
• Overview (this)

• Image representation (60 mins, 9:15 - 10:30)

• motivation, local features, global features, break

• Learning (90 mins, 10:30 - 12:30)

• discriminative models, tea-break, generative models, break

• Object detection and recognition (90 mins, 12:30 - 2:00)

• Dalal & Triggs, lunch-break, PASCAL challenge, poselets and 
their applications, tea-break

• Cross-modal search (60 mins, 2:30 - 3:30)

Tutorial outline

lunch-break 60 mins, break 15 mins, tea-break 20-30 mins 
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Introduction
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auto-focus based on face detection

pedestrian collision warning
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Outline

• Overview of Dalal and Triggs pedestrian detector

• Histogram of Oriented Gradients (HOG) features

• Training pipeline for detection

• PASCAL VOC challenge

• Overview of the Poselet-based detector 

• What is a poselet?

• Training and selecting a library of poselets

• Using poselets for detection and beyond



Histograms of Oriented Gradients (HOG)

• Introduce invariance

• Bias / gain / nonlinear transformations

• bias: gradients / gain: local normalization

• nonlinearity: clamping magnitude, orientations

• Small deformations

• spatial subsampling

• local “bag” models

• References

• “Histograms of oriented gradients for human detection.” N. Dalal and B. 
Triggs, CVPR 2005.

• “Finding people in images and videos.” N. Dalal, Ph.D. Thesis, Institut 
National Polytechnique de Grenoble, 2006.



Classification training and testing

46 4 Histogram of Oriented Gradients Based Encoding of Images

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4.10. For the person class, the HOG classifiers cue mainly on silhouette contours, espe-
cially the head, shoulders and feet. More precisely the chosen cells are ones on the contour,
normalised using blocks centred on the image background just outside the contour. (a) The av-
erage gradient image over the training examples. (b) Each “pixel” shows the maximum positive
SVM weight in the block centred on the pixel. (c) Likewise for the negative SVM weights. (d)
A sketch portraying the most relevant blocks – those lying just outside the contour. (e) A test
image. (f) Its computed R-HOG descriptor. (g,h) The R-HOG descriptor weighted respectively
by the positive and negative SVM weights. Only the dominant orientation is shown for each
cell.

the key HOG parameters for several other object classes. We optimised all of the key parame-
ters for each object class in the Pascal5 Visual Object Challenge (VOC) 20066. This challenge tar-
gets image classification and localisation for 10 different classes: bicycle, bus, car, cat, cow, dog,
horse, motorbike, person and sheep. Table 4.2 summarises the main changes that occurred. The
overall conclusion is that most of the parameters are very similar to those for person class, and
those that do vary can be easily grouped and structured. This can help us by providing quick
first guess of the HOG parameters for any given new object class. The VOC object classes can be
broadly divided into two groups: natural objects such as horses, cows and sheep, and man made
objects such as cars, motorbikes and buses. We treat the person class as an exception and place
it in a separate category: even though people are natural objects whose articulations in result
in characteristics similar to the natural object category and their clothing results in appearance
features similar to the man made object category. We now comment on how performance varies

5 PASCAL (Pattern Analysis, Statistical Modelling and Computational Learning) is a European Commis-
sion funded Network of Excellence programme.

6 Details and results of the Pascal VOC 2006 challenge are available from http://www.
pascal-network.org/challenges/VOC/voc2006/index.html

Cropped
positive HOG
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Figure 2. Some sample images from our new human detection database. The subjects are always upright, but with some partial occlusions
and a wide range of variations in pose, appearance, clothing, illumination and background.

probabilities to be distinguished more easily. We will often
use miss rate at 10−4FPPW as a reference point for results.
This is arbitrary but no more so than, e.g. Area Under ROC.
In a multiscale detector it corresponds to a raw error rate of
about 0.8 false positives per 640×480 image tested. (The full
detector has an even lower false positive rate owing to non-
maximum suppression). Our DET curves are usually quite
shallow so even very small improvements in miss rate are
equivalent to large gains in FPPW at constant miss rate. For
example, for our default detector at 1e-4 FPPW, every 1%
absolute (9% relative) reduction in miss rate is equivalent to
reducing the FPPW at constant miss rate by a factor of 1.57.

