On the use of Regions
or Semantic Image Segmentation
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State-of-the-art semantic segmentation methods usually
leverage
Local appearance of objects (class likelihood maps)
Local consistency (constraining neighboring labels)
Global consistency (image level priors)

That are combined in

unified CRF framework

[Verbeek & Triggs 2007, Kohli et al 2009, Ladicky et al 2009]
sequential framework

[Yang et al 2007, Csurka & Perronnin 2008]
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Recent methods use unsupervised image partition in , or
to enhance semantic segmentation:

Local appearance is predicted based on region descriptors
[Gu et al 2009, Lim et al 2009, Vijayanarasimhan & Grauman 2011,
Lucchi et al 2011]
Local consistency is enforced within regions:

in a post processing step

[Csurka and Perronnin 2008]

or using higher order potentials in the CRF

[Kohli et al 2009, Ladicky et al 2009, Gonfaus et al 2010]
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We propose a benchmark studying the role and benefit of regions
at different stages of the segmentation process.
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We propose a benchmark based on 3 components
A standard dataset:
MSRC-21 dataset
A standard super-pixel method:
Berkeley segmentation approach

A standard pipeline:
Fisher-Vector based patch classification
Condition Random Field
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Standard benchmark, 591 images:
276 images for training
59 images for validation
275 images for testing
21 classes:
building, grass, tree, cow, sheep, sky,
aeroplane, water, face, car, bicycle,
flower, sign, bird, book, chair, road,
cat, dog, body, boat
Evaluate pixel-level classification
Average class-based accuracy

[Shotton et al, 1JCV 2009]




Berkeley segmentation method

o Unsupervised segmentation of the image at multiple levels
[Arbalaez et al, CVPR 2009]
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Unsupervised segmentation of the image at multiple levels
[Arbalaez et al, CVPR 2009]
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Unsupervised segmentation of the image at multiple levels
[Arbalaez et al, CVPR 2009]
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Unsupervised segmentation of the image at multiple levels
[Arbalaez et al, CVPR 2009]




Patch-based Fisher Vector Representation

Dense patch extraction
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[Csurka and Perronnin, 1JCV 2011]

Dense patch extraction at single scale or at 5 different scales,

described using:

8 orientations

Patch
| | Jsslm]s]s]s]slefs]s]s]s]s]s]s]sfe]s]s]s]ss]s]s]
SIFT descriptor
® Patch center
Mean Variance
Patch
SSEN Sy "R mal I
e n mam awmw o | [
P smmmEN ooooooooooooooooooooooon
= R r c’*‘
R Color descriptor X X ©
. ero %

« Patch center



Dense CRF model
[Krahenbiihl and Koltun, NIPS 2011]
Model with unary and pairwise potentials

Unary term: based on the patch-based FV classification
Pairwise term: all pairwise pixel connections are considered
(not only 4 or 8 neighborhood systems)
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Patch-based system: PB-SIS

Classify each patch individually
Accumulate patch probabilities at the pixel level
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Region-based system: RB-SIS
Aggregation of patches for each region of the hierarchy
Classify each region individually
Accumulate region information at the pixel level
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Appearance only
Patch-based semantic image segmentation: PB-SIS

Region-based semantic image segmentation: RB-SIS

One scale (1S) | Multi scale (MS)
PB-SIS | RB-SIS | PB-SIS | RB-SIS
COL 55.72 62.84 62.31 65.94

SIFT 46.10 61.98 54.29 65.44

APP (COL+SIFT) | 63.63 | 70.24 | 69.98 | 72.90

Regions are great assets that improve local appearance based
prediction.
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For RB-SIS using regions, we can:

use gPb as shape descriptor
[Gu et al CVPR 2009, Lim et al ICCV 2009]

exploit partially the hierarchy through Bags-of-Triplets
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RB-SIS: shape and bags-of-triplets

shape only | +APP(1S) | +APP(MS)
BoR 34.77 70.35 71.85
BoR + BoT 42.70 71.18 72.99

Shape alone performs poorly

Hierarchy helps a lot for shape alone, but less when
appearance is present
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Appearance based predictions are combined with

Global image classification (global Fisher Vector + SVM)
Location prior (object location likelihood prior from training)

REC | + GL
PB-SIS | 69.98 | 75.20
RB-SIS | 72.99 | 75.88

Recognition (REC) is enhanced with global and location (GL) priors
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We use a dense CRF formulation
unary potential: best recognition model enhanced with global
and location priors
pairwise potential: all pixel pairs are connected with pairwise

middle range regularization
longer range color-dependent regularization
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We extend the dense CRF to use region information

unary potential: best recognition model
pairwise potential

middle range regularization
longer range color-dependent regularization
additional potential using leaf regions
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Dense CRF results without (dCRF) and with (dCRFSP)
region-based regularization

REC | + GL | dCRF | dCRFSP
PB-SIS | 69.98 | 75.20 | 76.69 | 77.25
RB-SIS | 72.99 | 75.88 | 75.80 | 76.02

CRF regularization brings little improvement to RB-SIS
PB-SIS benefits more from CRF, and outperforms RB-SIS
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test image - groundtruth - PB-prior - RB-prior - PB-dCRFSP - RB-dCRFSP
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Proposed framework allows to evaluate the contribution of each
component

Take Home Message:

Simple recognition model using regions and global prior is
already very competitive, no need for regularization

When a CRF is considered, the patch-based model is enough,
and regions could be used only at a later stage
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Thanks for your attention !

Questions ?
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Main limitation of an image partitioned into regions:
No possible recovery if a region groups multiple classes.
Possible solutions:

Multiple segmentation to obtain overlapping sets of regions
[Pantofaru et al 2008, Gould et al 2009]

Exploiting a hierarchy of regions
[Ladicky et al 2009, Gu et al 2009, Lim et al 2009, Munoz et al 2010]

Graph of regions
[Chen et al 2011]
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No regularization:

simple patch voting

Road

Sky

Ground truth for evaluation
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We use a dense CRF formulation:
CRF based regularization: dCRF

E(x) = Z¢U(Xi) + 25X;,><j Vp(Xis X),
i i<j
Pairwise potential
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with p; and /; being the position and RGB value of pixel x;
respectively. P
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CRF based regularization: dCRF
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We extend the dense CRF to use region information:
CRF based regularization: dCRFSP

E(x) = Z¢U(Xi) + Zéxhxj wAP(XfﬂXj)v
i i<j

Pairwise potential

) pi —pil> IR = Ri]?
Vp(Xi, %) = Vp(xi, Xj) + w3 exp (— 2931 BT !

with position p;, RGB value of pixel /; and the leaf region that
contains x;, R;.
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CRF based regularization: dCRFSP
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