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Outline

• Motivation

• Introduction to data flow analysis
◮ Live variables analysis
◮ Available expressions analysis

• Common abstractions in data flow analysis

• Implementing data flow analysis using gdfa

• Design and Implementation of gdfa
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Motivation behind gdfa

• Specification Vs. implementation

• Orthogonality of specification of data flow analysis and the process
of performing data flow analysis

• Practical significance of generalizations

• Ease of extending data flow analysers

Essential Abstrations in GCC GCC Resource Center, IIT Bombay
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Introduction to Data Flow Analysis
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Defining Live Variables Analysis

A variable v is live at a program point p, if some
path from p to program exit contains an r-value oc-
currence of v which is not preceded by an l-value
occurrence of v .

v =a∗b

a=v +2

End

p

Start

v =a∗b

v =a+2

End

p

Start

v = v + 2v =v +2

End

p

Start
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path from p to program exit contains an r-value oc-
currence of v which is not preceded by an l-value
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Defining Live Variables Analysis

A variable v is live at a program point p, if some
path from p to program exit contains an r-value oc-
currence of v which is not preceded by an l-value
occurrence of v .

Path based
specification

v is live at p v is not live at p v is live at p

v =a∗b

a=v +2

End

p

Start

v =a∗b

v =a+2

End

p

Start

v = v + 2v =v +2

End

p

Start
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Defining Data Flow Analysis for Live Variables Analysis

Ini

Geni , Killi

Out i

Inj

Genj , Killj

Out j

Ink = Genk ∪ (Outk − Killk)

Genk , Killk

Outk = Ini ∪ Inj
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Defining Data Flow Analysis for Live Variables Analysis

Ini

Geni , Killi

Out i

Inj

Genj , Killj

Out j

Ink = Genk ∪ (Outk − Killk)

Genk , Killk

Outk = Ini ∪ Inj

Basic Blocks ≡
Single statements or Maximal groups
of sequentially executed statements
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Defining Data Flow Analysis for Live Variables Analysis

Ini

Geni , Killi

Out i

Inj

Genj , Killj

Out j

Ink = Genk ∪ (Outk − Killk)

Genk , Killk

Outk = Ini ∪ Inj

Basic Blocks ≡
Single statements or Maximal groups
of sequentially executed statements

Control Transfer
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Defining Data Flow Analysis for Live Variables Analysis
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Defining Data Flow Analysis for Live Variables Analysis
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Geni , Killi

Out i
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Genj , Killj

Out j

Ink = Genk ∪ (Outk − Killk)

Genk , Killk
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Outk = Ini ∪ Inj

Local Data Flow Properties
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Local Data Flow Properties for Live Variables Analysis

Genn = { v | variable v is used in basic block n and

is not preceded by a definition of v }
Killn = { v | basic block n contains a definition of v }

Essential Abstrations in GCC GCC Resource Center, IIT Bombay



July 09 GDFA: Introduction to Data Flow Analysis 5/37

Local Data Flow Properties for Live Variables Analysis

Genn = { v | variable v is used in basic block n and

is not preceded by a definition of v }
Killn = { v | basic block n contains a definition of v }

r-value occurrence

Value is only read, e.g. x,y,z in

x.sum = y.data + z.data
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Local Data Flow Properties for Live Variables Analysis

Genn = { v | variable v is used in basic block n and

is not preceded by a definition of v }
Killn = { v | basic block n contains a definition of v }

r-value occurrence

Value is only read, e.g. x,y,z in

x.sum = y.data + z.data

l-value occurrence

Value is modified e.g. y in

y = x.lptr

within n

anywhere in n
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Defining Data Flow Analysis for Live Variables Analysis

Ini

Geni , Killi

Out i

Inj

Genj , Killj

Out j

Ink = Genk ∪ (Outk − Killk)

Genk , Killk

Outk = Ini ∪ Inj
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Defining Data Flow Analysis for Live Variables Analysis

Ini

Geni , Killi

Out i

Inj

Genj , Killj

Out j

Ink = Genk ∪ (Outk − Killk)

Genk , Killk

Outk = Ini ∪ Inj

Global Data Flow Properties
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Defining Data Flow Analysis for Live Variables Analysis

Ini

Geni , Killi

Out i

Inj

Genj , Killj

Out j

Ink = Genk ∪ (Outk − Killk)

Genk , Killk

Outk = Ini ∪ Inj

Global Data Flow Properties
Edge based

specifications
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Data Flow Equations For Live Variables Analysis