5 Overview of Results
Before presenting our detailed implementation and per-

formance analysis, we compare the overall performance of
our final HOG detectors with that of some other existing
methods. Detectors based on rectangular (R-HOG) or cir-
cular log-polar (C-HOG) blocks and linear or kernel SVM
are compared with our implementations of the Haar wavelet,
PCA-SIFT, and shape context approaches. Briefly, these ap-
proaches are as follows:
Generalized Haar Wavelets. This is an extended set of ori-
ented Haar-like wavelets similar to (but better than) that used
in [17]. The features are rectified responses from 9×9 and
12×12 oriented 1st and 2nd derivative box filters at 45◦ inter-
vals and the corresponding 2nd derivative xy filter.
PCA-SIFT. These descriptors are based on projecting gradi-
ent images onto a basis learned from training images using
PCA [11]. Ke & Sukthankar found that they outperformed
SIFT for key point based matching, but this is controversial
[14]. Our implementation uses 16×16 blocks with the same
derivative scale, overlap, etc., settings as our HOG descrip-
tors. The PCA basis is calculated using positive training im-
ages.
Shape Contexts. The original Shape Contexts [1] used bi-
nary edge-presence voting into log-polar spaced bins, irre-
spective of edge orientation. We simulate this using our C-
HOG descriptor (see below) with just 1 orientation bin. 16
angular and 3 radial intervals with inner radius 2 pixels and
outer radius 8 pixels gave the best results. Both gradient-

strength and edge-presence based voting were tested, with
the edge threshold chosen automatically to maximize detec-
tion performance (the values selected were somewhat vari-
able, in the region of 20–50 graylevels).
Results. Fig. 3 shows the performance of the various detec-
tors on the MIT and INRIA data sets. The HOG-based de-
tectors greatly outperform the wavelet, PCA-SIFT and Shape
Context ones, giving near-perfect separation on the MIT test
set and at least an order of magnitude reduction in FPPW
on the INRIA one. Our Haar-like wavelets outperform MIT
wavelets because we also use 2nd order derivatives and con-
trast normalize the output vector. Fig. 3(a) also shows MIT’s
best parts based and monolithic detectors (the points are in-
terpolated from [17]), however beware that an exact compar-
ison is not possible as we do not know how the database in
[17] was divided into training and test parts and the nega-
tive images used are not available. The performances of the
final rectangular (R-HOG) and circular (C-HOG) detectors
are very similar, with C-HOG having the slight edge. Aug-
menting R-HOG with primitive bar detectors (oriented 2nd

derivatives – ‘R2-HOG’) doubles the feature dimension but
further improves the performance (by 2% at 10−4 FPPW).
Replacing the linear SVM with a Gaussian kernel one im-
proves performance by about 3% at 10−4 FPPW, at the cost
of much higher run times1. Using binary edge voting (EC-
HOG) instead of gradient magnitude weighted voting (C-
HOG) decreases performance by 5% at 10−4 FPPW, while
omitting orientation information decreases it by much more,
even if additional spatial or radial bins are added (by 33% at
10−4 FPPW, for both edges (E-ShapeC) and gradients (G-
ShapeC)). PCA-SIFT also performs poorly. One reason is
that, in comparison to [11], many more (80 of 512) principal
vectors have to be retained to capture the same proportion of
the variance. This may be because the spatial registration is
weaker when there is no keypoint detector.

6 Implementation and Performance Study
We now give details of our HOG implementations and

systematically study the effects of the various choices on de-
1We use the hard examples generated by linear R-HOG to train the ker-

nel R-HOG detector, as kernel R-HOG generates so few false positives that
its hard example set is too sparse to improve the generalization significantly.

Pos ={...                      ...}                         
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Figure 2. Some sample images from our new human detection database. The subjects are always upright, but with some partial occlusions
and a wide range of variations in pose, appearance, clothing, illumination and background.

probabilities to be distinguished more easily. We will often
use miss rate at 10−4FPPW as a reference point for results.
This is arbitrary but no more so than, e.g. Area Under ROC.
In a multiscale detector it corresponds to a raw error rate of
about 0.8 false positives per 640×480 image tested. (The full
detector has an even lower false positive rate owing to non-
maximum suppression). Our DET curves are usually quite
shallow so even very small improvements in miss rate are
equivalent to large gains in FPPW at constant miss rate. For
example, for our default detector at 1e-4 FPPW, every 1%
absolute (9% relative) reduction in miss rate is equivalent to
reducing the FPPW at constant miss rate by a factor of 1.57.

5 Overview of Results
Before presenting our detailed implementation and per-

formance analysis, we compare the overall performance of
our final HOG detectors with that of some other existing
methods. Detectors based on rectangular (R-HOG) or cir-
cular log-polar (C-HOG) blocks and linear or kernel SVM
are compared with our implementations of the Haar wavelet,
PCA-SIFT, and shape context approaches. Briefly, these ap-
proaches are as follows:
Generalized Haar Wavelets. This is an extended set of ori-
ented Haar-like wavelets similar to (but better than) that used
in [17]. The features are rectified responses from 9×9 and
12×12 oriented 1st and 2nd derivative box filters at 45◦ inter-
vals and the corresponding 2nd derivative xy filter.
PCA-SIFT. These descriptors are based on projecting gradi-
ent images onto a basis learned from training images using
PCA [11]. Ke & Sukthankar found that they outperformed
SIFT for key point based matching, but this is controversial
[14]. Our implementation uses 16×16 blocks with the same
derivative scale, overlap, etc., settings as our HOG descrip-
tors. The PCA basis is calculated using positive training im-
ages.
Shape Contexts. The original Shape Contexts [1] used bi-
nary edge-presence voting into log-polar spaced bins, irre-
spective of edge orientation. We simulate this using our C-
HOG descriptor (see below) with just 1 orientation bin. 16
angular and 3 radial intervals with inner radius 2 pixels and
outer radius 8 pixels gave the best results. Both gradient-

