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Introduction

y=kQ@x+n

Y  Blurred, noisy observation
L  Original sharp image
k  Point spread function - PSF

N Additive white Gaussian noise

Estimate © and k given only 1y and the noise
statistics.
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Bilinear 1ll-posed problem

* x and k are both unknowns.

* Keeping one of the variables fixed, the problem
is linear, 1ll-posed.

* Blind deconvolution 1s a bilinear, 1ll-posed
problem.

* Using regularizers and a quadratic data fitting
term leads to the cost function:
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Cost function

C(z, k) =||y— Kz ||? + s Rs () + Mg Ry (k)

R.(z) -Image regularizer
Ry (k) - PSF regularizer
\; - Image regularization factor

A - PSF regularization factor

Use alternate minimization to estimate - and k.
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MAP estimation (1of 2)

p(x, kly) o< p(y|z, k)p(x)p(k)

p(y|z, k) — likelihood
p(z) — image prior p(k) — blur prior

r and k are assumed to be independent

C(z, k) =||y — Kz ||” +\s Ro(2) + M Ri (k)
N J H_/ H_/
x p(x) x p(k)

DF
(data fitting term)
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MAP estimation (2 of 2)

Ry (k) = —logp(k)

A commonly used 1image prior 1s

logp(z) = — Z(Igh,i(azﬂo‘ + |gv,i(x)]7)

gn.i, go..— Hrst order horizontal, vertical difference at
location 1.
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MAP — reported failures and solutions

|[Fergus 2006]

* A gradient based image prior minimizes all the
gradients, whereas natural images do have some
strong gradients.

* Estimate PSF by maximizing the marginal
probability and use non-blind deconvolution.

[Shan 2008]

* Uses a modified likelihood function and an 1image
prior which use the global and local properties of
1mages.
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‘ Behaviour of prior w.r.t. blurring
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Why joint estimation fails? [Levin
2009] (1 of 2)

With R.(z) asthe image prior and PSF prioir
assumed to be uniform, the estimate 1s

(&, k) = argmin DF(x,k) + Ay R, ()
x,k

Trivial solution: ¥ an impulse and = = v.

[Levin 2009] estimates * by marginalization and
uses a non-blind method for deconvolution.
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‘Why joint estimation fails? (2 of 2)

cost DF DF — Data fitting term
R.(z) —Image prior

k'- 2D impulse X
(trivial Solution)
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When joint estimation works? (1 of 2)

Use a PSF prior which prevents the trivial solution of
the PSF becoming an impulse.

With this, the estimate becomes,

A

where R, (x) 18 defined 1n a manner similar to R (k),
l.e.

Ry (k) = — Z(|gh,i(k)|a + 1gv,i(K)|Y)
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‘When joint estimation works? (2 of
2)

A

cost DF
1 DF — Data fitting term
A R.(r) — Image prior
Ry(k) o Ry(k) — PSF prior
k'- 2D impulse X,T{

(trivial Solution)
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PSF regularizer prevents trivial
solutions

Claim1l. The function Ry (k Z lgn.i (B)|Y + |gv.: (k)|

attains the marimum when k is the impulse function, with

k constrained to satisfy ;: ;: k(m,n) = 1.

™m n

Complete proof: Please refer paper.
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‘ Sketch of the proof for total variation
regularizer

TV (k) = 3" \/g% (k) + g2 (k)

1.4
I1.2 Monotonic increasing
-+ function with minimum
S .s atzero.

o6 |gh,’i|7 |gv,’i| < [Ov 1]
0.2 kaaw = 2+ \/5
¢ 1 1 Ih.i
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Choice of regularization factor (1 of 2)

Using a PSF regularizer alone 1s not sufficient, 1t 1s
necessary to select an appropriate regularization
factor too.

Claim2. The lower bound of the PSF regularization factor,
Ak, .18 given by

A E(Ry)

max

where E(R;) is the expectation of the image reqularizer

( R, ) and Ry is the maximum of Ry (k).

max

Complete proof: Please refer paper.
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Choice of regularization factor (2 of 2)

Since the minimum of the function R« (k) is zero, it

cannot be used for upper bounding Ax.

e E(R)
Ry,

A E(R)
Ry, ’

max

<A< p

max

B8 >1 1s an empirically chosen factor.

14/12/12 VIP Lab, IIT Bombay 17



Estimated PSF behavior

— Impulse «— — non-trivial solution <« — averaging filter
@ @

F >
0 Ak A R

min kmaa:

Ak € [0, Ag,....] - Estimated PSF tends to the trivial impulse

Ak € (Mkpins Akmae) = Non-trivial solution
A > Mg - Averaging filter — some amount of deblurring
1s there
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Results

*  We show the results for two 1mage priors
* TV prior
*  Wavelet prior

* TV was chosen as the PSF prior in both the
cases.

* For Ax << Ak,... there is no deblurring — the
trivial solution.

* For Ax >> Ax,... there is deblurring with
artifacts.
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TV (proper \x ) ‘Wavelet (proper Ay )

A << )‘kmm
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A << Ak

min
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Conclusions

Joint estimation of the image prior gives non-trivial
results provided
* an appropriate PSF prior is used

*  PSF regularization factor is chosen properly.
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Thank you
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