Inn = (Outn − Killn) ∪ Genn

Outn =







BI n is End block
⋃

s∈succ(n)

Ins otherwise
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Data Flow Equations For Live Variables Analysis

Inn = (Outn − Killn) ∪ Genn

Outn =







BI n is End block
⋃

s∈succ(n)

Ins otherwise

Inn and Outn are sets of variables.
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Performing Live Variables Analysis

Gen ={x}, Kill ={w}

w = x

Gen ={x}, Kill =∅

while (x.data < max)

Gen={x}, Kill ={x}
x = x.rptr

Gen={x}, Kill ={y}
y = x.lptr

Gen=∅, Kill ={z}

z = New class of z

Gen ={y}, Kill ={y}
y = y.lptr

Gen ={x , y , z}, Kill =∅

z.sum = x.data + y.data
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Performing Live Variables Analysis

Gen ={x}, Kill ={w}

w = x

Gen ={x}, Kill =∅

while (x.data < max)

Gen={x}, Kill ={x}
x = x.rptr

Gen={x}, Kill ={y}
y = x.lptr

Gen=∅, Kill ={z}

z = New class of z

Gen ={y}, Kill ={y}
y = y.lptr

Gen ={x , y , z}, Kill =∅

z.sum = x.data + y.data

Gen and Kill need not be
mutually exclusive
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Performing Live Variables Analysis

Gen ={x}, Kill ={w}

w = x

Gen ={x}, Kill =∅

while (x.data < max)

Gen={x}, Kill ={x}
x = x.rptr

Gen={x}, Kill ={y}
y = x.lptr

Gen=∅, Kill ={z}

z = New class of z

Gen ={y}, Kill ={y}
y = y.lptr

Gen ={x , y , z}, Kill =∅

z.sum = x.data + y.data

z is an r-value occurrence and
not an l-value occurrence
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Performing Live Variables Analysis

Gen ={x}, Kill ={w}

w = x

Gen ={x}, Kill =∅

while (x.data < max)

Gen={x}, Kill ={x}
x = x.rptr

Gen={x}, Kill ={y}
y = x.lptr

Gen=∅, Kill ={z}

z = New class of z

Gen ={y}, Kill ={y}
y = y.lptr

Gen ={x , y , z}, Kill =∅

z.sum = x.data + y.data

x , y , z are considered to be used
based purely on local use even if
the value of z is not use later. A
different analysis called faint vari-
ables analysis improves on this.
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Performing Live Variables Analysis

Gen ={x}, Kill ={w}

w = x

Gen ={x}, Kill =∅

while (x.data < max)

Gen={x}, Kill ={x}
x = x.rptr

Gen={x}, Kill ={y}
y = x.lptr

Gen=∅, Kill ={z}

z = New class of z

Gen ={y}, Kill ={y}
y = y.lptr

Gen ={x , y , z}, Kill =∅

z.sum = x.data + y.data Initialization
∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅
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Performing Live Variables Analysis

Gen ={x}, Kill ={w}

w = x

Gen ={x}, Kill =∅

while (x.data < max)

Gen={x}, Kill ={x}
x = x.rptr

Gen={x}, Kill ={y}
y = x.lptr

Gen=∅, Kill ={z}

z = New class of z

Gen ={y}, Kill ={y}
y = y.lptr

Gen ={x , y , z}, Kill =∅

z.sum = x.data + y.data∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

Traversal

Iteration #1
{x , y , z}

{x , y , z}

{x , y , z}

{x , y , z}

{x , y}

{x , y}

{x}

∅

{x}

{x}

{x}

{x}

{x}
Ignoring max be-
cause we are doing
analysis for pointer
variables w, x, y, z
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Performing Live Variables Analysis

Gen ={x}, Kill ={w}

w = x

Gen ={x}, Kill =∅

while (x.data < max)

Gen={x}, Kill ={x}
x = x.rptr

Gen={x}, Kill ={y}
y = x.lptr

Gen=∅, Kill ={z}

z = New class of z

Gen ={y}, Kill ={y}
y = y.lptr

Gen ={x , y , z}, Kill =∅

z.sum = x.data + y.data∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

Traversal

Iteration #1
{x , y , z}

{x , y , z}

{x , y , z}

{x , y , z}

{x , y}

{x , y}

{x}

∅

{x}

{x}

{x}

{x}

{x}
Ignoring max be-
cause we are doing
analysis for pointer
variables w, x, y, z