strength and edge-presence based voting were tested, with
the edge threshold chosen automatically to maximize detec-
tion performance (the values selected were somewhat vari-
able, in the region of 20–50 graylevels).
Results. Fig. 3 shows the performance of the various detec-
tors on the MIT and INRIA data sets. The HOG-based de-
tectors greatly outperform the wavelet, PCA-SIFT and Shape
Context ones, giving near-perfect separation on the MIT test
set and at least an order of magnitude reduction in FPPW
on the INRIA one. Our Haar-like wavelets outperform MIT
wavelets because we also use 2nd order derivatives and con-
trast normalize the output vector. Fig. 3(a) also shows MIT’s
best parts based and monolithic detectors (the points are in-
terpolated from [17]), however beware that an exact compar-
ison is not possible as we do not know how the database in
[17] was divided into training and test parts and the nega-
tive images used are not available. The performances of the
final rectangular (R-HOG) and circular (C-HOG) detectors
are very similar, with C-HOG having the slight edge. Aug-
menting R-HOG with primitive bar detectors (oriented 2nd

derivatives – ‘R2-HOG’) doubles the feature dimension but
further improves the performance (by 2% at 10−4 FPPW).
Replacing the linear SVM with a Gaussian kernel one im-
proves performance by about 3% at 10−4 FPPW, at the cost
of much higher run times1. Using binary edge voting (EC-
HOG) instead of gradient magnitude weighted voting (C-
HOG) decreases performance by 5% at 10−4 FPPW, while
omitting orientation information decreases it by much more,
even if additional spatial or radial bins are added (by 33% at
10−4 FPPW, for both edges (E-ShapeC) and gradients (G-
ShapeC)). PCA-SIFT also performs poorly. One reason is
that, in comparison to [11], many more (80 of 512) principal
vectors have to be retained to capture the same proportion of
the variance. This may be because the spatial registration is
weaker when there is no keypoint detector.

6 Implementation and Performance Study
We now give details of our HOG implementations and

systematically study the effects of the various choices on de-
1We use the hard examples generated by linear R-HOG to train the ker-

nel R-HOG detector, as kernel R-HOG generates so few false positives that
its hard example set is too sparse to improve the generalization significantly.
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Classification versus detection

Introduction

Detect & localize upright people
in static images

Challenges
Wide variety of articulated poses
Variable appearance/clothing
Complex backgrounds
Unconstrained illumination
Occlusions, different scales

Applications
Pedestrian detection for smart cars
Film & media analysis
Visual surveillance

Histograms of Oriented Gradients for Human Detection – p. 2/13
[Dalal06]



• Compute HOG of the whole image at multiple 
resolutions

• Score each subwindows of the feature pyramid

(a) (b) (c) (d) (e) (f) (g)
Figure 6. Our HOG detectors cue mainly on silhouette contours (especially the head, shoulders and feet). The most active blocks are
centred on the image background just outside the contour. (a) The average gradient image over the training examples. (b) Each “pixel”
shows the maximum positive SVM weight in the block centred on the pixel. (c) Likewise for the negative SVM weights. (d) A test image.
(e) It’s computed R-HOG descriptor. (f,g) The R-HOG descriptor weighted by respectively the positive and the negative SVM weights.

would help to improve the detection results in more general
situations.
Acknowledgments. This work was supported by the Euro-
pean Union research projects ACEMEDIA and PASCAL. We
thanks Cordelia Schmid for many useful comments. SVM-
Light [10] provided reliable training of large-scale SVM’s.
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Mining hard negatives (“bootstrapping”)
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Figure 2. Some sample images from our new human detection database. The subjects are always upright, but with some partial occlusions
and a wide range of variations in pose, appearance, clothing, illumination and background.

probabilities to be distinguished more easily. We will often
use miss rate at 10−4FPPW as a reference point for results.
This is arbitrary but no more so than, e.g. Area Under ROC.
In a multiscale detector it corresponds to a raw error rate of
about 0.8 false positives per 640×480 image tested. (The full
detector has an even lower false positive rate owing to non-
maximum suppression). Our DET curves are usually quite
shallow so even very small improvements in miss rate are
equivalent to large gains in FPPW at constant miss rate. For
example, for our default detector at 1e-4 FPPW, every 1%
absolute (9% relative) reduction in miss rate is equivalent to
reducing the FPPW at constant miss rate by a factor of 1.57.

