Generating Test Data for Killing
SQL Mutants:
A Constraint-based Approach

Shetal Shah, S. Sudarshan, Suhas Kajbaje,
Sandeep Patidar, Bhanu Pratap Gupta, Devang Vira

CSE Department, lIT Bombay

Presented By: Sunny Raj Rathod

Outline

Motivation

Mutation Testing
Related Work
Contributions
Extensions
Implementation[XDa-TA]
Experiments

Future Work

Testing SQL Queries: A Challenge

B Complex SQL queries hard to get right

B Question: How to check if an SQL query is
correct?
Formal verification is not applicable since we do

not have a separate specification and an
implementation

State of the art solution: manually generate test
databases and check if the query gives the
intended result

" Often misses errors

Generating Test Data: Prior Work

B Automated Test Data generation
Based on database constraints, and SQL query
= Agenda [Chays et al., STVR04]

Reverse Query Processing [Binning et al., ICDEOQ7] takes desired query
output and generates relation instances

® Handle a subset of Select/Project/Join/GroupBy queries

Extensions of RQP for performance testing

® guarantees cardinality requirements on relations and intermediate query
results

® None of the above guarantee anything about detecting errors
in SQL queries

B Question: How do you model SQL errors?
® Answer: Query Mutation

Mutation Testing

B Mutant: Variation of the given query

Mutations model common programming errors, like
® Join used instead of outerjoin (or vice versa)

® Join/selection condition errors
< vs. <=, missing or extra condition

® \Wrong aggregate (min vs. max)
Mutant may be the intended query

D<I(r.B=t.E} B P>(rB=t.)
> _

(rA=s.C B (rA=s.

Mutation Testing of SQL Queries

® Traditional use of mutation testing has been to check

coverage of dataset

Generate mutants of the original program by modifying the program in
a controlled manner

A dataset kills a mutant if query and the mutant give different results
on the dataset

A dataset is considered complete if it can kill all non-equivalent
mutants of the given query

B QOur goal: generating dataset for testing query

Test dataset and query result on the dataset are shown to human, who
verifies that the query result is what is expected given this dataset

Note that we do not need to actually generate and execute mutants

6

Related Work

® Prior work:

Tuya and Suarez-Cabal [IST07], Chan et al. [QSICO5] defined
a class of SQL query mutations

Shortcoming: do not address test data generation

More recently (and independent of our work) de la Riva et
al [AST10] address data generation using constraints, with
the Alloy solver

® Do not consider alternative join orders, No completeness results,
Limitations on constraints

Our Contributions

" Principled approach to test data generation for given query

* Define class of mutations:

= Join/outerjoin

» Selection condition

= Aggregate function

= Algorithm for test data generation that kills all non-equivalent
mutants in above class for a (Fairly large) subset of SQL.

= Una
= Wit

er some simplifying assumptions
h the guarantee that generated datasets are small and

reat

istic, to aid in human verification of results
8

Killing Join Mutants: Example 1

= Example 1: Without foreign key constraints

Schema: r(A), s(B)
M(F.FFS.B} M(r.A=5.B}

A=K

" To Ifill this mutant: ensure that for some rtuple there is no matching s
tuple
B Generated test case: r(A)={(1)}; s(B)={}
® Basicidea, version 1 [ICDE 2010]
run query on given database,
from result extract matching tuples for rand s
delete s tuple to ensure no matching tuple forr

¢ Limitation: foreign keys, repeated relations

Killing Join Mutants: Example 2

B Example 2: Extra join above mutated node
Schema: r(A,B), s(C,D), t(E)

A e > Bt)
>} X
(rA=s.C __ 5 (rA=s.C
£ I
I S I S

B To kill this mutant we must ensure that for an rtuple there
is no matching s tuple, but there is a matching Etuple

B Generated test case: r(A,B)={(1,2)}; s(C,D)={}; t(E)={(2)}

Killing Join Mutants: Example 3

B Example 3: Equivalent mutation due to join
Schema: r(A,B), s(C,D), t(E)

