Accurate and Efficient Rendering of Detail using Directional Distance

Maps Ravish Mehra Subodh Kumar IIT Delhi IIT Delhi

Mesostructures

microstructures

mesostructures

macrostructures

Mesostructures

height field vs non-height field

alters shadows, occlusion, and silhouettes

Mesostructure Rendering

Tessellation

generates large number of micro-polygons

Ray-tracing

generates large number of triangles

Per-pixel displacement mapping

- works at interactive rates
- provides performance-quality trade-off

Per-Pixel Displacement Mapping

render lowresolution mesh

 cover all fragments (pixels)

recompute color and depth of each fragment

view ray

Previous Work

Height-field mesostructures

- Relief mapping and variants
- [Policarpo et al. 05], [Risser et al. 05], [Tatarchuk 05]
- Cone mapping
- [Dummer 05], [Policarpo and Oliveira 07]
- Erosion and dilation map
- [Kolb and Salama 2005]
- Others
- [Oh et al. 06], [Tevs et al. 08], [Baboud et al. 06]

Previous Work

Non height-field mesostructures

- Relief mapping
- [Policarpo and Oliveira 06] : limited non-height field
- Generalized displacement mapping
- [Wang et al. 04]: height field and non height-field
- linear interpolation errors
- Sphere tracing
- [Hart 1996], [Donnelly 05]: height field and non height-field
- linear interpolation errors

Sphere Tracing

Drawbacks

- Slow convergence
- points close to surface
- Limited accuracy
- based on sampling resolution of distance maps
- High memory requirement
- distance maps stored as 3D texture

Directional Distance Map

Directional Distance Map

- "look forward"
- distance only in direction of ray important
- direction cone
- limits field of view of the ray
- small #of direction cones
- "front to back"

Comparison

with distance map

with directional distance map

Accurate intersection

- conservative distance
- nearest distance from anywhere within a voxel

original sphere tracing

our technique

Accurate intersection

- Quadric surface approximation
- voxel with surface has value 0

Accurate intersection

- Quadric surface approximation
- voxel with surface has value 0
- perform ray-quadric intersection

Distance map compression

Results

Faster convergence

with directional distance map

with distance map

Only few direction cones suffice

	Distance	DDM	DDM	DDM
	map	2×1	4×1	8×1
Shape	5.5	4.2	4	3.9
Teapot	4.4	3.1	2.8	2.7
Golden ball	8.3	7.1	6.1	5.8

Performance (in ms) of sphere tracing with distance map and directional distance map (DDM) at varying number of directions.

Results

Quality improvement

with distance map

with DDM + ray-quadric intersection

Quality improvement

with distance map

with DDM + ray-quadric intersection

Quality improvement

with distance map

with DDM + ray-quadric intersection

Performance

Model	Relief	ST	ST DDM	ST DDM
(No. of	map	Distance	4×1	+ Quadric
beads)		map		4×1
Plane(400)	21.7	8.3	3.0	7.4
Cylinder(1600)	38.5	17.5	3.9	16.4
Teapot(4900)	23.8	25.0	10	50
Box(196)	27.7	12.7	6.3	30.3

Performance (in ms) for Relief Mapping, Sphere Tracing (ST) with distance map, ST with DDM and our technique (ST with DDM and quadric)

Compression efficiency

Model	Uncompressed	Compressed	Compr.
		LOOKUP + ATLAS	Effic.
Beads	$(256^2 \times 64) \times 8$	$128^2 \times 256 + 128^2 \times 256$	4
Kitten	$(256^2 \times 64) \times 8$	$64^2 \times 128 + 64^2 \times 512$	12.8
Golden ball	$(256^2 \times 64) \times 8$	$32^2 \times 64 + 16^2 \times 256$	256

Compression efficiency of directional distance map (DDM) for different models.