5 Overview of Results
Before presenting our detailed implementation and per-

formance analysis, we compare the overall performance of
our final HOG detectors with that of some other existing
methods. Detectors based on rectangular (R-HOG) or cir-
cular log-polar (C-HOG) blocks and linear or kernel SVM
are compared with our implementations of the Haar wavelet,
PCA-SIFT, and shape context approaches. Briefly, these ap-
proaches are as follows:
Generalized Haar Wavelets. This is an extended set of ori-
ented Haar-like wavelets similar to (but better than) that used
in [17]. The features are rectified responses from 9×9 and
12×12 oriented 1st and 2nd derivative box filters at 45◦ inter-
vals and the corresponding 2nd derivative xy filter.
PCA-SIFT. These descriptors are based on projecting gradi-
ent images onto a basis learned from training images using
PCA [11]. Ke & Sukthankar found that they outperformed
SIFT for key point based matching, but this is controversial
[14]. Our implementation uses 16×16 blocks with the same
derivative scale, overlap, etc., settings as our HOG descrip-
tors. The PCA basis is calculated using positive training im-
ages.
Shape Contexts. The original Shape Contexts [1] used bi-
nary edge-presence voting into log-polar spaced bins, irre-
spective of edge orientation. We simulate this using our C-
HOG descriptor (see below) with just 1 orientation bin. 16
angular and 3 radial intervals with inner radius 2 pixels and
outer radius 8 pixels gave the best results. Both gradient-

strength and edge-presence based voting were tested, with
the edge threshold chosen automatically to maximize detec-
tion performance (the values selected were somewhat vari-
able, in the region of 20–50 graylevels).
Results. Fig. 3 shows the performance of the various detec-
tors on the MIT and INRIA data sets. The HOG-based de-
tectors greatly outperform the wavelet, PCA-SIFT and Shape
Context ones, giving near-perfect separation on the MIT test
set and at least an order of magnitude reduction in FPPW
on the INRIA one. Our Haar-like wavelets outperform MIT
wavelets because we also use 2nd order derivatives and con-
trast normalize the output vector. Fig. 3(a) also shows MIT’s
best parts based and monolithic detectors (the points are in-
terpolated from [17]), however beware that an exact compar-
ison is not possible as we do not know how the database in
[17] was divided into training and test parts and the nega-
tive images used are not available. The performances of the
final rectangular (R-HOG) and circular (C-HOG) detectors
are very similar, with C-HOG having the slight edge. Aug-
menting R-HOG with primitive bar detectors (oriented 2nd

derivatives – ‘R2-HOG’) doubles the feature dimension but
further improves the performance (by 2% at 10−4 FPPW).
Replacing the linear SVM with a Gaussian kernel one im-
proves performance by about 3% at 10−4 FPPW, at the cost
of much higher run times1. Using binary edge voting (EC-
HOG) instead of gradient magnitude weighted voting (C-
HOG) decreases performance by 5% at 10−4 FPPW, while
omitting orientation information decreases it by much more,
even if additional spatial or radial bins are added (by 33% at
10−4 FPPW, for both edges (E-ShapeC) and gradients (G-
ShapeC)). PCA-SIFT also performs poorly. One reason is
that, in comparison to [11], many more (80 of 512) principal
vectors have to be retained to capture the same proportion of
the variance. This may be because the spatial registration is
weaker when there is no keypoint detector.

6 Implementation and Performance Study
We now give details of our HOG implementations and

systematically study the effects of the various choices on de-
1We use the hard examples generated by linear R-HOG to train the ker-

nel R-HOG detector, as kernel R-HOG generates so few false positives that
its hard example set is too sparse to improve the generalization significantly.
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Detection evaluation

• Assign each prediction to

• true positive (TP)   or   false positive (FP)

• Precision@k = #TP@k / (#TP@k + #FP@k)

• Recall@k = #TP@k / #TotalPositives

• Average Precision (AP)

( , ) = | � |
| � |



Dalal & Triggs detectors on INRIA

• AP = 0.75 with a linear SVM

• Very good, right?

3.5 Overview of Results 27
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Fig. 3.6. The performance of selected detectors on the INRIA static (left) and static+moving
(right) person data sets. For both of the data sets, the plots show the substantial overall gains
obtained by using HOG features rather than other state-of-the-art descriptors. (a) Compares
static HOG descriptors with other state of the art descriptors on INRIA static person data set.
(b) Compares combined the static and motion HOG, the static HOG and the wavelet detectors
on the combined INRIA static and moving person data set.