Dq(r.B=t.E} D<l(r|3=t E)
> X<
(rA=s.C 5 (rA=sC
/<\t ,
I S I S

Note: right outer join this time
Any result with a r.B being null will be removed by join with t

Similarly equivalence can result due to selections
11

Killing Join Mutants: Example 4

teaches X instructor
is equivalent to teaches <(instructor if there is a
foreign key from teaches.ID to instructor.ID

BUT: teaches 71X 0 4,,.cs(instructor)

is not equivalent to
teaches DX<| 0 4,.cs(instructor)

Key idea: have a teaches tuple with an instructor not
from CS

Selections and joins can be used to kill mutations .

Killing Join Mutants: Equivalent Trees

Ngz Nﬂz Nﬂlﬂj—}z
Ngl Mﬂl
PROGRAM DEPARTMENT STUDENT
STUDENT DEPARTMENT STUDENT PROGRAM PROGRAM DEPARTMENT
Query Query Query
Tree 1 Tree 2 Tree3

B Space of join-type mutants: includes mutations of join
operator of a single node for all trees equivalent to given
query tree

B Datasets should kill mutants across all such trees 13

Equivalent Trees and Equivalence
Classes of Attributes

® Whether query conditions written as
A.x=B.XAND B.x=C.xor as
A.x=B.XAND A.x = C.x

should not affect set of mutants generated

B Solution: Equivalence classes of attributes

_><1 A.x=B.x

/\ /\ /\ / \

MACB

A VA ¢\

a. Given Query b. Equivalent Query ¢ Join Reordering on (b) . Intended Query

Assumptions

® A1, A2: Only primary and foreign key constraints; foreign
key columns not nullable

B A3:Single block SQL queries; no nested subqueries
B A4: Expr/functions: Only arithmetic exprs

B AS5: Join/selection predicates : conjunctions of {expr
relop expr}

B A6: Queries do not explicitly check For null values using IS
NULL

® A7:In the presence of fFull outer join, at least one
attribute from each of its inputs present in the select
clause (and A8 for natural join: see paper) N

Data Generation in 2 Steps

€ Step 1: Generation of constraints

Constraints due to the schema
Constraints due to the query
Constraints to kill a specific mutant

€ Step 2: Generation of data from constraints

Using solver, currently CVC3

16

Running Example : University Schema (Book)

SELECT *
FROM crse, dept, teaches
WHERE crse.dept name = dept.dept name

AND crse.course id = teaches.course id

Relations:
crse(course id, dept name, credits)

dept (dept name, building, budget)

teaches(instructor id, course id, semester,acadyear)

17

Data Generation Algorithm - Overview

® procedure generateDataSet(query q)

preprocess query tree

generateDataSetForOriginalQuery()

<ill
<il
<il

<il

EquivalenceClasses()

OtherPredicates()
'ComparisonOperators()
lAggregates()

18

Preprocess Query Tree

Build Equivalence Classes from join
conditions

— AXx=B.yand B.y=C.zthen
Equivalence class: A.x,B.yand C.z

Foreign Key Closure
— AXx->B.wyandB.y->C.zthen Ax->C.z

Retain all join/selection predicates other
than equijoin predicates

19

Dataset for Original Query

B Generate datatype declarations for CVC3

DATATYPE COURSE ID = BIO101 | BIO301 | BIO399 | CS101 |
CS190 | €s315 | €s319 | C€s347 | cs630 | Cs631 | CS632 |
EE181 | FIN201 | HIS351 | MU199 | PHY101l END;

CREDITS : TYPE = SUBTYPE (LAMBDA (x: INT) : x > 1 AND x < 5);
B Array of tuples of constraint variables, per relation

CRSE TupleType: TYPE = [COURSE ID, DEPT NAME, CREDITS];
O CRSE: ARRAY INT OF CRSE TupleType;

