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Human activity Analysis

Due to applications in surveillance, video indexing and
automatic video navigation, human activity analysis is quite a
hot topic in Computer vision.

Human activity analysis may be broadly classified into two
main approaches2

Single layered approaches

- Spatio-temporal features
Hierarchical approaches

2
Aggarwal and Ryoo, ”Human Activity Analysis: A Review”, ACM Computing Surveys, 2011
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Spatio-temporal features based human activity analysis

Spatio-temporal feature based approaches may further be
grouped into Two categories.

Global feature

- histograms of gradient and optical flow computed over the
frames (e.g., HOG and HOF)
Local feature

- features computed over a neighborhood around interest point
(e.g., STIP and Cuboid)

Local feature based approach is so far the most

successful.
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General structure of the human activity analysis based on

local spatio-temporal features

Detect space-time interest points

Describe the interest points in terms of locally computed

features

Generate the vocabulary as bag-of-features

Label the feature vectors by nearest neighbor classification

Generate the distribution of labels as the representation of
video

Learn the action models or the classifiers

Classify the test video
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Human activity analysis based on local spatio-temporal

features

Dollar et al.3 have used two-dimensional Gaussian smoothing
kernel in the spatial domain, and two one-dimensional Gabor
filters in the temporal domain to detect the interest points.

They try to capture salient periodic

motion.

Feature

- Color / intensity
- Gradient
- Optical flow

3
Dollar et al., Behavior Recognition via Sparse Spatio-Temporal Features, VS-PETS, 2005
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Laptev et al.4 have detected interest points by extending the
two-dimensional Harris corner to three-dimension
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Human activity analysis based on local spatio-temporal

features (cont.)

Laptev et al.4 have detected interest points by extending the
two-dimensional Harris corner to three-dimension

They formed a 3× 3 spatio-temporal second-moment matrix
of first order spatial and temporal derivatives

Features are computed from a volume
around each interest point divided into
a grid of cells

For each cell a 4-bin histogram of
oriented gradient (HOG) and 5-bin
histogram of oriented optical flow
(HOF) are computed and
concatenated to generate the feature
vector.

4
Laptev et al. On Space-Time Interest Points, IJCV, 2005
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Drawbacks

UCF sports (lifting) KTH (boxing) Weizmann (pjump)
The points show using Laptev STIP.

Less sensitive to smooth motion

Many points are outside the interest region

To address these problems we propose a novel method based

on the facet model.
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Two dimensional facet model

An image region may be approximated by piecewise bi-cubic
function f : N×N → R given by5

f (x , y) = k1 + k2x + k3y + k4x
2 + k5xy + k6y

2+
k7x

3 + k8x
2y + k9xy

2 + k10y
3

where coefficients k1, ....., k10 are calculated by convolving the
image with different two dimensional masks.

-13 2 7 2 -13
2 17 22 17 2
7 22 27 22 7
2 17 22 17 2
-13 2 7 2 -13

[ 1
175

] k1

31 -5 -17 -5 31
-44 -62 -68 -62 -44
0 0 0 0 0
44 62 68 62 44
-31 5 17 5 -31

[ 1
420

] k2

...
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A corner point is where the gradient changes abruptly along
the direction orthogonal to the gradient direction.

A corner response function θ
′

α(0, 0) at the center (i.e.,
candidate pixel) may be defined as

θ
′

α(0, 0) =
−2(k22k6 − k2k3k5 + k23k4)

(k22 + k23 )
3
2

Finally, the candidate pixel (0, 0) is declared as a corner point
if the following two conditions are satisfied:

(0, 0) is an edge point, and
For a given threshold Ω, |θ

′

α(0, 0)| > Ω



Propose methodology

We extend the two-dimensional facet model to
three-dimension to detect the interest points in video data.



Propose methodology

We extend the two-dimensional facet model to
three-dimension to detect the interest points in video data.

We estimate the video data as a tri-cubic function
f : N× N× N → R over a neighborhood of each point in the
space-time domain given by

f (x , y , t) = k1 + k2x + k3y + k4t + k5x
2 + k6y

2 + k7t
2+

k8xy + k9yt + k10xt + k11x
3 + k12y

3 + k13t
3

+k14x
2y + k15xy

2 + k16y
2t + k17yt

2 + k18x
2t

+k19xt
2 + k20xyt



Propose methodology

We extend the two-dimensional facet model to
three-dimension to detect the interest points in video data.

We estimate the video data as a tri-cubic function
f : N× N× N → R over a neighborhood of each point in the
space-time domain given by

f (x , y , t) = k1 + k2x + k3y + k4t + k5x
2 + k6y

2 + k7t
2+

k8xy + k9yt + k10xt + k11x
3 + k12y

3 + k13t
3

+k14x
2y + k15xy

2 + k16y
2t + k17yt

2 + k18x
2t

+k19xt
2 + k20xyt

We derive twenty different masks to calculate the coefficients
k1, ....., k20 by simple convolution with those masks over the
neighborhood of the candidate point.
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Three dimensional facet model for video data

Calculate the rate of change of directional derivative of f in
the direction orthogonal to the derivative direction.