[2001] but also includes both 1st and 2nd-order derivative filters at 45� interval and the corre-
sponding 2nd derivative xy filter. It yields AP of 0.53. Shape contexts based on edges (E-ShapeC)
perform considerably worse with an AP of 0.25. However, Chapter 4 will show that generalised
shape contexts [Mori and Malik 2003], which like standard shape contexts compute circular
blocks with cells shaped over a log-polar grid, but which use both image gradients and orienta-
tion histograms as in R-HOG, give similar performance. This highlights the fact that orientation
histograms are very effective at capturing the information needed for object recognition.

For the video sequences we compare our combined static and motion HOG, static HOG, and
Haar wavelet detectors. The detectors were trained and tested on training and test portions of
the combined INRIA static and moving person data set. Details on how the descriptors and the
data sets were combined are presented in Chapter 6. Figure 3.6(b) summarises the results. The
HOG-based detectors again significantly outperform the wavelet based one, but surprisingly
the combined static and motion HOG detector does not seem to offer a significant advantage
over the static HOG one: The static detector gives an AP of 0.553 compared to 0.527 for the
motion detector. These results are surprising and disappointing because Sect. 6.5.2, where we
used DET curves (c.f . Sect. B.1) for evaluations, shows that for exactly the same data set, the
individual window classifier for the motion detector gives significantly better performance than
the static HOG window classifier with false positive rates about one order of magnitude lower
than those for the static HOG classifier. We are not sure what is causing this anomaly and are
currently investigating it. It seems to be linked to the threshold used for truncating the scores
in the mean shift fusion stage (during non-maximum suppression) of the combined detector.



PASCAL VOC Challenge
• Localize & name (detect) 20 basic-level object categories

• Airplane, bicycle, bus, cat, car, dog, person, sheep, sofa, monitor, 
etc.

• Run from 2005 - 2012

• 11k training images with 500 to 8000 instances / category

• Substantially more challenging images

• Dalal & Triggs detector AP on ‘person’ category: 12%

Input

person

motorbik

Desired output
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Diversity in visual apperance
examples from the person category

many sub-categories:  pose, viewpoint, occlusion
a single template is not enough (D&T AP=12%)



Beyond detection...

estimate pose, segmentation, gender, clothing, 
age, action, hair-style, etc.



Solution: part-based detectors

part 1

part 2

part 3



Solution: part-based detectors

part 1

part 2

part 3

But how should we select good parts?



Properties of good parts

part 1

part 2

part 3

It should be easy to detect the part from the image
i.e., want discriminative parts such as frontal faces



Properties of good parts

part 1

part 2

part 3

It should be easy to predict the pose given the part
i.e., want parts tightly clustered in pose space



Properties of good parts

part 1

part 2

part 3

want parts that are (1) visually discriminative and are 
(2) semantically meaningful



Examples of good parts

parts are often far visually, but they are close semantically
We call such parts poselets  

Bourdev & Malik 09 
Bourdev et al. 10



Key problem : How to find semantically similar patches?

Given a part of the 
human pose

How do we find a similar 
pose configuration in 
another image?



Key Problem : what poses to consider?

Combinatorial number of 
poses are possible



Key Problem : what poses to consider?

Combinatorial number of 
poses are possible

Can annotate a few parts such 
as faces, but we may miss many 

discriminative parts



How to find semantically similar patches at training time

We annotated the locations of various joints such as 
eyes, nose, shoulders and limbs for each training instances



Distance in configuration space

s t

sum of the squared errors after transformation

ds(r) =
X

i

||xs(i)� Txr(i)||22

Procrustes analysis

Question : how to find the optimal transformation?



How to find semantically similar patches at training time



How to find semantically similar patches at training time



How to find semantically similar patches at training time



How to find semantically similar patches at training time



How to find semantically similar patches at training time

residual error



Training poselet classifiers

• Given a source patch

residual 
error



Training poselet classifiers

• Given a source patch

residual 
error

• Find the closest patch in every other instance
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• Find the closest patch in every other instance



Training poselet classifiers

• Given a source patch

0.15 0.20 
residual 
error
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residual 
error

• Find the closest patch in every other instance



Training poselet classifiers

• Given a source patch

0.15 0.20 0.10 0.85 0.15 0.35 
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error

• Find the closest patch in every other instance



Training poselet classifiers
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• Find the closest patch in every other instance

• Sort them by residual error



Training poselet classifiers

• Given a source patch

0.15 0.20 0.10 0.85 0.15 0.35 
residual 
error

• Find the closest patch in every other instance

• Sort them by residual error

• Threshold the list



Training poselet classifiers

• Given a source patch

• Find the closest patch in every other instance

• Sort them by residual error

• Threshold the list

• Use these patches to train a standard “Dalal & Triggs” detector, 
i.e. HOG + linear SVMs with data mining

Pos ={...                           ...}                         



Which poselets should we train? 

