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Objective:

® Clustering of indefinite number of motion patterns from a
continuous video stream in an efficient manner.

® Keywords:

»Indefinite: The number of motion patterns are unknown apriori.
Besides the number can change over time.

» Efficient: Continuous video processing requires fast feature
computation and bounded time incremental update.



Clustering with Dirichlet Process Mixture
Model (DPMM):

® Probabilistic mixture model with Dirichlet
Process prior.

® Model complexity (no. of components) grows
with the data (infinite mixture model).

® Additionally, efficient sampling scheme is
available with stick-breaking construction of
Sethuraman, 1994.

Addresses the issue with the unknown number
of clusters!



Inference for DPMM: collapsed Gibbs

sampling
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Stick-breaking
view of DPMM

Computing predictive likelihood is easy when conjugate prior is

used.



Incremental inference

® Decayed MCMC filtering

o Concentrate sampling on the immediate past. Always convergent when
decay function provides non-zero probability to the states at arbitrary past.

o Constant time update since a fixed number of past states are re-sampled at
each step.

® Our Improvement: Cluster-sensitive
Decayed MCMC (CSD-MCMC)

o Concentrate sampling on the immediate past as well as to the neighbouring
clusters.

o Still convergent and update takes constant time.

Addresses one aspect of the issue of efficiency

(fixed-cost incremental update)!



Fast feature computation

® Rank-1 constrained Robust PCA for background-
foreground separation. Essentially, a robust version
of temporal median filter and fast!

® Spatial histogram of foreground locations over a
coarse grid (eg. 10x10) for each frame are added
over a temporal window to create the feature.

o Fast and simple representation of motions (approx. 10x
faster than Optic Flow computation).

> Robust to spurious motions.

Addresses the other aspect of the issue of efficiency!



Example of the motion feature:




Model aspects: Motion Pattern + Motion
Level

®\We model motion pattern as samples from a
mixture of Multinomial distributions.

® However, Multinomial has a normalization
effect.

® Hence, a mixture of Gaussian distributions Is
used to model the activity level.



Putting it all together
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And the incremental inference is performed via CSD-MCMC



Result 1: Freeway intersection
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Freeway Intersection: background
extraction




Freeway Intersection motion patterns
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Anomalous events corresponding to
the singleton clusters
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Train station video motion patterns




Train station anomalous events
corresponding to cluster size <5

Event type # events
Loitering, riding bike on the 16
platform etc.
People near the edge of the 2
platform.
People walking on the railway 2
tracks
Technicians checking the camera. 1




Result 3: Street surveillance video (140 hours)




Summary

®We proposed a joint (pattern + activity level) mixture model framework to
analyse motion patterns from fixed surveillance cameras.

® Bayesian non-parametric framework is used to scale up model complexity
with streaming data.

®We proposed a novel motion feature which is fast to compute.

®We proposed a novel Cluster-Sensitive Decayed MCMC sampling
technique for fixed-cost incremental inference.

®We validate our model on large real world surveillance videos.



Thank you!
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