Iteration #2
∅

{x , y , z}

{x , y , z}

{x , y , z}

{x , y , z}

{x , y}

{x , y}

{x}

{x}

{x}

{x}

{x}

{x}

{x}
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Performing Live Variables Analysis

Gen ={x}, Kill ={w}

w = x

Gen ={x}, Kill =∅
while (x.data < max)

Gen={x}, Kill ={x}

x = x.rptr
Gen={x}, Kill ={y , z}

y = x.lptr
z = New class of z

y = y.lptr
z.sum = x.data + y.data
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Using Data Flow Information of Live Variables Analysis

• Used for register allocation.
If variable x is live in a basic block b, it is a potential candidate for
register allocation.
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Using Data Flow Information of Live Variables Analysis

• Used for register allocation.
If variable x is live in a basic block b, it is a potential candidate for
register allocation.

• Used for dead code elimination.
If variable x is not live after an assignment x = . . ., then the
assginment is redundant and can be deleted as dead code.

Essential Abstrations in GCC GCC Resource Center, IIT Bombay
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Defining Available Expressions Analysis

An expression e is available at a program point p, if
every path from program entry to p contains an evaluation of e

which is not followed by a definition of any operand of e.

Start

p

End

a ∗ b

a ∗ b

a ∗ b

Start Start

p

End

a ∗ b

a ∗ b

a ∗ b

a =

Start Start

p

End

a ∗ b

a ∗ b

Start
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Local Data Flow Properties for Available Expressions
Analysis

Genn = { e | expression e is evaluated in basic block n and
this evaluation is not followed by a definition of
any operand of e}

Killn = { e | basic block n contains a definition of an operand of e}
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Data Flow Equations For Available Expressions Analysis

Inn =







BIn is Start block
⋂

p∈pred(n)

Outp otherwise

Outn = Genn ∪ (Inn − Killn)
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Data Flow Equations For Available Expressions Analysis

Inn =







BIn is Start block
⋂

p∈pred(n)

Outp otherwise

Outn = Genn ∪ (Inn − Killn)

Alternatively,
Outn = fn(Inn), where

fn(X ) = Genn ∪ (X − Killn)
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Data Flow Equations For Available Expressions Analysis

Inn =







BIn is Start block
⋂

p∈pred(n)

Outp otherwise

Outn = Genn ∪ (Inn − Killn)

Alternatively,
Outn = fn(Inn), where

fn(X ) = Genn ∪ (X − Killn)

Inn and Outn are sets of expressions.
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Using Data Flow Information of Available Expressions
Analysis

• Used for common subsexpression elimination.
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Using Data Flow Information of Available Expressions
Analysis

• Used for common subsexpression elimination.
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◮ it is not preceded by a definition of any of its operands

Then the expression is redundant.
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Using Data Flow Information of Available Expressions
Analysis

• Used for common subsexpression elimination.

◮ If an expression is available at the entry of a block b and
◮ a computation of the expression exists in b such that
◮ it is not preceded by a definition of any of its operands

Then the expression is redundant.

• Expression must be upwards exposed or locally anticipable.
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Using Data Flow Information of Available Expressions
Analysis

• Used for common subsexpression elimination.

◮ If an expression is available at the entry of a block b and
◮ a computation of the expression exists in b such that
◮ it is not preceded by a definition of any of its operands

Then the expression is redundant.

• Expression must be upwards exposed or locally anticipable.

• Expressions in Genn are downwards exposed.
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Common Form of Data Flow Equations

Xi = f (Yi)

Yi = ⊓ Xj
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Common Form of Data Flow Equations

Xi = f (Yi)

Yi = ⊓ Xj

Data Flow Information
So far we have seen sets (or bit vectors).
Could be entities other than sets for
non-bit vector frameworks.
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Common Form of Data Flow Equations

Xi = f (Yi)

Yi = ⊓ Xj

Data Flow Information
So far we have seen sets (or bit vectors).
Could be entities other than sets for
non-bit vector frameworks.

Flow Function
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Common Form of Data Flow Equations

Xi = f (Yi)

Yi = ⊓ Xj

Data Flow Information
So far we have seen sets (or bit vectors).
Could be entities other than sets for
non-bit vector frameworks.

