Related Works

Proposed Stochastic Block Matching Algorithm

Results Conclusion

Bibliography

A Stochastic Image Denoising Algorithm Using 3-D Block Filtering under a Non-local Means Framework

Sreekanth G. Pai and Jiji C. V. College of Engineering, Trivandrum.

Eighth Indian Conference on Vision, Graphics and Image Processing, ICVGIP 2012

Related Works

Proposed Stochastic Block Matching Algorithm 0000000

Results Conclusion

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Bibliography

Related Works

Proposed Stochastic Block Matching Algorithm 0000000

Results Conclusion

Bibliography

Related Works

Proposed Stochastic Block Matching Algorithm 000000

Results Conclusion

Bibliography

- Introduction
- 2 Related Works
- Proposed Stochastic Block Matching Algorithm

Related Works

Proposed Stochastic Block Matching Algorithm 000000

Results Conclusion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Bibliography

Overview

Introduction

2 Related Works

3 Proposed Stochastic Block Matching Algorithm

4 Results

Related Works

Proposed Stochastic Block Matching Algorithm 000000

Results Conclusion

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Bibliography

- 1 Introduction
- 2 Related Works
- 3 Proposed Stochastic Block Matching Algorithm
- 4 Results
- 5 Conclusion

Related Works

Proposed Stochastic Block Matching Algorithm 000000

Results Conclusion

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Bibliography

- Introduction
- 2 Related Works
- 3 Proposed Stochastic Block Matching Algorithm
- 4 Results
- 5 Conclusion
- 6 Bibliography

Introduction Related Works Proposed Stochastic Block Matching Algorithm Results Conclusion Bibliography

Image Denoising Problem

$$Y = Y_o + N_\sigma \tag{1}$$

where Y is a noisy image, Y_o is the original image and N_σ denotes the AWGN noise with variance σ^2

- Reconstruct the original image from its noisy counterpart.
- Preserve the edges, textures and fine details with-in an image.

Introduction Related Works

Proposed Stochastic Block Matching Algorithm

Results Conclusion

Bibliography

Image Denoising Algorithms - State-of-the-art

- Denoising based on Soft-thresholding Donoho [1] in 1995
- Bilateral Filtering Tomasi et al. [2] in 1998
- Non-local Means Buades et al. [3] in 2005
- Block Matching 3-D Dabov et al. [4] in 2007
- Kernel Regression Takeda et al. [5] in 2007
- Stochastic Image Denoising Estrada et al. [6] in 2009
- Patch-based Wiener filtering Chatterjee et al. [7] in 2012

Related Works

Proposed Stochastic Block Matching Algorithm

Results Conclusion

Bibliography

Proposed Stochastic Block Matching

 Integrates 3 different image denoising approaches namely, SID [6],NLM [3] and B3D [4].

Our Contribution

- Introduces random block sampling.
- Block reconstruction using Non-local means framework.
- Residual noise estimation and Iterations.

Related Works

Proposed Stochastic Block Matching Algorithm

Results Conclusion

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Bibliography

Steps associated with the algorithm

- Random Sampling and Determination of identical patches
- Filtering in 3-D transform domain
- Weight Assignment and Block Reconstruction
- Residual Noise Estimation and Iteration

ntroduction	Related Works	Proposed Stochastic Block Matching Algorithm	Results	Conclusion	Bibliography
		●000000	00000000		

Random Sampling and Determination of identical patches

- Segment the noisy image Y into overlapping blocks of fixed size NxN.
- Randomly sample the neigbourhood of each reference block Y_{x_R} .
- Based on a similarity measure identify the most similar blocks.
- Form a 3-D array based on these similar blocks.

$$d(Y_{x_{R}}, Y_{x_{p}}) = \frac{\|Y_{x_{R}}^{th} - Y_{x_{p}}^{th}\|_{2}^{2}}{N^{2}}$$
(2)

Introduction Related Works

Proposed Stochastic Block Matching Algorithm

Results Conclusion Bibliography

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

$$Y_{x_R}^{th} = \Upsilon(T_{2D}(Y_{x_R}), \lambda_{th2D})$$
(3)

- Υ denotes the hard-thresholding operator.
- T_{2D} denotes the 2-D transform.
- λ_{th2D} denotes the threshold.