Let
−→
T be the unit vector along the gradient of f (x , y , t) at

any point (x , y , t), then

−→
T (x , y , t) =

1

d
(fx , fy , ft), where d =

√

f 2x + f 2y + f 2t

For a function f , the normal
−→
N to the gradient vector

−→
T is

given by
−→
N (x , y , t) = ▽2f − [▽2f ·

−→
T ]

−→
T

where

▽2 =

(

∂2

∂x2
,
∂2

∂y2
,
∂2

∂z2

)

So to detect interest point we need to calculate
−→
T

′

·
−→
N .
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Consider a straight line passing through the origin and any
point on that line be (ρ sin θ sinφ, ρ sin θ cosφ, ρ cos θ).

Let
−→
T

′

θ,φ(ρ) = [T
′

1(ρ),T
′

2(ρ),T
′

3(ρ)] be the directional

derivative of
−→
T in the direction (θ, φ) (where ′ indicates

derivative with respect to ρ).

T
′

1(ρ) = d
dρ
[ fx (ρ)

d
]

=
A(ρ)fy−B(ρ)ft

d3

where

A(ρ) = f
′

x fy − fx f
′

y , and B(ρ) = fx f
′

t − f
′

x ft
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Similarly

T
′

2(ρ) = C(ρ)ft−A(ρ)fx
d3

T
′

3(ρ) =
B(ρ)fx−C(ρ)fy

d3

where
C (ρ) = f

′

y ft − fy f
′

t

Let
−→
N θ,φ(ρ) = [N1(ρ),N2(ρ),N3(ρ)] be a normal to gradient

vector
−→
T θ,φ(ρ) at the point (ρ sin θ sinφ, ρ sin θ cosφ, ρ cos θ).

Then we have

N1(ρ) = fxx −
fx
d2 (fx fxx + fy fyy + ft ftt)

=
D(ρ)fy−E(ρ)ft

d2

(1)

where

D(ρ) = fxx fy − fx fyy , and E (ρ) = fx ftt − fxx ft (2)
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Similarly,

N2(ρ) = F (ρ)ft−D(ρ)fx
d2 (3)

N3(ρ) =
E(ρ)fx−F (ρ)fy

d2 (4)

where
F (ρ) = fyy ft − fy ftt (5)

Let Θθ,φ(ρ) be the rate of change of gradient in the direction
orthogonal to the gradient of f at any point
(ρ sin θ sinφ, ρ sin θ cosφ, ρ cos θ). Then

Θθ,φ(ρ) =
−→
T

′

·
−→
N

=
AD + BE + CF

d3d
′

(6)

where

d
′2

= N2
1 + N2

2 + N2
3

(7)
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At origin (i.e., at the candidate pixel over the neighborhood of
which the function f is estimated) we calculate the rate of
change of gradient of f along orthogonal direction by putting
ρ = 0 in the equation (6) as

Θθ,φ(0) = A(0)D(0)+B(0)E(0)+C(0)F (0)

d3(0)d ′ (0)
(8)
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At origin (i.e., at the candidate pixel over the neighborhood of
which the function f is estimated) we calculate the rate of
change of gradient of f along orthogonal direction by putting
ρ = 0 in the equation (6) as

Θθ,φ(0) = A(0)D(0)+B(0)E(0)+C(0)F (0)

d3(0)d ′ (0)
(8)

Now from equation (13) we have

fx(0) = k2, fxx(0) = 2k5
fy (0) = k3, fyy(0) = 2k6
ft(0) = k4, ftt(0) = 2k7

(9)

and

f
′

x (0) = 2k5 sin θ sinφ+ k8 sin θ cosφ+ k10 cos θ

f
′

y (0) = 2k6 sin θ cosφ+ k8 sin θ sinφ+ k9 cos θ

f
′

t (0) = 2k7 cos θ + k9 sin θ cosφ+ k10 sin θ sinφ

(10)
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Three dimensional facet model for video data (Cont.)

θ and φ are defined based on orthogonal vector (
−→
N ) as

θ = tan−1(

√

N2
1 + N2

2

N3
) and φ = tan−1(

N1

N2
) (11)

The point (0, 0, 0) is declared as a space-time interest point if
the following two conditions are satisfied:

The point (0, 0, 0) is a spatio-temporal bounding surface point,
and
For a given threshold Ω, |Θθ,φ(0)| > Ω



Interest points in video data

UCF sports (lifting) KTH (boxing) Weizmann (pjump)
The points show on the first row using proposed FaSTIP method and second row using Laptev STIP.
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Interest point description

Consider a volume of size ∆x ×∆y ×∆t around a interest
point

Divide the volume into ηx × ηy × ηt cells

Apply the three-dimensional wavelet transform on each cell up
to a desired number of levels

At each level one cell contains low frequency component and
the rest seven high frequency components

At each cell we calculate the sum of magnitude of positive
and negative values (separately) and concatenate them to
form a feature vector

The low frequency components of each cell is added and are
concatenated to form a another vector

Finally get the feature vector of length ηxηyηt × (14 × L+ 1)
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Interest point description (cont.)

