## On the use of Regions for Semantic Image Segmentation

Rui Hu<sup>1</sup>, <u>Diane Larlus</u><sup>2</sup>, Gabriela Csurka<sup>2</sup> <sup>1</sup> University of Surrey, UK <sup>2</sup> Xerox Research Center Europe

> Tuesday December 18th 2012 ICVGIP 2012



## Table of contents



- 2 Proposed Benchmark
- 3 Recognition model
- 4 Image level prior
- **5** Conditional Random Field
- 6 Conclusions



• Unsupervised Image segmentation







• Unsupervised Image segmentation





• Semantic Image segmentation







- State-of-the-art semantic segmentation methods usually leverage
  - Local appearance of objects (class likelihood maps)
  - Local consistency (constraining neighboring labels)
  - Global consistency (image level priors)
- That are combined in
  - unified CRF framework [Verbeek & Triggs 2007, Kohli et al 2009, Ladicky et al 2009]
  - sequential framework

[Yang et al 2007, Csurka & Perronnin 2008]



Recent methods use unsupervised image partition in Regions, or Super-Pixels to enhance semantic segmentation:

- Local appearance is predicted based on region descriptors [Gu et al 2009, Lim et al 2009, Vijayanarasimhan & Grauman 2011, Lucchi et al 2011]
- Local consistency is enforced within regions:
  - in a post processing step [Csurka and Perronnin 2008]
  - or using higher order potentials in the CRF [Kohli et al 2009, Ladicky et al 2009, Gonfaus et al 2010]



#### What is the best way to use regions ?

We propose a benchmark studying the role and benefit of regions at different stages of the segmentation process.



## **Table of contents**

Semantic Segmentation

## 2 Proposed Benchmark

3 Recognition model

Image level prior

**5** Conditional Random Field

6 Conclusions



We propose a benchmark based on 3 components

• A standard dataset:

MSRC-21 dataset

• A standard super-pixel method:

Berkeley segmentation approach

• A standard pipeline:

Fisher-Vector based patch classification Condition Random Field



## **MRSC-21** dataset

- Standard benchmark, 591 images:
  - 276 images for training
  - 59 images for validation
  - 275 images for testing
- 21 classes:

building, grass, tree, cow, sheep, sky, aeroplane, water, face, car, bicycle, flower, sign, bird, book, chair, road, cat, dog, body, boat

- Evaluate pixel-level classification
  - Average class-based accuracy

[Shotton et al, IJCV 2009]



## **Patch-based Fisher Vector Representation**



[Csurka and Perronnin, IJCV 2011]

Dense patch extraction at single scale or at 5 different scales, described using:



## **Conditional Random Field model**

- Dense CRF model
  - [Krähenbühl and Koltun, NIPS 2011]
  - Model with unary and pairwise potentials
    - Unary term: based on the patch-based FV classification
    - Pairwise term: all pairwise pixel connections are considered (not only 4 or 8 neighborhood systems)



## **Table of contents**

Semantic Segmentation

- 2 Proposed Benchmark
- 3 Recognition model
- Image level prior
- **5** Conditional Random Field
- 6 Conclusions



#### **Appearance model**

- Patch-based system: PB-SIS
  - Classify each patch individually
  - Accumulate patch probabilities at the pixel level



- Region-based system: RB-SIS
  - · Aggregation of patches for each region of the hierarchy
  - Classify each region individually
  - Accumulate region information at the pixel level



## **Recognition model**

Appearance only

- Patch-based semantic image segmentation: PB-SIS
- Region-based semantic image segmentation: RB-SIS

|                | One scale (1S) |        | Multi scale (MS) |        |
|----------------|----------------|--------|------------------|--------|
|                | PB-SIS         | RB-SIS | PB-SIS           | RB-SIS |
| COL            | 55.72          | 62.84  | 62.31            | 65.94  |
| SIFT           | 46.10          | 61.98  | 54.29            | 65.44  |
| APP (COL+SIFT) | 63.63          | 70.24  | 69.98            | 72.90  |

Regions are great assets that improve local appearance based prediction.



## Exploiting the shape and the hierarchy of regions

For RB-SIS using regions, we can:

use gPb as shape descriptor

[Gu et al CVPR 2009, Lim et al ICCV 2009]

• exploit partially the hierarchy through Bags-of-Triplets





Exploiting the shape and the hierarchy of regions

#### RB-SIS: shape and bags-of-triplets

|           | shape only | +APP(1S) | +APP(MS) |
|-----------|------------|----------|----------|
| BoR       | 34.77      | 70.35    | 71.85    |
| BoR + BoT | 42.70      | 71.18    | 72.99    |

- Shape alone performs poorly
- Hierarchy helps a lot for shape alone, but less when appearance is present