Related Works

Proposed Stochastic Block Matching Algorithm 000000

Results Conclusion

イロト 不得 とうほう 不良 とう

3

Bibliography

Figure: Random block sampling and forming 3-D array

The 3-D array is denoted by $S_{Y_{x_{P}}}$

Introduction	Related Works	Proposed Stochastic Block Matching Algorithm	Results	Conclusion	Bibliography
		000000	00000000		

Filtering in 3-D transform domain

- Apply hard-thresholding on the transform domain coefficients.
- Compute the inverse transform.

Denoising of the 3-D array

$$\hat{S}_{Y_{x_{R}}} = T_{3D}^{-1}(\Upsilon(T_{3D}(S_{Y_{x_{R}}}), \lambda_{th3D}))$$
(4)

•
$$\hat{S}_{Y_{x_R}}$$
 is the estimate of $S_{Y_{x_R}}$

- T_{3D} indicates the 3-D transforms such as 3-D DCT.
- λ_{th3D} indicates the threshold.

Introduction Related Works Proposed Stochastic Block Matching Algorithm Results Conclusion Bibliography

Weight Assignment and Block Reconstruction

- Reconstruct the reference block from the 2-D estimates obtained from $\hat{S}_{Y_{x_p}}$ by assigning proper weights.
- Compute the basic estimate by weighted averaging of all the overlapping block-wise estimates.

Weights are assigned based on the equation (5)

$$\omega_{x_{R}}^{x_{p}} = \exp\left\{-\frac{\|Y_{x_{p}} - Y_{x_{R}}\|_{2}^{2}}{h^{2}}\right\}$$
(5)

Related Works

Proposed Stochastic Block Matching Algorithm 000000

Results Conclusion

Bibliography

(6)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Denoised Basic Estimate

$$\hat{Y}(x) = \frac{\sum_{Y_{x_R}} \sum_{Y_{x_p}} \omega_{x_R}^{x_p} \hat{S}_{Y_{x_R}}}{\sum_{Y_{x_R}} \sum_{Y_{x_p}} \omega_{x_R}^{x_p}}$$

Introduction Related Works Proposed Stochastic Block Matching Algorithm Results Conclusion Bibliography

Residual Noise Estimation and Iteration

A robust median estimator $\left[8\right]$ is used to estimate the noise level at the output.

$$\sigma = \frac{Median(|H_{ij}|)}{0.6745} \tag{7}$$

- H_{ij} represents the subband HH_1 of the noisy image.
- The estimated σ and the basic estimates are used as inputs to the algorithm and the steps are repeated.

Related Works

Proposed Stochastic Block Matching Algorithm

Results Conclusion

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Bibliography

Output of SBM

Figure: Noisy($\sigma = 35$) Barbara Image and the corresponding estimate obtained for Stochastic Block matching algorithm

Related Works

Proposed Stochastic Block Matching Algorithm

Results Conclusion

Bibliography

Denoising performance for various values of sigma

Figure: Denoising performance of noisy lena image for various noise levels (a) Noisy lena input ($\sigma = 20$) (b) $\sigma = 30$ (c) $\sigma = 40$ (d) $\sigma = 50$ (e), (f), (g), (h) are the corresponding SBM Outputs obtained after 3 iterations

Related Works

Proposed Stochastic Block Matching Algorithm

Results Conclusion

Bibliography

Denoising performance for various values of sigma

Figure: Denoising performance of noisy cat image for various noise levels (a) Noisy cat input ($\sigma = 20$) (b) $\sigma = 30$ (c) $\sigma = 40$ (d) $\sigma = 50$ (e), (f), (g), (h) are the corresponding SBM Outputs obtained after 3 iterations

