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Motivation

I For searching db
I Knowledge of detailed schema, SQL needed
I Need to create separate UI forms for searching relations

I IR seems to be appropriate:
I But cannot be directly applied to databases
I Answer to a query typically split across multiple tuples
I Alternative: combine db data into a “document"
I Disadvantage: Duplication of data; Sync with db



DBLP Example

I Normalization ⇒ multiple tuples (through fk)



DBLP Example

I Note: 1 paper spread across 7 tuples
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BANKS

I BANKS = Browsing and Keyword Searching
I Convergence of IR and searching structured databases
I User specifies keyword(s)

I no SQL, no detailed schema knowledge required
I Answers are ranked

I Further user interaction may be needed to narrow down info
I Useful for publishing data on web: no coding required!



System Architecture

I Java Servlets (for web interface)
I JDBC to communicate with the RDBMS
I Configuration by administrator



BANKS : Browsing

I Browsable view of database relations
I no content programming / user intervention required

I Drop-down menu with operations on column headers
I Projections, selections
I Joins for fk columns (or for pk used by a referencing fk)
I Grouping of results; drill-down
I Sorting
I Pagination and Schema browsing



BANKS : Templates

I Templates can be used for formatting display of tuples
I Can contain HTML code snippets
I Hyperlinks to attributes
I Relationships to be folded in

I Cross-tabs
I Group-by template
I Folder-tree views
I Pie, bar, line charts (with drill down)
I Templates can be composed together in visual manner



BANKS : Templates...contd



BANKS : Keyword Searching

I Specify keywords to be searched for
I Answers to query in relevance order
I Each answer displayed in hierarchical form
I Example answer tree
I Indentation and color used to depict the tree structure



BANKS Query Model

I DB as a directed graph
I Graph is in-memory

I Each tuple in the db corresponds to a node in the graph
I Each fk-pk link is a directed edge between the corr. tuples

I Can be easily extended for other types of connections



BANKS Query Model...contd

I Keyword query has n > 1 terms (t1, t2, t3, ... , tn)
I Locate the nodes matching the search terms

I Matching on attribute value or metadata (col name, tbl
name, view name)

I Use disk-resident indices to map keywords to RIDs
I Another (in-memory) index to map RIDs to graph nodes

I Si : set of nodes matching keyword ti
I Si ’s may overlap



BANKS Query Model...contd

I An answer is a subgraph connecting a set of nodes that
cover the keywords

I Important to identify a “central" node that connects all the
keyword nodes

I An answer is then a rooted directed tree
I at least one node from each Si
I edges are directed away from the root

I Tree may also contain nodes that are not in Si (a Steiner
tree)



Answer Relevance

I Two types of weights:
I Edge weights
I Node weights (Prestige ranking, such as PageRank)



Edge weights

I Importance of a link depends on the type of link (relations,
semantics)

I link between Paper and Writes v/s link between Paper and
Cites

I Semantically stronger links given lower weights
I Wt. of a tree ∝ sum of its edge weights
I Relevance of a tree inversely ∝ to its weight

I Sort Answer trees in increasing order of weight



Need for directionality

I Consider earlier example: some links point toward root of
tree, others away (e.g., Writes to Author and to Paper)

I we require paths from Paper to Author; that is, traverse fk
edge in opposite direction

I Can we ignore directionality?
I If we do, problem of “hubs"
I E.g., a dept. with large # of faculty and students
I Many nodes would be within a short distance of many other

nodes
I Reduces the effectiveness of tree-wt based scoring

mechanism



Backward Edges

I For each edge (u, v), create a backward edge (v, u)
I This ensures that a directed tree exists that is rooted at the

“paper" with a path to each leaf
I To solve the hub problem

I wt. of (v , u) = wt. of (u, v) * f(# of links to v from the nodes
of the same type as u)

I if an edge already exists from v to u, set the edge weight to
the lower of the 2 weights

I Experiments indicate that the function log(1 + x), where x
is the # of inlinks, provides good results.