Flow Function

Confluence
So far we have seen ∪ and ∩.
Could be other operations for non-bit
vector frameworks.
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A Taxonomy of Bit Vector Data Flow Frameworks

Confluence
Union Intersection

Forward Reaching Definitions Available Expressions
Backward Live Variables Anticipable Exressions
Bidirectional Partial Redundancy Elimination
(limited) (Original M-R Formulation)
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Forward Reaching Definitions Available Expressions
Backward Live Variables Anticipable Exressions
Bidirectional Partial Redundancy Elimination
(limited) (Original M-R Formulation)

Any Path

All Paths
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The Abstraction of Flow Functions

n

m

Inn

Outn

Inm

Outm

−→
f n

−→
f n→m

Forward Flows

−→
f m

Inn

Outn

Inm

Outm

←−
f n

←−
f n→m

Backward Flows

←−
fm
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The Abstraction of Data Flow Values

Available Expressions Analysis Live Variables Analysis

{e1, e2, e3}

{e1, e2} {e1, e3} {e2, e3}

{e1} {e2} {e3}

∅

∅

{v1} {v2} {v3}

{v1, v2} {v1, v3} {v2, v3}

{v1, v2, v3}

⊑ is ⊆ ⊑ is ⊇

⊓ is ∩ ⊓ is ∪
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The Abstraction of Data Flow Equations

Inn =











BIStart ⊓
←−
f n(Outn) n = Start

(

m∈pred(n)

−→
f m→n(Outm)

)

⊓
←−
fn(Outn) otherwise

Outn =











BIEnd ⊓
−→
f n(Inn) n = End

(

m∈succ(n)

←−
fm→n(Inm)

)

⊓
−→
f n(Inn) otherwise

Essential Abstrations in GCC GCC Resource Center, IIT Bombay



July 09 GDFA: Common Abstractions in Data Flow Analysis 20/37

Iterative Methods of Performing Data Flow Analysis

Successive recomputation after conservative initialization (⊤)

• Round Robin. Repeated traversals over nodes in a fixed order

Termination : After values stabilise

+ Simplest to understand and implement

− May perform unnecessary computations
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• Round Robin. Repeated traversals over nodes in a fixed order

Termination : After values stabilise

+ Simplest to understand and implement

− May perform unnecessary computations

Our examples use
this method.
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Iterative Methods of Performing Data Flow Analysis

Successive recomputation after conservative initialization (⊤)

• Round Robin. Repeated traversals over nodes in a fixed order

Termination : After values stabilise

+ Simplest to understand and implement

− May perform unnecessary computations

Our examples use
this method.

• Work List. Dynamic list of nodes which need recomputation

Termination : When the list becomes empty

+ Demand driven. Avoid unnecessary computations.

− Overheads of maintaining work list.
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Common Form of Flow Functions

fn(X ) = (X − Killn(X )) ∪ Genn(X )

• For General Data Flow Frameworks

Genn(X ) = ConstGenn ∪ DepGenn(X )

Killn(X ) = ConstKilln ∪DepKilln(X )

• For bit vector frameworks

Genn(X ) = ConstGenn ∪ DepGenn(X )

Killn(X ) = ConstKilln ∪DepKilln(X )
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Defining Flow Functions for Bit Vector Frameworks

• Live variables analysis

Entity Manipulation Exposition

ConstGenn Variable Use Upwards

ConstKilln Variable Modification Anywhere

• Available expressions analysis

Entity Manipulation Exposition

Genn Expression Use Downwards

Killn Expression Modification Anywhere
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Implementing Available Expressions Analysis

1. Specifying available expressions analysis

2. Implementing the entry function of available expressions analysis
pass

3. Registering the available expressions analysis pass

3.1 Declaring the pass
3.2 Registering the pass
3.3 Positioning the pass
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Step 1: Specifying Available Expressions Analysis

struct gimple_pfbv_dfa_spec gdfa_ave =

{

entity_expr, /* entity */

ONES, /* top_value */

ZEROS, /* entry_info */

ONES, /* exit_info */

FORWARD, /* traversal_order */

INTERSECTION, /* confluence */

};
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{

entity_expr, /* entity */

ONES, /* top_value */

ZEROS, /* entry_info */

ONES, /* exit_info */

FORWARD, /* traversal_order */

INTERSECTION, /* confluence */

entity_use, /* gen_effect */

down_exp, /* gen_exposition */

entity_mod, /* kill_effect */

any_where, /* kill_exposition */

};
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Step 1: Specifying Available Expressions Analysis
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{

