Tutorial outline

® Overview (this)

® |mage representation (60 mins, 9:15 - 10:30)

® motivation, local features, global features, break
® | earning (90 mins, 10:30 - 12:30)

® discriminative models, tea-break, generative models, break
® Object detection and recognition (90 mins, 12:30 - 2:00)

® Dalal & Triggs, lunch-break, PASCAL challenge, poselets and
their applications, tea-break

® Cross-modal search (60 mins, 2:30 - 3:30)

lunch-breal< 60 mins, breal |5 mins, tea-break 20-30 mins
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Overview

® |inear SVMs

® margins, learning, representer theorem
® Non-linear kernel SVMs

® non-linear kernels, learning, classification complexity
® Kernels in computer vision

® Examples

® Histogram intersection kernel

® Efficient evaluation and experiments

® Efficient training using explicit embeddings

® Conclusions
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Linear separators

® Which one is better A or B ?

® How do you define better?



Linear separators : margin
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Linear separators : margin

margin

® Find a hyperplane that maximizes the margin
® Bigger margin is better, i.e., classifier A is better than B

® Why is bigger margin better?



Linear Support Vector Machines (SVMs)

classification function
f(x) = sign (W' x + b)



Linear SVMs

WTX -

WTX -

or minimize: HWH2

maximize:

[wl[®

subject to:  v; (W' x; +b) > 1



Linear SVMs : non-separable data

minimize: | (JZ@;

subject to: y; (W' x; +b) > 1—¢
& = 0
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Linear SVMs : non-separable data
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Representer theorem

classifier is a linear combination of support vectors

W = g ;X4

i€{iy;(whx;+b)>—1}



Representer theorem

support vectors

7/

classifier is a linear combination of support vectors

W — E ;X

i€{iy;(whx;+b)>—1}

support vectors



Feature maps

® Data may be too hard to separate using a linear classifier

® Map features to a higher dimensional space and use a linear
classifier




Feature maps via non-linear kernels

® Use a kernel function to represent the dot product

K(x,y) = ®(x)" 2(y)

® W/ith the representer theorem we have:

wlid(x) = Z a; K(s;,X)

si€ESup.Vec.

® Can use arbitrary feature maps as long as we have a kernel
function (also called the “kernel trick™), e.g.,

K(x,y)=(1+x"y)’

d(x) = [1,22,V2x129, 2, V221, V225



Even infinite dimensional features..

Gaussian kernel

2
« * X_y
P ( K(x,y) = exp(~ XYL,

infinite dimensional map
(via Taylor expansion)

learn non-linear boundaries

Any function can be used as long as it is a dot product of
a feature map (positive definiteness)



Kernels in computer vision

® |mages are represented as histograms of low level features such
as color and texture [Swain and Ballard O, Odone et al. 05]

® Histogram based similarity measures are typically additive

2Ty
Kin (X, ) me i ¥i)  Ky2(X,y) = Z ;Y

® Other examples of additive kernels based on approximate
correspondence :
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Pyramid Match Kernel, Spatial Pyramid Match Kernel,
Grauman and Darrell, CVPR’05 Lazebnik, Schmidt and Ponce, CVPR’06
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K(a, b) — me(az,bz) a;, = O,bz > 0
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The histogram intersection kernel

® A measure of similarity between histograms a, b

K(a, b) — Zmin(ai, bz) a;, = O, bz > 0
K large : histograms are similar
K small :histograms are different

Introduced by Swain & Ballard 1991 to compare color histograms
Odone et al,, 2005 proved positive definiteness
Hence can be used as a kernel directly with SVMs



The histogram intersection kernel: positive definiteness

® A measure of similarity between histograms a, b

K(a, b) — me(az,bz) a;, = O,bz > 0

To see min(a;, b;) is positive definite, represent a;, b; in unary

Unary representation: n written as n ones in a row

. o unary 1. unary
min(a;,b;) =< a, , b, >

min(3,5) =< [1,1,1,0,0],[1,1,1,1,1] >=3



The histogram intersection kernel: positive definiteness

® A measure of similarity between histograms a, b

K(a, b) — me(az,bz) a;, = O,bz > 0

To see min(a;, b;) is positive definite, represent a;, b; in unary

Unary representation: n written as n ones in a row

. o unary 1. unary
min(a;,b;) =< a, , b, >

min(3,5) =< [1,1,1,0,0],[1,1,1,1,1] >=3

Also positive definite for reals



Kernel SVMs are slow to evaluate

® The decision function is sign(h(x))

Hdim
linear SVM  h(x Z wW,;X; + b
#sv
kernel SVM  h(x) = Z a; K(x,8;)+b
1=1
HSsv Hdim

Intersection ,
kernel SVYM h(x) = Z &y Z min(x;,s;,;) + b



Kernel SVMs are slow to evaluate

® The decision function is sign(h(x))

Hdim
linear SVM  h(x Z wW,;X; + b
#sv
kernel SVM  p(x) = Z a;i K (x,s;) +b
i=1
: : HSsv Hdim
intersection
kernel SVM Z & Z min(x;, s;,;) + b

linear SVM = O(#dlm)
kernel SVM = O(#dim X #sv)

Can be orders of magnitude slower



Additive kernel SVMs can be efficiently evaluated

The decision function of the classifier is sign(h(x))

Hsv #dim
h(x) = Zoﬂ(z min(z;, T )—I—b
#dim [ #sv
= Z Zoﬂmln (2, @ +b

|
Sl
)
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Additive kernel SVMs can be efficiently evaluated

The decision function of the classifier is sign(h(x))

h(x)

Hsv

2.