• Machine learning solution : train a large number of possible 
poselets and select a subset based on the task

• Generate thousands of random windows, generate poselet 
candidates using the earlier method and train detectors using 
HOG + linear SVMs (Dalal & Triggs)

Bourdev & Malik 09 
Bourdev et al. 10
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Which poselets should we train? 

• Machine learning solution : train a large number of possible 
poselets and select a subset based on the task

• Generate thousands of random windows, generate poselet 
candidates using the earlier method and train detectors using 
HOG + linear SVMs (Dalal & Triggs)

• Select a set of poselets that are

• individually effective 

• complimentary Bourdev & Malik 09 
Bourdev et al. 10



Selecting poselets for detection



Poselets selected for PASCAL VOC person detection

Bourdev et al. 10



Poselets selected for PASCAL VOC person detection
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Poselets selected for PASCAL VOC person detection
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Poselets selected for PASCAL VOC person detection
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Poselets selected for PASCAL VOC person detection

Bourdev et al. 10



What does a poselet tell us?

frontal face
top detections on the training set



Person detection using poselets

• Example of a poselet

• Estimate relative bounding box on the training set expected
bounds



Person detection using poselets

• Detect each poselet in an image

• Vote for the person bounding 
box (Hough transform)

• Find non-overlapping clusters 

• Score each cluster using a 
weighted combination of 
poselet detection scores

si =
X

p2Ci

wpap

person
detection score weight of 

each poselet
poselet

detection score

Bourdev & Malik 09, Bourdev et al.10, Maji & Malik 10



Performance on PASCAL VOC detection challenge

Method Detection AP

Poselets 48.5%

Dalal & Triggs ~12%

Person category VOC 2010 test set

http://www.cs.berkeley.edu/~lbourdev/poselets/

L. Bourdev, S. Maji, T. Brox, J. Malik
Detecting people using mutually consistent poselet activations, ECCV 2010

http://www.cs.berkeley.edu/~lbourdev/poselets/
http://www.cs.berkeley.edu/~lbourdev/poselets/


Performance on the H3D dataset

[1] Bourdev and Brandt, CVPR 2005
[2] Dalal & Triggs, CVPR 2005
[3] Felzenszwalb, McAllester & Ramanan, CVPR 2008



Example detections



Example detections



Example detections



Example detections

Common 
Error 



keypoint prediction using poselets

• Example of a poselet

• Estimate average right-eye location expected 
location



right-eye detection using poselets

• Detect each poselet in an image

• Vote for the bounding box eye 
location

• Find non-overlapping clusters 

• Score each cluster using a 
weighted combination of 
poselet detection scores

si =
X

p2Ci

wpap

keypoint
detection score weight of 

each poselet
poselet

detection score

Bourdev & Malik 09, Bourdev et al.10, Maji & Malik 10



Any questions so far?



Poselets for other categories
Identify a set of keypoints 

animals man-made objects

not easy sometimes



Poselets for horses

each poselet (row) captures the appearance of the object 
at a fixed viewpoint and pose



Poselets for other categories

each poselet (row) captures the appearance of the object 
at a fixed viewpoint and pose



How much do we gain over a single template?

Category Dalal&Triggs Poselets
aeroplane 12.7 24.4

bicycle 25.3 57.9
bird 0.5 15.8
boat 1.5 14.8
bottle 10.7 41.7
bus 20.5 40.6
car 23.0 61.4
cat 0.5 22.5

chair 2.1 18.9
cow 12.8 32.3

Category Dalal&Triggs Poselets
diningtable 1.4 21.4

dog 0.4 17.8
horse 12.2 60.1

motorbike 10.3 37.8
person 10.1 46.9

pottedplant 2.2 14.2
sheep 5.6 29.6
sofa 5.0 26.8
train 12.0 22.7

tvmonitor 24.8 41.3

PASCAL VOC 2007 test set

Poselets (Mean AP=32.2%)
Dalal & Triggs (Mean AP=9.7%)



Break

• Any questions?



Beyond detection...

estimate pose, segmentation, gender, clothing, 
age, action, hair-style, etc.