entity_expr, /* entity */

ONES, /* top_value */

ZEROS, /* entry_info */

ONES, /* exit_info */

FORWARD, /* traversal_order */

INTERSECTION, /* confluence */

entity_use, /* gen_effect */

down_exp, /* gen_exposition */

entity_mod, /* kill_effect */

any_where, /* kill_exposition */

global_only, /* preserved_dfi */
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Step 1: Specifying Available Expressions Analysis

struct gimple_pfbv_dfa_spec gdfa_ave =

{

entity_expr, /* entity */

ONES, /* top_value */

ZEROS, /* entry_info */

ONES, /* exit_info */

FORWARD, /* traversal_order */

INTERSECTION, /* confluence */

entity_use, /* gen_effect */

down_exp, /* gen_exposition */

entity_mod, /* kill_effect */

any_where, /* kill_exposition */

global_only, /* preserved_dfi */

identity_forward_edge_flow, /* forward_edge_flow */

stop_flow_along_edge, /* backward_edge_flow */

forward_gen_kill_node_flow, /* forward_node_flow */

stop_flow_along_node /* backward_node_flow */

};
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Step 2: Implementing Available Expressions Analysis Pass

pfbv_dfi ** AV_pfbv_dfi = NULL;

static unsigned int

gimple_pfbv_ave_dfa(void)

{

AV_pfbv_dfi = gdfa_driver(gdfa_ave);

return 0;

}
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Step 3.1: Declaring the Available Expressions Analysis Pass

struct tree_opt_pass pass_gimple_pfbv_ave_dfa =

{

"gdfa_ave", /* name */

NULL, /* gate */

gimple_pfbv_ave_dfa, /* execute */

NULL, /* sub */

NULL, /* next */

0, /* static_pass_number */

0, /* tv_id */

0, /* properties_required */

0, /* properties_provided */

0, /* properties_destroyed */

0, /* todo_flags_start */

0, /* todo_flags_finish */

0 /* letter */

};
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Step 3.2: Registering the Available Expressions Analysis Pass

In file file tree-pass.h

extern struct tree_opt_pass pass_gimple_pfbv_ave_dfa;
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Step 3.3: Positioning the Pass

In function init optimization passes in file passes.c.

NEXT_PASS (pass_build_cfg);

/* Intraprocedural dfa passes begin */

NEXT_PASS (pass_init_gimple_pfbvdfa);

NEXT_PASS (pass_gimple_pfbv_ave_dfa);
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Specifying Live Variables Analysis

• Entity should be entity_var

• ⊤, BIStart and BIEnd should be ZEROS

• Direction should be BACKWARD

• Confluence should be UNION

• Exposition should be up_exp

• Forward edge flow should be stop_flow_along_edge

• Forward node flow should be stop_flow_along_node

• Backward edge flow should be identity_backward_edge_flow

• Backward node flow should be backward_gen_kill_node_flow
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Specification Data Structure

struct gimple_pfbv_dfa_spec

{

entity_name entity;

initial_value top_value_spec;

initial_value entry_info;

initial_value exit_info;

traversal_direction traversal_order;

meet_operation confluence;

};
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Specification Data Structure

struct gimple_pfbv_dfa_spec

{

entity_name entity;

initial_value top_value_spec;

initial_value entry_info;

initial_value exit_info;

traversal_direction traversal_order;

meet_operation confluence;

entity_manipulation gen_effect;

entity_occurrence gen_exposition;

entity_manipulation kill_effect;

entity_occurrence kill_exposition;

};
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Specification Data Structure

struct gimple_pfbv_dfa_spec

{

entity_name entity;

initial_value top_value_spec;

initial_value entry_info;

initial_value exit_info;

traversal_direction traversal_order;

meet_operation confluence;

entity_manipulation gen_effect;

entity_occurrence gen_exposition;

entity_manipulation kill_effect;

entity_occurrence kill_exposition;

dfi_to_be_preserved preserved_dfi;

dfvalue (*forward_edge_flow)(basic_block src, basic_block dest);

dfvalue (*backward_edge_flow)(basic_block src, basic_block dest);

dfvalue (*forward_node_flow)(basic_block bb);

dfvalue (*backward_node_flow)(basic_block bb);

};
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Specification Primitives

Enumerated Type Possible Values

entity_name entity_expr, entity_var, entity_defn

initial_value ONES, ZEROS

traversal_direction FORWARD, BACKWARD, BIDIRECTIONAL

meet_operation UNION, INTERSECTION

entity_manipulation entity_use, entity_mod

entity_occurrence up_exp, down_exp, any_where

dfi_to_be_preserved all, global_only, no_value
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Pre-Defined Edge Flow Functions