For our experiment ∆x = ∆y = 16σ and ∆t = 8τ
- where σ and τ represent the spatial and temporal scales
respectively

Divide the neighborhood into 8 cells (ηx = ηy = ηt = 2)

Apply three-dimensional wavelet transform up to 2 levels

Finally, describe each interest points by a feature vector of
length 232
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Experimental evaluation

We have tested our method on three state-of-the-art human
action dataset: UCF sports, KTH and Weizmann

UCF sports dataset contain 10 sports activities: diving, golf
swinging, kicking (a ball), weight-lifting, horse riding, running,
skating, swinging (on the floor), waking and swinging (at the
high bar)
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Experimental evaluation (cont.)

KTH dataset consists of six common human activities: boxing,
hand clapping, hand waving, jogging, running and walking

Weizmann data has ten classes: two-hands waving, bending,
jumping jack, jumping, jumping in place, running, sideways,
skipping, walking and one-hand waving
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Experimental evaluation (cont.)

For each dataset, we randomly select different number of
points to build the vocabulary

We use multi-channel non-linear SVM with a χ2-kernel [7] for
classification

Run the classier for different vocabulary size and report the
result for optimal vocabulary size for each dataset



Experimental results on UCF sports dataset

Randomly select 100000 points to build the vocabulary



Experimental results on UCF sports dataset

Randomly select 100000 points to build the vocabulary

We use leave-one-out cross validation strategy and get
87.33% accuracy with 1200 as optimal vocabulary size



Experimental results on UCF sports dataset

Randomly select 100000 points to build the vocabulary

We use leave-one-out cross validation strategy and get
87.33% accuracy with 1200 as optimal vocabulary size

Approach Year Accuracy(%)
Rodriguez et al. [11] 2008 69.20
Yeffet & Wolf [15] 2009 79.30
Wang et al. [14] 2009 85.60
Kovashka & Grauman [6] 2010 87.27
Wang et al. [13] 2011 88.20
Guha & Ward [5] 2012 83.80
Our approach 87.33

Comparison of results with the state-of-the-art for UCF sports dataset
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Experimental results on KTH dataset

Randomly select 200000 points to build the vocabulary

We follow the author suggested6 training, validation and test
data partition and obtain average accuracy of 93.51%.

The optimal vocabulary size is 4000

Approach Year Accuracy(%)
Schuldt et al. [12] 2004 71.72
Dollár et al. [3] 2005 81.17
Nowozin et al. [10] 2007 84.72
Laptev et al. [7] 2008 91.80
Niebles et al. [9] 2008 81.50
Bregonzio et al. [1] 2009 93.17
Kovashka & Grauman [6] 2010 94.53
Wang et al. [13] 2011 94.20
Our approach 93.51

Comparison of results with the state-of-the-art for KTH dataset

6
Laptev et al., On Space-Time Interest Points, IJCV, 2005
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Experimental results on Weizmann dataset

Randomly select 30000 points to build the vocabulary

We have tested on Weizmann dataset with leave-one-out cross
validation scheme and get on an average 96.67% accuracy

Approach Year Accuracy(%)
Dollár et al. [3] 2005 85.20
Gorelick et al. [4] 2007 97.80
Niebles et al. [9] 2008 90.00
Zhe Lin et al. [8] 2009 100.00
Bregonzio et al. [2] 2012 96.67
Guha & Ward [5] 2012 98.90
Our approach 96.67

Comparison of results with the state-of-the-art for Weizman dataset



Comparison with other state-of-the-art STIP points based

method

We compare our results with interest points based activity
classification schemes like popular STIP7, Cuboid8 and
achieve much better performance
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Comparison with other state-of-the-art STIP points based

method

We compare our results with interest points based activity
classification schemes like popular STIP7, Cuboid8 and
achieve much better performance

Figure: Comparison results with STIP and Cuboid

7
Laptev et al., On Space-Time Interest Points, IJCV, 2005

8
Dollar et al., Behavior Recognition via Sparse Spatio-Temporal Features, VS-PETS, 2005
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Conclusion

We present a new model for space-time interest point
detection and description.

Experimental results shows that the performance of our
system is comparable to the state-of-the-art methods.

Though our method marginally falls behind the best result
only in a few classes but we achieves far better performance
compared the other state-of-the-art STIP methods.

Our FaSTIP is supposed to perform better compared to STIP
and Cuboid on others applications too.
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