Related Works

Proposed Stochastic Block Matching Algorithm

Results Conclusion

Bibliography

Comparison with state-of-the-art algorithms

Figure: Comparison of denoising results on noisy mandrill image corrupted by AWGN of $\sigma = 25$ (a) Noisy input (b) SID [6] (c) SKR [5] (d) PLOW [7] (e) B3D [4] (f) SBM

Related Works

(d)

Proposed Stochastic Block Matching Algorithm

Results Conclusion

(f)

Bibliography

Comparison with state-of-the-art algorithms

(e)

Related Works

Proposed Stochastic Block Matching Algorithm 0000000

Results Conclusion

Bibliography

Table: PSNR Comparisons

Image	σ	BF	SID	SKR	PLOW	B3D	SBM
Lena	10	23.6260	29.8356	28.0067	31.9649	33.6566	32.7866
256 × 256	15	21.0820	27.0729	28.3022	30.5604	32.1554	30.8783
	25	17.3951	23.5551	28.4248	28.5314	30.1508	28.3701
Mandrill	10	23.9305	28.6300	22.4450	24.7814	29.9350	28.8217
256 × 256	15	20.1069	25.4115	22.6243	23.4859	27.4718	25.6156
	25	16.4750	20.9049	22.6392	22.0526	24.6999	22.9131
Peppers	10	30.8810	29.7871	26.7737	31.6541	32.7431	32.0083
256 × 256	15	25.8521	27.9560	27.4036	30.1817	31.2136	29.8878
	25	19.8231	23.6217	27.8698	28.1219	29.0092	27.0007
BSD	10	29.7752	29.5463	26.4384	29.5447	33.9796	32.7523
Image	15	27.2750	26.9026	26.5559	28.1701	31.6922	28.7059
	25	23.7925	23.5109	26.0232	25.9148	28.6905	24.8406

Proposed Stochastic Block Matching Algorithm

Results Conclusion

Bibliography

Table: Structural Similarity Index Comparisons

Image	σ	BF	SID	SKR	PLOW	B3D	SBM	Noisy
Lena	10	0.8783	0.8841	0.8165	0.9021	0.9394	0.9175	0.8199
256×256	15	0.8420	0.7847	0.8247	0.8840	0.9130	0.8872	0.7001
	25	0.7251	0.7051	0.8323	0.8440	0.8780	0.8396	0.5222
Mandrill	10	0.9299	0.9528	0.6208	0.7522	0.9493	0.9361	0.9327
256×256	15	0.8648	0.8833	0.6463	0.6990	0.9088	0.8719	0.8688
	25	0.7345	0.7539	0.6899	0.6159	0.8282	0.8072	0.7405
Peppers	10	0.8992	0.8869	0.8220	0.8998	0.9245	0.9013	0.8292
256×256	15	0.8563	0.7573	0.8293	0.8838	0.9001	0.8741	0.7085
	25	0.7122	0.7434	0.8285	0.8479	0.8664	0.8321	0.5296
BSD	10	0.8981	0.9203	0.7802	0.9128	0.9641	0.9391	0.8992
Image	15	0.8575	0.8667	0.7889	0.8855	0.9392	0.9138	0.8185
	25	0.7737	0.7655	0.7962	0.8155	0.8831	0.8305	0.6710

Introduction	Related Works	Proposed Stochastic Block Matching Algorithm	Results	Conclusion	Bibliography
	0000000		000000	00	

Table: Output PSNR and estimated σ obtained for three iterations for a lena image

σ		PSNR		Es	Estimated σ			
	SBM ₁	SBM ₂	SBM ₃	SBM1	SBM_2	SBM ₃		
10	32.5396	32.7884	32.7866	3.8948	2.3035	1.7801		
15	30.3511	30.8307	30.8783	4.6694	2.4466	1.8414		
20	28.7579	29.3962	29.4758	5.4239	2.9207	2.3180		
25	27.4587	28.2797	28.3701	6.4466	3.1520	2.3804		
50	23.2955	24.7667	24.8850	10.9295	4.1920	2.9791		

