
Workshop on Essential Abstractions in GCC

GDFA: Generic Data Flow Analyser for GCC

GCC Resource Center

(www.cse.iitb.ac.in/grc)

Department of Computer Science and Engineering,

Indian Institute of Technology, Bombay

July 2009

July 09 GDFA: Outline 1/37

Outline

• Motivation

• Introduction to data flow analysis
◮ Live variables analysis
◮ Available expressions analysis

• Common abstractions in data flow analysis

• Implementing data flow analysis using gdfa

• Design and Implementation of gdfa

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

Part 1

Introduction to Data Flow Analysis

July 09 GDFA: Introduction to Data Flow Analysis 2/37

Motivation behind gdfa

• Specification Vs. implementation

• Orthogonality of specification of data flow analysis and the process
of performing data flow analysis

• Practical significance of generalizations

• Ease of extending data flow analysers

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

Part 2

Introduction to Data Flow Analysis

July 09 GDFA: Introduction to Data Flow Analysis 3/37

Defining Live Variables Analysis

A variable v is live at a program point p, if some
path from p to program exit contains an r-value oc-
currence of v which is not preceded by an l-value
occurrence of v .

v =a∗b

a=v +2

End

p

Start

v =a∗b

v =a+2

End

p

Start

v = v + 2v =v +2

End

p

Start

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Introduction to Data Flow Analysis 3/37

Defining Live Variables Analysis

A variable v is live at a program point p, if some
path from p to program exit contains an r-value oc-
currence of v which is not preceded by an l-value
occurrence of v .

v is live at p

v =a∗b

a=v +2

End

p

Start

v =a∗b

v =a+2

End

p

Start

v = v + 2v =v +2

End

p

Start

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Introduction to Data Flow Analysis 3/37

Defining Live Variables Analysis

A variable v is live at a program point p, if some
path from p to program exit contains an r-value oc-
currence of v which is not preceded by an l-value
occurrence of v .

v is live at p v is not live at p

v =a∗b

a=v +2

End

p

Start

v =a∗b

v =a+2

End

p

Start

v = v + 2v =v +2

End

p

Start

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Introduction to Data Flow Analysis 3/37

Defining Live Variables Analysis

A variable v is live at a program point p, if some
path from p to program exit contains an r-value oc-
currence of v which is not preceded by an l-value
occurrence of v .

v is live at p v is not live at p v is live at p

v =a∗b

a=v +2

End

p

Start

v =a∗b

v =a+2

End

p

Start

v = v + 2v =v +2

End

p

Start

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Introduction to Data Flow Analysis 3/37

Defining Live Variables Analysis

A variable v is live at a program point p, if some
path from p to program exit contains an r-value oc-
currence of v which is not preceded by an l-value
occurrence of v .

Path based
specification

v is live at p v is not live at p v is live at p

v =a∗b

a=v +2

End

p

Start

v =a∗b

v =a+2

End

p

Start

v = v + 2v =v +2

End

p

Start

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Introduction to Data Flow Analysis 4/37

Defining Data Flow Analysis for Live Variables Analysis

Ini

Geni , Killi

Out i

Inj

Genj , Killj

Out j

Ink = Genk ∪ (Outk − Killk)

Genk , Killk

Outk = Ini ∪ Inj

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Introduction to Data Flow Analysis 4/37

Defining Data Flow Analysis for Live Variables Analysis

Ini

Geni , Killi

Out i

Inj

Genj , Killj

Out j

Ink = Genk ∪ (Outk − Killk)

Genk , Killk

Outk = Ini ∪ Inj

Basic Blocks ≡
Single statements or Maximal groups
of sequentially executed statements

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Introduction to Data Flow Analysis 4/37

Defining Data Flow Analysis for Live Variables Analysis

Ini

Geni , Killi

Out i

Inj

Genj , Killj

Out j

Ink = Genk ∪ (Outk − Killk)

Genk , Killk

Outk = Ini ∪ Inj

Basic Blocks ≡
Single statements or Maximal groups
of sequentially executed statements

Control Transfer

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Introduction to Data Flow Analysis 4/37

Defining Data Flow Analysis for Live Variables Analysis

Ini

Geni , Killi

Out i

Inj

Genj , Killj

Out j

Ink = Genk ∪ (Outk − Killk)

