

SphereSearch

Summary

Issues with Backward Expanding Search Algo

I Travel backwards from keyword nodes till you hit a
common node

I Performs poorly if:
I Some keywords match many nodes
I Some node has a very large indegree

I In these cases, a large number of nodes must be examined
I Wasteful exploration of graph
I Longer time to generate answers

Bidirectional Expanding Search Algo

Bidirectional Expanding Search Algo

I Basic idea:
I Do not explore backward if:

I Next node is a hub
I Keyword matches a large number of nodes

I But, at what number do we switch over?

Bidirectional Expanding Search Algo

I Prioritize on the basis of spreading activation
I Like propagating “scent" spread from keyword nodes
I Edge weights as well as spread of the next node(s)

I Nodes with the highest activation explored first
I Higher the spread, lower the activation

Bidirectional Expanding Search Algo

I Initial activation:

au,i =
nodePrestige(u)

| Si |
,∀u ∈ Si

I For spreading, use an “attenuation factor" µ

I Each node keeps µ fraction of the activation it receives
I Rest (1− µ) is divided amongst its neighbors
I Overall activation of a node u is:

au =
n∑

i=0

au,i

Bidirectional Expanding Search Algo

Bidirectional Expanding Search Algo

I Use a single combined iterator for all nodes in each
direction

I Lesser state maintenance overhead than the Backward
Expanding Search Algo

I Also, the iterator is not a single source shortest path
iterator

I So,
I need to update path lengths as they become known
I need to worry about output of answers in relevance order

Bidirectional Expanding Search Algo

I Activate matching nodes; insert into backward iterator
I while (iterators are not empty)

I Choose iterator for expansion in best-first manner
I Explore node with highest activation
I Spread activation to neighbors
I Update path weights (and other datastructures)
I Propagate values to ancestors if necessary
I Insert nodes explored in the backward dir into fwd iterator //

for future forward exploration
I Stop when top-k results are produced

Top-k results

I Naïve approach:
I Store results in an intermediate heap
I Output top k results after mk total results have been

generated (m ∼ 10)
I Can do better:

I Compute upper bound on score of next result
I Output answers with a higher score

Experimental Results

I Bidirectional Expanding Search outperforms Backward
Expanding Search

I Current BANKS demo on site has flexibility
I User can choose which algo to use for searching

Outline

Motivation

BANKS - Introduction

BANKS - Bidirectional Expanding Search

SphereSearch

Summary

SphereSearch : Motivation

I Web search engines use mostly keyword query paradigm
⇒ less expressive querying capabilities

I Example
I Web search: researcher Max Planck
I We want to say: researcher person=“Max Planck"

I We want:
I Concept-aware search (Tag-aware querying)
I Context-aware search

I Answers to queries might be a set of pages, than a single
page

I Abstraction-aware search (Ontology-enabled search)

SphereSearch Features

I Uniform treatment for XML as well as present Web data
I Structured queries on semistructured data without a global

schema
I Heterogeneous XML

I Relevance-ordered results using ranked retrieval paradigm

SphereSearch Query Language

I Query Groups and Joins
A(gift, vendor)
B(courier, vendor)
A.location = B.location

I Similarity operator, ∼, used for:
I Ontology
I For numeric, “approximately" (year ∼ 2007)

SphereSearch Transformation and Annotation

I Convert HTML, PDF, plain text to XML

I Then, annotate data (e.g., identify places and tag them
<places>)

Spheres

Spheres

I Sphere of node n at distance d is Sd(n) : set of all nodes
at distance d from node n

I Sphere Score at distance d of node n wrt condition t is:

sd(n, t) =
∑

v∈Sd (n)

ns(v , t)

I Sphere Score of node n wrt t is:

s(n, t) =
D∑

i=1

si(n, t) ∗ αi

I D: Sphere size limit
I α: Damping coefficient

Spheres

I For α = 0.5 and D = 3, we get:

s(1, t) = 1 + 4 · 0.5 + 2 · 0.52 + 5 · 0.53 = 4.175
s(2, t) = 3 + 0 · 0.5 + 0 · 0.52 + 1 · 0.53 = 3.125

I Node 1 is a better result for “t" than node 2

Outline

Motivation

BANKS - Introduction

BANKS - Bidirectional Expanding Search

SphereSearch

Summary

Summary

I BANKS: useful for web publishing of data
I Bidirectional Expanding Search outperforms Backward

Expanding Search
I SphereSearch: More expressive query language

References I

Gaurav Bhalotia, Arvind Hulgeri, Charuta Nakhe, Soumen
Chakrabarti, S. Sudarshan.
Keyword Searching and Browsing in Databases using
BANKS.
ICDE, 2002.

Varun Kacholia, Shashank Pandit, Soumen Chakrabarti, S.
Sudarshan, Rushi Desai, Hrishikesh Karambelkar.
Bidirectional Expansion For Keyword Search on Graph
Databases.
VLDB, 2005.

Jens Graupmann, Ralf Schenkel, Gerhard Weikum.
The SphereSearch Engine for Unified Ranked Retrieval of
Heterogeneous XML and Web Documents.
VLDB, 2005.

	Motivation
	BANKS - Introduction
	BANKS - Bidirectional Expanding Search
	SphereSearch
	Summary
	Appendix
	
	

