
Tutorial outline

• Overview (this)

• Image representation (60 mins, 9:15 - 10:30)

• motivation, local features, global features, break

• Learning (90 mins, 10:30 - 12:30)

• discriminative models, tea-break, generative models, break

• Object detection and recognition (90 mins, 12:30 - 2:00)

• Dalal & Triggs, lunch-break, PASCAL challenge, poselets and 
their applications, tea-break

• Cross-modal search (60 mins, 2:30 - 3:30)

lunch-break 60 mins, break 15 mins, tea-break 20-30 mins 
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Overview

• Linear SVMs

• margins, learning, representer theorem

• Non-linear kernel SVMs

• non-linear kernels, learning, classification complexity

• Kernels in computer vision

• Examples

• Histogram intersection kernel

• Efficient evaluation and experiments

• Efficient training using explicit embeddings

• Conclusions
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Linear separators

• Which one is better A or B ?

• How do you define better?

A
B



Linear separators : margin
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Linear separators : margin

• Find a hyperplane that maximizes the margin

• Bigger margin is better, i.e., classifier A is better than B

• Why is bigger margin better?

A

margin

B



Linear Support Vector Machines (SVMs)

classification function
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Linear SVMs
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Linear SVMs : non-separable data
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Linear SVMs : non-separable data
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Representer theorem

classifier is a linear combination of support vectors
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Representer theorem

classifier is a linear combination of support vectors
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xi+b)��1}

↵ixi

support vectors

support vectors



Feature maps

• Data may be too hard to separate using a linear classifier

• Map features to a higher dimensional space and use a linear 
classifier

Φ:  x → φ(x) 



• Use a kernel function to represent the dot product 

• With the representer theorem we have: 

• Can use arbitrary feature maps as long as we have a kernel 
function (also called the “kernel trick”), e.g., 

Feature maps via non-linear kernels
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Even infinite dimensional features..

K(x,y) = exp(� ||x� y||2

�2
)

Gaussian kernel

infinite dimensional map
(via Taylor expansion)

learn non-linear boundaries

Any function can be used as long as it is a dot product of 
a feature map (positive definiteness)



Kernels in computer vision

• Images are represented as histograms of low level features such 
as color and texture [Swain and Ballard 01, Odone et al. 05]

• Histogram based similarity measures are typically additive

• Other examples of additive kernels based on approximate 
correspondence : 

Pyramid Match Kernel, 
Grauman and Darrell, CVPR’05

Spatial Pyramid Match Kernel,
Lazebnik, Schmidt and Ponce, CVPR’06

K�2(x,y) =
X 2xiyi

xi + yi
Kmin(x,y) =

X
min(xi, yi)



• A measure of similarity between histograms a, b

The histogram intersection kernel
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• A measure of similarity between histograms a, b

The histogram intersection kernel

K(a,b) =
X

i

min(ai,bi) ai � 0,bi � 0

K large :  histograms are similar
K small  : histograms are different

Introduced by Swain & Ballard 1991 to compare color histograms
Odone et al., 2005 proved positive definiteness

Hence can be used as a kernel directly with SVMs



• A measure of similarity between histograms a, b

The histogram intersection kernel: positive definiteness
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min(ai,bi) =< aunaryi ,bunary
i >

min(3, 5) =< [1, 1, 1, 0, 0], [1, 1, 1, 1, 1] >= 3



• A measure of similarity between histograms a, b

The histogram intersection kernel: positive definiteness

K(a,b) =
X

i

min(ai,bi) ai � 0,bi � 0

To see                   is positive definite, represent           in unarymin(ai,bi) ai,bi

Unary representation: n written as n ones in a row

min(ai,bi) =< aunaryi ,bunary
i >

Also positive definite for reals

min(3, 5) =< [1, 1, 1, 0, 0], [1, 1, 1, 1, 1] >= 3



Kernel SVMs are slow to evaluate

• The decision function is sign(h(x))

h(x) =
#dimX
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Kernel SVMs are slow to evaluate

• The decision function is sign(h(x))

h(x) =
#dimX

i=1

wixi + blinear SVM

h(x) =
#svX

j=1

↵jK(x, sj) + bkernel SVM

h(x) =
#svX

j=1

↵j

#dimX

i=1

min(xi, si,j) + b
intersection 
kernel SVM

linear SVM = O(#dim)
kernel SVM = O(#dim X #sv)

Can be orders of magnitude slower
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Additive kernel SVMs can be efficiently evaluated
The decision function of the classifier is sign(h(x))

Independent of input
Can be precomputed

Evaluating each dimension O(#sv)

To evaluate, find the 
position of input in the 
sorted list of support 
vectors. Can be done 
using binary search in 

O(log #sv) time

Maji, Berg, Malik ’08
Herbster ’01
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Additive kernel SVMs can be efficiently evaluated
The decision function of the classifier is sign(h(x))

Evaluating each dimension O(#sv)

Maji, Berg, Malik ’08

O(log #sv)

Consider a piecewise 
polynomial approximation
O(1) time. Saves time and 

memory!
Works for any additive 

kernel



Timing results

• Time to classify 10,000 features

Linear SVM are fastest, 
but usually have worse 
performance than non-

linear kernels

IKSVM with multi-scale 
HOG features beat 

Dalal&Triggs, also work 
well for DC ped. and 
Caltech 101 datasets

Up to 3 orders of magnitude faster

Maji, Berg & Malik, 08



Timing results

• Time to classify 10,000 features

Linear SVM are fastest, 
but usually have worse 
performance than non-

linear kernels

IKSVM with multi-scale 
HOG features beat 

Dalal&Triggs, also work 
well for DC ped. and 
Caltech 101 datasets

Up to 3 orders of magnitude faster

saves 
memory

Maji, Berg & Malik, 08



Shape of 1-d functions

support vectors

1-d functions

learned functions are usually smooth, i.e., need small 
number of bins to approximate the classifier well



• Additive kernel SVMs are additive classifiers, i.e., the method for 
intersection kernel works for any additive kernel

• Optimize the hinge loss with a parametric representation of h(x)

• For piecewise linear functions, we obtain just a bigger linear 
model, and most linear solvers can be adapted to solve this 
problem

Learn additive classifiers directly



Additive kernel SVMs and Generalized Additive Models

• Why use them?

• Efficiency : can be efficiently evaluated

• Interpretability : Simple generalization of linear 
classifiers, i.e., may lead to models that are interpretable

• Well known in the statistics community

• Generalized Additive Models (Hastie & Tibshirani ’90)

• However traditional learning algorithms do not scale well 
(e.g. “backfitting algorithm”)

f(x1, x2, . . . , xn) = f1(x1) + f2(x2) + . . .+ fn(xn)



Generalization of a linear classifier

H is tridiagonal
inv(H) is block diagonal

(for dual methods) 



Feature maps via basis expansions

f(x1, x2, . . . , xn) = f1(x1) + f2(x2) + . . .+ fn(xn)
X

i

wi�i

local splines are the basis

In general can choose any orthonormal basis

Maji & Berg ‘09, Maji ‘12



Faster training times



Conclusions

• Linear SVMs are the fastest to evaluate and train, are the 
classifier of choice for large scale tasks

• Kernel SVMs are more expressive but often significantly slower

• Additive kernels are widely used in computer vision and allow 
efficient evaluation and significantly faster training 
times than standard kernel SVMs
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