TEACHES TupleType: TYPE = [INSTRUCTOR ID, COURSE 1ID,
SEMESTER, ACADYEAR];

O TEACHES: ARRAY INT OF TEACHES TupleType

O_CRSE[1].0 is a constraint variable corresponding to COURSE_ID
“of the First tuple

20

Dataset for Original Query

® One or more constraint tuples from array, for each occurrence
of a relation

O CRSE INDEX INT : TYPE = SUBTYPE (LAMBDA (x: INT) : x > 0 AND x < 2);
O DEPT INDEX INT : TYPE = SUBTYPE (LAMBDA (x: INT) : x > 0 AND x < 2);
O TEACHES INDEX INT : TYPE = SUBTYPE (LAMBDA (x: INT) : x > 0 AND x < 2);

— More than 1 tuple required for aggregation, repeated occurrences
or to ensure f.k. Constraints

B Fquality conditions between variables based on equijoins
ASSERT (O CRSE[1].1 = O DEPT[1].0) ;
ASSERT O_CRSE[l].O = O_TEACHES[l].

B Other selection and join conditions become constraints
21

AR

Dataset for Original Query (DB Constraints)

¢ Constraints for primary and foreign keys

f.k. from crse.deptname to dept.dept_name
" ASSERT FORALL i EXISTS j (O CRSE[i].l = O DEPT[J].0);

p.k.on R.A

" ASSERT FORALL i FORALL j (O CRSE[i].0 = O CRSE[j].0) =>

“all
other attrs equal”

= Why not assert primary key value is distinct (supported by CVC3)?

Since range is over finite domain, p.k. and F.k. constraints can
be unfolded

Unfolded constraints:

F.K:ASSERT O CRSE[1].1 = O DEPT[1].0 OR O CRSE[1].1 = O DEPT[2].0

p.K: ASSERT (O DEPT[1].0 = O DEPT[2].0) => (O DEPT[1].l1 = O DEPT[2].1)
AND (O DEPT[1].2 = O DEPT[2].2) ;

22

Helper Functions

* CvcMap

Takes a reland attrand returns rfi].pos where
ris base relation of rel

pos is the position of attribute attr

jis an index in the tuple array

* GenerateEgqConds(P)

Generates equality constraints amongst all
elements of an equivalence class P

23

Killing Join Mutants: Equijoin

killEquivalenceClasses()
B for each equivalence class ecdo
Let allRelations := Set of all <rel, attr> pairs in ec
for each element e in allRelations do
® conds := empty set
Blete:=R.a

=S :=(set of elements in ec which are foreign keys
referencing R.a directly or indirectly) UNION R:a

" P:=ec-S
" if P:isEmpty() then
continue

" else ... main code for generating constraints (see next
slide) 24

Killing Join Mutants: EquiJoins

conds.add(generateEgqConds(P))
conds:add(
“NOT EXISTS i: R[i].a =" + cvcMap(P[0]))
for all other equivalence classes oedo
conds.add(generateEqConds(oe))

for each other predicate p do

conds:add(cvcMap(p))
conds.add(genDBConstraints()) /*P.K. and F.K*/
callSolver(conds)
if solution exists then

create a dataset from solver output

25

Killing Other Predicates

B Create separate dataset for each attribute in
predicate

B e .g. For Join condition B.x=C.x + 10
Dataset 1 (nullifying B:x):

" ASSERT NOT EXISTS (i : B INT) : (B[i].x = C[l].x + 10);

Dataset 2 (nullifying C:x):

" ASSERT NOT EXISTS (i : C _INT) : (B[l].x = C[i].x + 10);

26

Comparison Operation Mutations

* Example of comparison operation mutations:
A<5vs.A<=5vs.A>5vsA>=5vs. A=5,vsA<>5

* |dea: generate separate dataset for three cases (leaving rest of
query unchanged):
A<5
A=5
A>5