Node Weights

I Inspired by prestige rankings (Google PageRank)
I Nodes with more inlinks get higher node weight (higher

prestige)
I DBLP: More citations for paper, more inlinks

I Node weight function could be log(1 + x), where x is the
in-degree



Overall relevance score

I Combine node weights and tree weights (total of edge
weights)

I Additive or multiplicative combination
I λ controls relative weightage
I Additive:

(1− λ)Escore + λNscore

I Multiplicative:
Escore · Nscoreλ

I Both + and ∗ work well when relative weights are
appropriately chosen



Algo

I First, for each keyword
I find the set of nodes Si that satisfy the keyword term ti

I Let S = ∪Si
I Backward Expanding Search algo (Heuristic incremental

solution)
I Concurrently run | S | copies of Djikstra’s single src shortest

path algo
I One copy for each node n in S, with n as the source



Algo...contd

I Each copy of the single src SP algo traverses the graph
edges in the reverse direction

I Try to find a common vertex from which forward path exists
to at least one node in each set Si

I Rooted directed tree (connection tree):
I info node as root
I keyword nodes as leaves



Algo...contd

I Connection trees approximately sorted in increasing order
of weights

I All connection trees could be generated and then sorted in
decreasing relevance order

I Better alternative:
I When output heap is full, output highest relevance tree and

replace it
I No guarantees trees sorted in decreasing relevance order,

but works well



Isomorphic trees

I Trees with similar structure modulo direction (“duplicate
trees")

I These represent the same result, with diff. info. nodes.
I Retain only one with the highest relevance

I Note: Results are output when the heap is full



Implementation

I Efficiency of graph traversals important
I Entire db graph is stored in memory. Acts as an index on

the db
I Graph stores only id for each node and edge plus pointers

I Each graph node: 30 bytes
I No strings in memory

I Tens of millions records using modest amount of memory



Results

I Most intuitive answers ahead of less intuitive ones in
almost all cases

I Space and Time:
I For a bib. db with 100K nodes and 300K edges, mem. util

around 120 MB
I 2 minutes initial loading time
I Once loaded, queries take a second / few seconds
I Feasible to use BANKS for moderately large db



Effect of Parameters : Settings

I 7 different queries; for each, ∼4 ideal answers were listed
I Each query run with diff. param combinations (10 answers)
I Rank diffs computed for each run
I Raw error score =

∑
rankdiffs

I For missing answers
I rank diff = 11



Effect of Parameters

I Important to keep the effect of node ranking relatively
small, but non-zero

I λ = 0.2, EdgeLog = 1 did best with error score of 0.0
I λ = 0.5, EdgeLog = 1 - almost well with error scores of

around 3
I λ = 1, (ignore edge weights) - error score 15

I Conclusion: λ = 0.2, EdgeLog = 1 - does best



Effect of Parameters...contd



Effect of Parameters...contd

I Reducing edge wt. range by log scaling important
I else

I back edges from some popular nodes get high weights
I some intuitive answers got a very poor relevance ranking

I Mode of score combination has almost no impact on the
ranking

I For node weights, log scaling gave same results as no log
scaling



Extensions

I Extended to handle XML???
I Selection conditions (year = 2007), (year ∼ 2007)

I Ranking function: “near" movies (near hitchcock,
reagan)

I User Feedback:
I Disambiguation of nodes
I Selecting answer tree patterns
I Re-scoring



Related Work

I DataSpot system
I similar model, relevance scores, trees of max relevance

returned
I Back edges based on in-degree and node weights not

present in DataSpot
I Proximity search in db - Goldman

I find object near object
I EasyAsk:

I keyword search on data stored in RDBMS
I but details are not available publicly



BANKS and related work

I BANKS differs from prior work:
I Techniques for edge wt. computation and prestige ranking
I Use of an in-memory graph structure for very efficient

searching



Future Work

I Improved user feedback
I Querying across multiple data sources using different data

models
I XML data
I attribute:keyword queries (e.g., author:Levy)
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Issues with Backward Expanding Search Algo

I Travel backwards from keyword nodes till you hit a
common node

I Performs poorly if:
I Some keywords match many nodes
I Some node has a very large indegree

I In these cases, a large number of nodes must be examined
I Wasteful exploration of graph
I Longer time to generate answers



Bidirectional Expanding Search Algo



Bidirectional Expanding Search Algo

I Basic idea:
I Do not explore backward if:

I Next node is a hub
I Keyword matches a large number of nodes

I But, at what number do we switch over?