• Edge Flow Functions

Edge Flow Function Returned value

identity_forward_edge_flow(src, dest) CURRENT_OUT(src)

identity_backward_edge_flow(src, dest) CURRENT_IN(dest)

stop_flow_along_edge(src, dest) top_value
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Pre-Defined Edge Flow Functions

• Edge Flow Functions

Edge Flow Function Returned value

identity_forward_edge_flow(src, dest) CURRENT_OUT(src)

identity_backward_edge_flow(src, dest) CURRENT_IN(dest)

stop_flow_along_edge(src, dest) top_value

• Node Flow Functions

Node Flow Function Returned value

identity_forward_node_flow(bb) CURRENT_IN(bb)

identity_backward_node_flow(bb) CURRENT_OUT(bb)

stop_flow_along_node(bb) top_value

forward_gen_kill_node_flow(bb)

CURRENT_GEN(bb) ∪
( CURRENT_IN(bb) -
CURRENT_KILL(bb) )

backward_gen_kill_node_flow(bb)

CURRENT_GEN(bb) ∪
( CURRENT_OUT(bb) -
CURRENT_KILL(bb) )
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The Generic Driver for Global Data Flow Analysis

pfbv_dfi ** gdfa_driver(struct gimple_pfbv_dfa_spec dfa_spec)

{ if (find_entity_size(dfa_spec) == 0) return NULL;

initialize_special_values(dfa_spec);

create_dfi_space();

traversal_order = dfa_spec.traversal_order;

confluence = dfa_spec.confluence;

local_dfa(dfa_spec);

forward_edge_flow = dfa_spec.forward_edge_flow;

backward_edge_flow = dfa_spec.backward_edge_flow;

forward_node_flow = dfa_spec.forward_node_flow;

backward_node_flow = dfa_spec.backward_node_flow;

perform_pfbvdfa();

preserve_dfi(dfa_spec.preserved_dfi);

return current_pfbv_dfi;

}
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The Generic Driver for Local Data Flow Analysis

• The Main Difficulty: Interface with the intermediate representation details
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The Generic Driver for Local Data Flow Analysis

• The Main Difficulty: Interface with the intermediate representation details

• State of Art: The user is expected to supply the flow function
implementation
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The Generic Driver for Local Data Flow Analysis

• The Main Difficulty: Interface with the intermediate representation details

• State of Art: The user is expected to supply the flow function
implementation

• Our Key Ideas:

◮ Local data flow analysis is a special case of global data flow analysis
Other than the start and end blocks (≡ statements), every block has
just one predecessor and one successor
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The Generic Driver for Local Data Flow Analysis

• The Main Difficulty: Interface with the intermediate representation details

• State of Art: The user is expected to supply the flow function
implementation

• Our Key Ideas:

◮ Local data flow analysis is a special case of global data flow analysis
Other than the start and end blocks (≡ statements), every block has
just one predecessor and one successor

◮ ConstGenn and ConstKilln are just different names given to particular
sets of entities accumulated by traversing these basic blocks
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The Generic Driver for Local Data Flow Analysis

• Traverse statements in a basic block in appropriate order

Exposition Direction

up_exp backward

down_exp forward

any_where don’t care

• Solve the recurrence

accumulated_entities = (accumulated_entities

− remove_entities)

∪ add_entities
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Example for Available Expressions Analysis

Entity is entity_expr.

Let expr(x) denote the set of all expressions of x

Exposition Manipulation
a = b ∗ c b = b ∗ c

add remove add remove

upwards use

downwards use

upwards modification

downwards modification
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add remove add remove
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Example for Available Expressions Analysis

Entity is entity_expr.

Let expr(x) denote the set of all expressions of x

Exposition Manipulation
a = b ∗ c b = b ∗ c

add remove add remove

upwards use b ∗ c expr(a) b ∗ c expr(b)

downwards use b ∗ c expr(a) ∅ expr(b)

upwards modification expr(a) b ∗ c
expr(b) -
{b ∗ c}

b ∗ c

downwards modification expr(a) b ∗ c expr(b) ∅

Note: In the case of modifications, if we first add then remove the
entities modication, the set difference is not required
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Future Work

Main thrust

• Supporting general data flow frameworks

• Supporting interprocedural analysis
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