* This set will kill all above mutations

27

Aggregation Operation Mutations

* Aggregation operations
count(A) vs. count(distinct A)
sum(A) vs sum(distinct A)
avg(A) vs avg(distinct A)
min(A) vs max(A)
and mutations amongst all above operations

* |dea: given relation r(G, O, A) and query
select aggop(A) from r group by G
Tuples (g1, 01, a1), (g1, 02, al), (g1, 03, a2), with a1 <> 0 will kill above pairs
of mutations

Additional constraints to ensure killing mutations across pairs

28

Aggregation Operation Mutants

B |ssues:

Database/query constraints forcing A to be unique
for a given G

Database/query constraints forcing A to be a key
Database/query constraints forcing G to be a key

B Carefully crafted set of constraints, which are
relaxed to handle such cases

29

Completeness Results

B Theorem: For the class of queries, with the space of
join-type and selection mutations defined in the paper, the
suite of datasets generated by our algorithm is complete.
That is, the datasets kill all non-equivalent mutations of a
given query

B Completeness results for restricted classes of aggregation
mutations

aggregation as top operation of tree, under some
restrictions on joins in input

30

Complexity
B Number of datasets generated is linear in query size

® Although solving constraints is in general NP-hard, and even
undecidable with arbitrary constraints, it is tractable in special
cases.

31

Extensions

+ Unintended Joins
* Nested subqueries
+ Handling NULLs

+ String Constraints
+ Distinct

+ Others —Set ops, Parameterized Queries, Date-Time, Insert,
Update, Delete, Disjunctions

Sources:

32

XDa-TA : Automating Grading of SQL Query Assignments

file:///media/sunny/Main1/Advanced_DB/

Unintended Join Conditions

Unintended join conditions can be explicitly added by the user in the where clause of the query
or by using natural joins instead of theta joins.

Example:
— Schema:

— student (id, name,dept name)

— course (course id, name, dept name)

— takes (id, course id, sec id, semester, year)
— Query to find the list of all courses taken by a student with id = 1234 is:

SELECT course id,course name FROM student

INNER JOIN takes on(id)

INNER JOIN course ON(course id) WHERE student.id = 1234
— Dataset Generated:

— Student (1234, Alice, EE)
— course (CS-317, Database Systems, CS)
— takes (1234, CSs-317, 1, Fall, 2014) 33

Constrained Aggregation Operation

* Aggregation Constraints: Example : SUM (r.a) > 20
* CVC3 requires us to specify how many tuples r has.

* Hence, before generating CVC3 constraints we must
() estimate the number of tuples n, required to
satisfy an aggregation constraint
(b) translate this number n to appropriate number of
tuples for each base relation so that the input of the
aggregation contains exactly n tuples.

34

Changed Group By Attributes

*Schema: takes (id, course id, sec id, semester, year, section)

*Example : find the number of students taking each course every time it is offered.

SELECT count(id), course id, semester, year FROM takes
GROUP BY course id, semester, year

* Erroneous query misses out students who have taken the same course in different
sections.
SELECT count(id), course id, semester, year FROM takes
GROUP BY course id, semester, year, section

* Example tuples for dataset:
tl (1234, Cs-317, 1, Fall, 2014, section 1)
t2 (1234, Cs-317, 1, Fall, 2014, section 2)

35

Handling NULLs

* For text attributes, enumerate a few more values in the enumerated type
and designate them NULLs.

Example : for an attribute course_id, we enumerate values
NULL course_id 1,NULL course_ id 2, etc.

* For numeric values, we model NULLs as any integer in a range of negative
values that we define to be not part of the allowable domain of that numeric
value.

» Add constraints forcing those attribute values to take on one of the above
mentioned special values representing NULL.