‘%

#dim

E min(z;, x

)+b

Independent of input
Can be precomputed



Additive kernel SVMs can be efficiently evaluated

The decision function of the classifier is sign(h(x))

Hsv #dim
h(x) = Zoﬂ(z min(z;, T )—I—b

sdim [ Hsv Independent of input
s Can be precomputed

B %nh.(x.) To evaluate, find the
— position of input in the
Evaluating each dimension sorted list of support
sty vectors. Can be done
hi(z;) = Zozjmi %oz using binary search in
j=1 O(IOg #SV) time

= ) ozl + ( > oz”) zi  Maji, Berg, Malik 08
T Herbster 'O



Additive kernel SVMs can be efficiently evaluated

The decision function of the classifier is sign(h(x))

h(x)

hz(xz)
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Additive kernel SVMs can be efficiently evaluated

The decision function of the classifier is sign(h(x))

Hsv #dim
Z o’ ( Z min(z;, x

h(x)

hz(xz)

#dim [ #sv
Z (Z o/ min(z;, «

)

O(log #sv)



Additive kernel SVMs can be efficiently evaluated

The decision function of the classifier is sign(h(x)
Hsv (#dlm O(I SV)

h(z) = Zoﬂ D min(z;,z
#dim [ #sv
= Z Zoﬂmln (i, x

— Zh:zzz

Consider a piecewise
Evaluating each dlmen5|on O . PISCEWISE
polynomial approximation
Hsv

O(1) time. Saves time and
hi(z;) = Zoﬂmln T, X () memory!
Works for any additive
_ Z gl + (Z a]) kernel
:I:Z<:EZ I >,

Maji, Berg, Malik '08



Timing results
® Time to classify 10,000 features

Model parameters SVM kernel type fast IKSVMs
Dataset #SVs #features linear intersection || binary search | piecewise-const | piecewise-lin
INRIA Ped 3363 1360 0.07+£0.00 | 659.1£1.92 2.57+£0.03 0.3440.01 0.43+0.01
DC Ped 54744395 656 0.03+0.00 | 459.1+£31.3 1.43+0.02 0.184+0.01 0.22+0.00
Caltech 101 175446 1360 007001 | 24.77£1.22 1.63+0.12 0.334+0.03 0.46+0.03

/

Linear SVM are fastest,

but usually have worse
performance than non-
linear kernels

IKSVM with multi-scale
HOG features beat

Dalal&Triggs, also work
well for DC ped. and
Caltech |0l datasets

Up to 3 orders of magnitude faster

Maji, Berg & Malik, 08
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Shape of |-d functions
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Figure 1. Each column (a-d) shows the distribution of the support vectors values along a dimension with a Gaussian fit (top) and the
function hi(x) vs.  with a piecewise linear fit using 20 uniformly spaced points (bottom) of an IKSVM model trained on the INRIA
dataset. Unlike the distribution of the training data which are heavy tailed, the values of the support vectors tend to be clustered.

learned functions are usually smooth, i.e., need small
number of bins to approximate the classifier well



Learn additive classifiers directly

® Additive kernel SVMs are additive classifiers, i.e., the method for
intersection kernel works for any additive kernel

® Optimize the hinge loss with a parametric representation of h(x)

#dim [ #sv

h(x) = Z Zajmin(xi,x‘g) + b
i=1 \j=1
#dim

]
s
8

® For piecewise linear functions, we obtain just a bigger linear
model, and most linear solvers can be adapted to solve this
problem



Additive kernel SYMs and Generalized Additive Models

flxr, e, .. xn) = fil@r) + fa(z2) + .o+ fol2n)

® Why use them!?
o Efficiency :can be efficiently evaluated

¢ Interpretability : Simple generalization of linear
classifiers, i.e., may lead to models that are interpretable

® Well known in the statistics community

® Generalized Additive Models (Hastie & Tibshirani "90)

® However traditional learning algorithms do not scale well
(e.g.”backfitting algorithm’)



Generalization of a linear classifier

mind}’HzD—l—chj

y! ('3 +b) >1—¢
&7 > 0
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H is tridiagonal
inv(H) is block diagonal
(for dual methods)



Feature maps via basis expansions

local splines are the basis

In general can choose any orthonormal basis

Maji & Berg ‘09, Maji ‘12



Faster training times

_____ Dataset| _Linear | Piecewiselinear | __IKSVM __

Time  Accuracy Time Accuracy Time Accuracy

INRIA pedestrians 20s  see curve 76s see curve ~3hr seecurve
Caltech101, 15 examples 18.6s  41.2% 238s 49.9%  844s  50.1%
Caltech101, 30 examples 40.5s 46.2% 291s 55.4%  2686s 56.5%

INRIA Pedestrian Detections

08}

0.75¢

e
~

300x faster
training time ~ linear SVM
accuracy ~ kernel SVM

0.65

Detection Rate
(=
(o))

0.55

o — 0, + PWLSGD

~—eo— spHOG + (min) LIBSVM/1
4= HOG + (lin) LIBSVM

0 01 02 03 04 05 06 07 08 09 1
False Pos Per Image

0.45

0.4




Conclusions

® Linear SVMs are the fastest to evaluate and train, are the
classifier of choice for large scale tasks

® Kernel SYMs are more expressive but often significantly slower

® Additive kernels are widely used in computer vision and allow
efficient evaluation and significantly faster training
times than standard kernel SVMs
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