<□ > < @ > < E > < E > E のQ @

Introduction	Related Works	Proposed Stochastic Block Matching Algorithm	Results	Conclusion	Bibliography
		0000000	00000000		

Table: Noise deviation estimated from the output of different algorithms

Algorithm	σ	Lena	Peppers	F16	Baboon	Cat
	10	0.2848	0.2876	0.2812	0.4961	0.3898
SKR	15	0.2869	0.2959	0.3090	0.5640	0.4291
	20	0.3144	0.3243	0.3431	0.6842	0.4724
	25	0.3365	0.3541	0.4012	0.8716	0.5903
	10	0.4535	0.4739	0.4590	1.0768	1.1271
PLOW	15	0.4802	0.3687	0.1550	0.9516	1.0802
	20	0.5938	0.5415	0.2759	0.8563	1.0457
	25	0.8458	0.9662	0.7165	0.8687	1.0361
	10	0.9610	1.3362	0.8627	9.8456	7.3105
B3D	15	0.8053	0.9485	0.8223	7.9590	5.8473
	20	0.8117	0.8526	0.7852	5.6121	4.0021
	25	0.7072	0.7772	0.7862	4.3690	2.9314
	10	1.4121	1.2318	1.3841	1.4181	1.3108
SBM	15	1.2416	1.5183	1.6181	1.4617	1.5782
	20	1.5791	1.3892	1.4295	1.6729	1.5191
	25	1.3186	1.4481	1.6721	1.5684	1.5311

Introduction	Related Works	Proposed Stochastic Block Matching Algorithm	Results 0000000	Conclusion	Bibliography

Histogram of the result obtained by subtracting the denoised estimate from original image

Figure: Histogram of the result obtained by subtracting the denoised estimate from original image (a) Histogram of R Channel (b) Histogram of G Channel (c) Histogram of B Channel

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Introduction Related Works

Proposed Stochastic Block Matching Algorithm

Results Conclusion

Bibliography

Conclusion

- Stochastic Block Matching (SBM) integrates non-local means with random sampling and block matching.
- SBM outperforms most of the other state-of-the-art algorithms such as SKR [5], PLOW [7], SID [6].
- SBM is comparable with B3D algorithm.
- Scope for improvement in terms of PSNR is more for SBM compared to other state-of-the-art.

Related Works

Proposed Stochastic Block Matching Algorithm

Conclusion

Bibliography

- [1] D. L. Donoho, "De-noising by soft-thresholding," *IEEE Trans.* Inform. Theory, vol. 41, pp. 613–627, May 1995.
- [2] C. Tomasi and R. Manduchi, "Bilateral filtering for gray and color images," in Proc. IEEE Int. Conf. Comp. Vis., pp. 839-846, 1998.
- [3] A. Buades, B. Coll, and J. Morel, "A non-local algorithm for image denoising," in Proc. IEEE Int. Conf. Comp. Vis. Pat. Recog., vol. 2, pp. 60-65, 2005.
- [4] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, "Image denoising by sparse 3-d transform-domain collaborative filtering," IEEE Trans. Image Process., vol. 16, pp. 2080-2095, Aug. 2007.
- [5] H. Takeda, S. Farsiu, and P. Milanfar, "Kernel regression for image processing and reconstruction," IEEE Trans. Image *Processing*, vol. 16, pp. 349–366, Feb. 2007.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Bibliography

- [6] F. Estrada, D. Fleet, and A. Jepson, "Stochastic image denoising," *in Proc. BMVC*, Sept. 2009.
- [7] P. Chatterjee and P. Milanfar, "Patch-based near-optimal image denoising," *IEEE Trans. Image Processing*, vol. 21, pp. 1635–1649, April 2012.
- [8] S. G. Chang, B. Yu, and M. Vetterli, "Adaptive wavelet thresholding for image denoising and compression," *IEEE Trans. Image Processing*, vol. 9, pp. 1532–1546, Sept. 2000.