* Add constraints to force all other values to be non null.
36

String Constraints

* S1 likeop pattern

* S1 relop constant

e strlen(S) relop constant
*S1 relop S2

where S1 and S2 are string variables,

likeop is one of LIKE, ILIKE (case insensitive like),NOT LIKE and
NOT ILIKE

relop operators are =, <, <, >, 2, <>, and case-insensitive equality
denoted by ~=.

37

String Constraints

* String solver

* String constraint mutation: {=, <>, <, >, <, =}
(1) S1=S2 (2) S1>S2(3) S1<S2

 LIKE predicate mutation: {LIKE, ILIKE,NOT LIKE, NOT ILIKE }
 Dataset 1 satisfying the condition S1 LIKE pattern.
 Dataset 2 satisfying condition S1 ILIKE pattern,
but not S1 LIKE pattern
 Dataset 3 failing both the LIKE and ILIKE conditions

38

XDa-TA

» For each query in an assignment, a correct SQL query is given to the tool,
which generates datasets for killing mutants of that query.

* Modes: i) admin mode
ii) student mode.

* Assignment can be marked as:
1. learning assignment
2. graded assignment.

Source:
XDa-TA : Automating Grading of SQL Query Assignments

39

Performance Results

B University database schema from Database
System Concepts 6t Ed

B Queries with joins, with varying number of
foreign keys imposed

40

Results for inner join queries

Qu- #Joins #FK #Datasets #Mut- Total Time(s)
ery (#Rela- Gene- ants without | with
fons) rated Killed Unt’nlding
1 1 (2) 0 2 2 0.430 0.040
1 1 (2) l 1 1 0.370 0.030
2 2 (3) 0 — 6 1.680 0.140
2 2 (3) ! 3 4 1.000 0.100
2 2 (3) 2 2 3 0.990 0.060
3 3 (4) 0 6 18 3.990 0.229
3 3 (4) | 5 13 1.729 0.190
3 3 (4) — 3 6 1.230 0.179
4 4 (3) 0 7 122 7.190 0.279
4 4 (5) — 4 62 2.310 0.190
5 5 (6) 0 9 450 26.800 0.570
5 5 (6) — 6 245 2.960 0.380
6 6 (7) 0 11 1499 68.450 0.790
6 6 (7) 6 6 507 3.8509 0.520
TABLE 1

RESULTS FOR INNER JOIN QUERIES

Results fFor queries with selections,aggregations

Qu- #Joins #Sel- HAggo- #Data #MIurt- Total Time(s)
ery ect- rega- sets ants without with
1018 nons Gen. killed Untolding
7 0 1 0 3 5 0.12 0.12
8 0 0 1 1 7 0.08 0.08
9 1 0 1 2 9 41.40 0.65
10 2 1 0 6 9 5.69 1.23
11 2 2 0 9 18 6.54 1.67
12 2 1 1 5 14 53.95 1.05
TABLE 11

RESULTS FOR QUERIES WITH SELECTION/ AGGREGATION

42

Query

CRHRHEATE WIEW rich_instructors AS SELECT
id,name, dept_name . salary FEROMN instructor
WHERE salary = 50000

Q1

b

SELECT course_id, title FIROM course

Q2

|

Fl

SELECT course_id, title FROMN @course WHERIE
dept_name— *Clomp. Sci.’

3

o

SELECT DISTINCT course.course_id, course.title,
I FIROM course WA TURAL JOIN teaches W HEIRRLE
teaches. semester="5pring’ ANID teaches yvear="2010"

Q4

SELECT DISTINCT student.id, st udent. name
FIROM takes INATURAL JOIN student WHERI
counrse_id =" C5-101"°

Q5

SELECT DISTINCT course.dept_name FIROMNI
CO1LTSe NATUIRLAL JCIIN section W HERE

section.semester="5Spring’ ANID section.year="2010"

Q6

SELECT course_id, title FIROMN @ course W HERE
credits == 3

Q7

SELECT course_id, COUNT(DISTINCT id) FIROMN
counrse NATURAL LEFT OUTER JOIN takes
GCROUP BY course_id