Bidirectional Expanding Search Algo

I Prioritize on the basis of spreading activation
I Like propagating “scent" spread from keyword nodes
I Edge weights as well as spread of the next node(s)

I Nodes with the highest activation explored first
I Higher the spread, lower the activation



Bidirectional Expanding Search Algo

I Initial activation:

au,i =
nodePrestige(u)

| Si |
,∀u ∈ Si

I For spreading, use an “attenuation factor" µ

I Each node keeps µ fraction of the activation it receives
I Rest (1− µ) is divided amongst its neighbors
I Overall activation of a node u is:

au =
n∑

i=0

au,i



Bidirectional Expanding Search Algo



Bidirectional Expanding Search Algo

I Use a single combined iterator for all nodes in each
direction

I Lesser state maintenance overhead than the Backward
Expanding Search Algo

I Also, the iterator is not a single source shortest path
iterator

I So,
I need to update path lengths as they become known
I need to worry about output of answers in relevance order



Bidirectional Expanding Search Algo

I Activate matching nodes; insert into backward iterator
I while (iterators are not empty)

I Choose iterator for expansion in best-first manner
I Explore node with highest activation
I Spread activation to neighbors
I Update path weights (and other datastructures)
I Propagate values to ancestors if necessary
I Insert nodes explored in the backward dir into fwd iterator //

for future forward exploration
I Stop when top-k results are produced



Top-k results

I Naïve approach:
I Store results in an intermediate heap
I Output top k results after mk total results have been

generated (m ∼ 10)
I Can do better:

I Compute upper bound on score of next result
I Output answers with a higher score



Experimental Results

I Bidirectional Expanding Search outperforms Backward
Expanding Search

I Current BANKS demo on site has flexibility
I User can choose which algo to use for searching
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SphereSearch : Motivation

I Web search engines use mostly keyword query paradigm
⇒ less expressive querying capabilities

I Example
I Web search: researcher Max Planck
I We want to say: researcher person=“Max Planck"

I We want:
I Concept-aware search (Tag-aware querying)
I Context-aware search

I Answers to queries might be a set of pages, than a single
page

I Abstraction-aware search (Ontology-enabled search)



SphereSearch Features

I Uniform treatment for XML as well as present Web data
I Structured queries on semistructured data without a global

schema
I Heterogeneous XML

I Relevance-ordered results using ranked retrieval paradigm



SphereSearch Query Language

I Query Groups and Joins
A(gift, vendor)
B(courier, vendor)
A.location = B.location

I Similarity operator, ∼, used for:
I Ontology
I For numeric, “approximately" (year ∼ 2007)



SphereSearch Transformation and Annotation

I Convert HTML, PDF, plain text to XML

I Then, annotate data (e.g., identify places and tag them
<places> )



Spheres



Spheres

I Sphere of node n at distance d is Sd(n) : set of all nodes
at distance d from node n

I Sphere Score at distance d of node n wrt condition t is:

sd(n, t) =
∑

v∈Sd (n)

ns(v , t)

I Sphere Score of node n wrt t is:

s(n, t) =
D∑

i=1

si(n, t) ∗ αi

I D: Sphere size limit
I α: Damping coefficient



Spheres

I For α = 0.5 and D = 3, we get:

s(1, t) = 1 + 4 · 0.5 + 2 · 0.52 + 5 · 0.53 = 4.175
s(2, t) = 3 + 0 · 0.5 + 0 · 0.52 + 1 · 0.53 = 3.125

I Node 1 is a better result for “t" than node 2
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Summary

I BANKS: useful for web publishing of data
I Bidirectional Expanding Search outperforms Backward

Expanding Search
I SphereSearch: More expressive query language
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