Semantic segmentation
PASCAL VOC : 20 classes + “background”



Person segmentation using poselets

• Example of a poselet

• Estimate average segmentation mask average
‘person’ mask



Example person segmentations



Alignment to image contours

predicted boundary

image contours

Averaging causes blurring
Solution: align to image boundaries



Alignment to image contours 

poselet contours before and after alignment



Multi-class segmentation

Combine predictions from poselets from 20 classes

Images from the PASCAL VOC segmentation challenge
Brox et al., CVPR 11



PASCAL VOC 2010 segmentation challenge

Method Accuracy
Our [1] 34.9%

Oxford Brookes [2] 30.3%

Bonn [3] 39.7%

Barcelona [4] 40.1%

Rank #3 in the challenge
Best performance on 4/20 categories

[1] Brox, Bourdev, Maji and Malik, CVPR 11
[2] Associative Hierarchical CRFS, Ladicky, Russell, Kohli and Torr, ICCV 09
[3] Contrained CPMC, Carreira and Sminchisescu, CVPR 10
[4] Harmony potentials, Gonfaus et al., CVPR 10

note : current state of the art is around 45%



Any questions on semantic segmentation?

• There are many methods that work well. Most of them combine 
some bottom-up region signal with top-down classifications. 



Recognizing attributes
(Ready for a quiz?)



Who has long hair?



Who has short pants?



male or female?



male or female?



Classification is easier if we factor out the pose

male or female?



Classification is easier if we factor out the pose

male or female?

this is exactly what poselets allow us to do



Goal : extract attributes of this person



Goal : extract attributes of this person

Given: image and bounds of the desired and other 
humans in the image



A poselet-based approach for attribute recognition



A poselet-based approach for attribute recognition

Find poselet activations



A poselet-based approach for attribute recognition

Cluster poselet activations



A poselet-based approach for attribute recognition

Predict bounds from activations



A poselet-based approach for attribute recognition

match predicted bounds to ground-truth bounds
max-flow in a bipartite graph



A poselet-based approach for attribute recognition

obtain poselet activations corresponding 
to the desired person



Start with poselet activations

Poselet'
Ac*va*ons'



Features

Poselet
Activations

Features

Poselet'
patch'

B'.*'C'Skin'
mask'

Arms'
mask'

- pyramid HOG
- LAB histogram
- skin color features 



Attribute classification overview

Poselet
Activations

Features

Poselet-level
classifier

person-level
classifier

context re-
scoring

Estimate attribute from each poselet



Attribute classification overview

Poselet
Activations

Features

Poselet-level
classifier

Person-level
classifier

context re-
scoring

Combine evidence from all poselets



Attribute classification overview

Poselet
Activations

Features

Poselet-level
classifier

Person-level
classifier

Context 
re-scoring

Re-score attributes based on other attribute predictions



Any questions?

• ... before we proceed to experimental evaluation.



Our dataset

• Image source :  PASCAL VOC 2010 trainval images for the 
person category (high-resolution equivalents) + H3D dataset

• Annotations collected on Amazon Mechanical Turk

• Dataset details: 

• ~8000 person instances (4000 train, 4000 test)

• 9 binary attributes: is-male, has-long-hair, has-glasses, has-hat, 
has-long-sleeves, has-t-shirt, has-long-pants, has-jeans, has-shorts

• Dataset is publicly available at :

• http://www.cs.berkeley.edu/~lbourdev/poselets

http://www.cs.berkeley.edu/~lbourdev/poselets
http://www.cs.berkeley.edu/~lbourdev/poselets


Visual search on the test set



Visual search on the test set

wears hat



Visual search on the test set

wears hat

female



Visual search on the test set



Visual search on the test set

has long hair



Visual search on the test set

has long hair

wears glasses



Visual search on the test set



Visual search on the test set

wears shorts



Visual search on the test set

wears shorts

has long sleeves



Visual search on the test set

wears shorts

has long sleeves



Visual search on the test set



Visual search on the test set

doesn’t have long sleeves



Visual search on the test set

doesn’t have long sleeves



Baseline algorithms

• How important is the decomposition using pose?

• i.e., how well can we do using a classifier trained on the 
entire bounding box

• How important is the information from multiple parts?

• suppose we were given a perfect face detector, can we do 
well on the task? 



Baseline algorithms

• How important is the decomposition using pose?

• i.e., how well can we do using a classifier trained on the 
entire bounding box

• How important is the information from multiple parts?

• suppose we were given a perfect face detector, can we do 
well on the task? 

Full$view$ Head$zoom$ Upper$body$ Legs$
HOG + Spatial pyramid matching (Lazebnik et al., CVPR 06) 

train on ground truth 



Most informative region for attribute recognition

Attribute Prior head lower upper bbox
is male 59.3 74.9 63.9 71.3 68.1

has long hair 30.0 60.1 34.0 45.2 40.0
has glasses 22.0 33.4 22.6 25.5 25.9

has hat 16.6 53.0 24.3 32.3 35.3
has t-shirt 23.5 32.2 25.4 30.0 30.6

has long sleeves 49.0 53.4 52.1 56.6 58.0
has shorts 17.9 22.9 24.8 22.9 31.4
has jeans 33.8 38.5 38.5 34.6 39.5
has pants 74.7 79.9 80.4 76.9 84.3
Mean AP 36.3 49.81 40.66 43.94 45.91



Results (precision vs. recall curves)

Label&
frequency&

!"!"!"!"