## **Table of contents**

Semantic Segmentation

- 2 Proposed Benchmark
- 3 Recognition model
- 4 Image level prior
- **5** Conditional Random Field
- 6 Conclusions



Appearance based predictions are combined with

- Global image classification (global Fisher Vector + SVM)
- Location prior (object location likelihood prior from training)

|        | REC   | + GL  |
|--------|-------|-------|
| PB-SIS | 69.98 | 75.20 |
| RB-SIS | 72.99 | 75.88 |

Recognition (REC) is enhanced with global and location (GL) priors



## **Table of contents**

Semantic Segmentation

- Proposed Benchmark
- **3** Recognition model
- 4 Image level prior
- **5** Conditional Random Field
- 6 Conclusions



## Conditional Random Field (CRF)

We use a dense CRF formulation

- unary potential: best recognition model enhanced with global and location priors
- pairwise potential: all pixel pairs are connected with pairwise
  - middle range regularization
  - longer range color-dependent regularization





#### **Conditional Random Field**

We extend the dense CRF to use region information

- unary potential: best recognition model
- pairwise potential
  - middle range regularization
  - longer range color-dependent regularization
  - additional potential using leaf regions





## **Conditional Random Field**

• Dense CRF results without (dCRF) and with (dCRFSP) region-based regularization

|        | REC   | + GL  | dCRF  | dCRFSP |
|--------|-------|-------|-------|--------|
| PB-SIS | 69.98 | 75.20 | 76.69 | 77.25  |
| RB-SIS | 72.99 | 75.88 | 75.80 | 76.02  |

- CRF regularization brings little improvement to RB-SIS
- PB-SIS benefits more from CRF, and outperforms RB-SIS



## **Qualitative results**

test image - groundtruth - PB-prior - RB-prior - PB-dCRFSP - RB-dCRFSP





## **Table of contents**

Semantic Segmentation

- 2 Proposed Benchmark
- 3 Recognition model
- 4 Image level prior
- **5** Conditional Random Field





#### Conclusions

Proposed framework allows to evaluate the contribution of each component

Take Home Message:

- Simple recognition model using regions and global prior is already very competitive, no need for regularization
- When a CRF is considered, the patch-based model is enough, and regions could be used only at a later stage



# Thanks for your attention ! Questions ?



Backup-slides



Main limitation of an image partitioned into regions:

- No possible recovery if a region groups multiple classes. Possible solutions:
  - Multiple segmentation to obtain overlapping sets of regions [Pantofaru et al 2008, Gould et al 2009]
  - Exploiting a hierarchy of regions

[Ladicky et al 2009, Gu et al 2009, Lim et al 2009, Munoz et al 2010]

Graph of regions

[Chen et al 2011]



#### **Patch-based Fisher Vector Representation**

#### No regularization: simple patch voting



#### Conditional Random Field (CRF)

We use a dense CRF formulation:

• CRF based regularization: dCRF

$$E(\mathbf{x}) = \sum_{i} \psi_{u}(\mathbf{x}_{i}) + \sum_{i < j} \delta_{\mathbf{x}_{i},\mathbf{x}_{j}} \psi_{p}(\mathbf{x}_{i},\mathbf{x}_{j}),$$

Pairwise potential

$$\begin{split} \psi_{p}(x_{i}, x_{j}) &= \omega_{1} \exp\left(-\frac{|p_{i} - p_{j}|^{2}}{2\theta_{\alpha}^{2}} - \frac{|I_{i} - I_{j}|^{2}}{2\theta_{\beta}^{2}}\right) \\ &+ \omega_{2} \exp\left(-\frac{|p_{i} - p_{j}|^{2}}{2\theta_{\gamma}^{2}}\right) \end{split}$$

with  $p_i$  and  $l_i$  being the position and RGB value of pixel  $x_i$  respectively.

#### **Conditional Random Field**

#### • CRF based regularization: dCRF





## Conditional Random Field (CRF)

We extend the dense CRF to use region information:

• CRF based regularization: dCRFSP

$$E(\mathbf{x}) = \sum_{i} \psi_{u}(\mathbf{x}_{i}) + \sum_{i < j} \delta_{\mathbf{x}_{i},\mathbf{x}_{j}} \hat{\psi}_{\rho}(\mathbf{x}_{i},\mathbf{x}_{j}),$$

Pairwise potential

$$\hat{\psi}_{p}(x_{i}, x_{j}) = \psi_{p}(x_{i}, x_{j}) + \omega_{3} \exp\left(-\frac{|p_{i} - p_{j}|^{2}}{2\theta_{\alpha}^{2}} - \frac{|R_{i} - R_{j}|^{2}}{2\theta_{\delta}^{2}}\right)$$

with position  $p_i$ , RGB value of pixel  $I_i$  and the leaf region that contains  $x_i$ ,  $R_i$ .



#### **Conditional Random Field**

#### • CRF based regularization: dCRFSP