Q=

SELECT IDISTINCT course_id, title FRON course
NATURAL JOIN @ section WHERLE semester —
Spring” and year — 2010 and course_id WNWOT IN (SE-
LECT course_id FIROMN prereq)

Q0a

i |

i

WITH = as (SELECT id.time_slot_id, yvear .semester
FIROMNM takes NATURAL JOIN section GROUP
BY id . time_slot_id, yvear,semester HAVINC
count (time_slot_id) =1) SELECT DISTINCT id.name
FIROMNM s NATURAL JOIN student

W9b

22

SELECT distincet A.id, A.name FROM (SELECT
* from student NATURAL JOIN takes NATURAL
JOIN section) A, (SELECT * from student NAT-
URAL JOIN takes NATURAL JOIN section) B
WHERE A name = DB.name and A.time slot_id =
B.time_slot_id and A.course_id <> B.course_id and
A semester = B .semester and A.yvear = B.year

Q10

SELECT DISTINCT deptname FROM course
WHERE credits = (SELECT max(credits) FRODM
colurse)

Qi1

SELECT DISTINCT instructor.ID name,course_id
FROM instructor LEFT OUTER JOIN TEACHES
ON instructor.IDD = teaches. 1D

Q12

SELECT student.id, student.name FROM student
WHERE lower(student.name) like “9%sr%’

Q13

10)

SELECT id, name FROM student NATURAL LEFT
OUTER JOIN (SELECT id, name, course_id FROM
student NATURAL LEFT OUTER JOIN takes
WHERE year = 2010 and semester = ‘Spring’) S
WHERE course_id IS5 NULL

14

19

SELECT DISTINCT * FROM takes T WHERE
(NOT EXISTS (SELECT id.course_id FROM takes

S WHERE grade ! = ‘F° AND T.uad=5.d
AND T.course_id=S.course_id) and T.grade IS NOT
NULL) or (T.grade ! = ‘F’" AND T.grade IS NOT

NULL)

44

Query grading results

QId Que- | XDa-TA USm ULg TA Plan
ries v X VI X [V x|V x VST

QO T2 T2 0 T2 0 721 0 T2 0 - -
Q1 55 53 2 53 2 53 | 2 53 2 51 4
Q2 57T 56 1 56 1 56 1 56 1 54 3
Q3 T1 HE 13 59 |1 12 | 59 | 12 | 70 1 3 | 68
Q4 78 52 26 52126 | 75| 3 7T 1 10 | 26
Q5 T2 49 23 61 | 11 | 56 | 16 | 59 | 13 | 43 | 29
Q6 61 55 6 55 6 55 | 6 59 2 55 | 4
Q7 7T 52 25 54 | 23 | 75 | 3 53 | 24 3 |73
QS 79 46 33 67 | 12 | 65| 14 | 63 | 16 2 |77
Q9a 80 12 68 56 | 24 | 10 | 7O | 57 | 23 2 | 78
Q9b 80 9 71 56 | 24 | 10 | 7O | 57 | 23 3 |77
Q9 | 80 [8] 72 |56| 24107057 23| 5 |75
Q1 T4 73 1 73 1 73| 1 T4 0 34 | 40
Q11 69 53 16 53116 | 53 | 16 | 53 | 16 | 51 | 18
Q12 70 62 8 67| 3 63| 7 | 63 T 38 | 32
Q13 T2 64 & 63| 9 | 63| 9 | 65 T 3 | 69
Q14 67 39 28 53| 14 | 57 | 10 | 32 | 35 2 65

Table 2: Query grading results

"

45

Future Work

+ Ongoing work

+ Integration with course management systems such as Moodle or
Blackboard using the Learning Tools Interoperability (LTI) standard

+ Future work:
+ Handling SQL features not supported currently
+ Multiple queries
* Form parameters

46

Questions

Thank You