___&SPM&

___&No&&
context&

___&Full&
Model&

we pick the best baseline algorithm



State-of-the-art on gender recognition

• We achieve AP=82.4%, out-perform Cognitec’s gender 
recognizer (a commercial face recognition system)

• We out-perform any frontal face-based gender recognizer : 

• 61% of our data has frontal faces.  A perfect result on frontal 
faces only, achieves AP=80.5%

Cognitec (AP=75%)
Our method (Full) (AP=82.4%)
Our method (No context) (AP=82.9%)

pr
ec

is
io

n

recall



Confusions
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men most confused to be women
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men most confused to be women

women most confused to be men

long hair
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Confusions

men most confused to be women

women most confused to be men

long hair

hair hiddenbaseball hat



Confusions



Confusions

non t-shirt most confused to be t-shirt



Confusions

non t-shirt most confused to be t-shirt annotation errors



short pants most confused to be long pants

Confusions

non t-shirt most confused to be t-shirt annotation errors



short pants most confused to be long pants

Confusions

non t-shirt most confused to be t-shirt annotation errors

are these pants short?



short pants most confused to be long pants

Confusions

non t-shirt most confused to be t-shirt annotation errors

wrong personare these pants short?



short pants most confused to be long pants

Confusions

non t-shirt most confused to be t-shirt annotation errors

wrong person occlusionare these pants short?



Most informative poselets for attribute prediction

Gender



Most informative poselets for attribute prediction

Gender

Long hair



Most informative poselets for attribute prediction

Gender

Long hair

Glasses



Most informative poselets for attribute prediction

Gender

Long hair

Glasses

increasing zoom



Describing people

“A#man#with#short#hair,##
glasses,#short#sleeves#
and#shorts”#



Describing people

“A#person#with##
##long#pants”#



Describing people

“A#man#with#short##
hair#and#long#sleeves”#



Any questions on attribute recognition?



Action recognition
(or recognizing unusual poses)



Action recognition

what are the people doing?

unusual and characteristic poses; which means face and 
pedestrian detectors may not work well 



actions = discriminative pose + appearance

pose



actions = discriminative pose + appearance

pose

pose + action



actions = discriminative pose + appearance

pose

pose + action

pose + action + object



PASCAL VOC action classification challenge

• Input : input image and bounding box of all persons in an image

• Output : predict which of the 9 actions are being performed 



Poselets for action classification

• Train a large number of poselets 
using information from:

• pose only

• pose + action

• pose + action + object



Poselets for action classification

• Train a large number of poselets 
using information from:

• pose only

• pose + action

• pose + action + object

poselet activation vector

• Action classification

• poselet activation vector - 
score of all the poselet 
activations that belong 
to the person

• linear SVMs trained in 
1-vs-all manner



Examples of learned poselets
phoning



Examples of learned poselets
phoning playing instrument



Examples of learned poselets
reading



Examples of learned poselets
reading taking photo



Examples of learned poselets
riding horse



Examples of learned poselets
riding horse running



Object context

person'bbox' object'bbox'

spatial model of person-object interaction



Action context

what are other people doing in the scene?

group activities



Overall action classification

poselet'ac*va*on'vector'
(1200'dim)'

object'ac*va*on'vector'
(4'dim)'

one'vs.'all'linear'SVM'

one'vs.'all'linear'SVM'

ac*on'context'
(9'dim)'

Image'context'



Action classification results

PASCAL VOC 2010 challenge
!Object!Context!
!!Image!Context!



Confusion matrix

Poselets:(59.7(
INRIA_SPM_HT(:(60.1(

CVC_BASE(:(60.3((

“CVC_BASE	
  :	
  ….	
  Standard	
  BoW	
  model	
  over	
  
mul4ple	
  features	
  including	
  PHOG,	
  grayscale	
  
SIFT	
  and	
  (various)	
  color	
  SIFT	
  descriptors.	
  
Foreground/background	
  modeled	
  
separately,	
  spa4al	
  pyramid	
  over	
  several	
  
features	
  for	
  foreground	
  representa4on….”

“INRIA_SPM_HT	
  :	
  ..Spa4al	
  Pyramids	
  on	
  the	
  
bounding	
  box,	
  on	
  the	
  image	
  and	
  a	
  hough	
  
transform	
  for	
  taking	
  into	
  account	
  the	
  object-­‐
person	
  interac4ons	
  for	
  bicycle,	
  horse	
  and	
  
tvmonitor….”

class confusion matrix

poselet activation vector is a compact representation 
pose and appearance

Maji,	
  Bourdev	
  &	
  Malik,	
  CVPR’11



Some confusions
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