Genk , Killk

Outk = Ini ∪ Inj

Ini

Geni , Killi

Out i

Inj

Genj , Killj

Out j

Ink = Genk ∪ (Outk − Killk)

Genk , Killk

Outk = Ini ∪ Inj

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Introduction to Data Flow Analysis 4/37

Defining Data Flow Analysis for Live Variables Analysis

Ini

Geni , Killi

Out i

Inj

Genj , Killj

Out j

Ink = Genk ∪ (Outk − Killk)

Genk , Killk

Outk = Ini ∪ Inj

Ini

Geni , Killi

Out i

Inj

Genj , Killj

Out j

Ink = Genk ∪ (Outk − Killk)

Genk , Killk

Outk = Ini ∪ Inj

Local Data Flow Properties

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Introduction to Data Flow Analysis 5/37

Local Data Flow Properties for Live Variables Analysis

Genn = { v | variable v is used in basic block n and

is not preceded by a definition of v }
Killn = { v | basic block n contains a definition of v }

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Introduction to Data Flow Analysis 5/37

Local Data Flow Properties for Live Variables Analysis

Genn = { v | variable v is used in basic block n and

is not preceded by a definition of v }
Killn = { v | basic block n contains a definition of v }

r-value occurrence

Value is only read, e.g. x,y,z in

x.sum = y.data + z.data

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Introduction to Data Flow Analysis 5/37

Local Data Flow Properties for Live Variables Analysis

Genn = { v | variable v is used in basic block n and

is not preceded by a definition of v }
Killn = { v | basic block n contains a definition of v }

r-value occurrence

Value is only read, e.g. x,y,z in

x.sum = y.data + z.data

l-value occurrence

Value is modified e.g. y in

y = x.lptr

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Introduction to Data Flow Analysis 5/37

Local Data Flow Properties for Live Variables Analysis

Genn = { v | variable v is used in basic block n and

is not preceded by a definition of v }
Killn = { v | basic block n contains a definition of v }

r-value occurrence

Value is only read, e.g. x,y,z in

x.sum = y.data + z.data

l-value occurrence

Value is modified e.g. y in

y = x.lptr

within n

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Introduction to Data Flow Analysis 5/37

Local Data Flow Properties for Live Variables Analysis

Genn = { v | variable v is used in basic block n and

is not preceded by a definition of v }
Killn = { v | basic block n contains a definition of v }

r-value occurrence

Value is only read, e.g. x,y,z in

x.sum = y.data + z.data

l-value occurrence

Value is modified e.g. y in

y = x.lptr

within n

anywhere in n

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Introduction to Data Flow Analysis 6/37

Defining Data Flow Analysis for Live Variables Analysis

Ini

Geni , Killi

Out i

Inj

Genj , Killj

Out j

Ink = Genk ∪ (Outk − Killk)

Genk , Killk

Outk = Ini ∪ Inj

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Introduction to Data Flow Analysis 6/37

Defining Data Flow Analysis for Live Variables Analysis

Ini

Geni , Killi

Out i

Inj

Genj , Killj

Out j

Ink = Genk ∪ (Outk − Killk)

Genk , Killk

Outk = Ini ∪ Inj

Global Data Flow Properties

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Introduction to Data Flow Analysis 6/37

Defining Data Flow Analysis for Live Variables Analysis

Ini

Geni , Killi

Out i

Inj

Genj , Killj

Out j

Ink = Genk ∪ (Outk − Killk)

Genk , Killk

Outk = Ini ∪ Inj

Global Data Flow Properties
Edge based

specifications

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Introduction to Data Flow Analysis 7/37

Data Flow Equations For Live Variables Analysis

Inn = (Outn − Killn) ∪ Genn

Outn =







BI n is End block
⋃

s∈succ(n)

Ins otherwise

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Introduction to Data Flow Analysis 7/37

Data Flow Equations For Live Variables Analysis

Inn = (Outn − Killn) ∪ Genn

Outn =







BI n is End block
⋃

s∈succ(n)

Ins otherwise

Inn and Outn are sets of variables.

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Introduction to Data Flow Analysis 8/37

Performing Live Variables Analysis

Gen ={x}, Kill ={w}

w = x

Gen ={x}, Kill =∅

while (x.data < max)

Gen={x}, Kill ={x}
x = x.rptr

Gen={x}, Kill ={y}
y = x.lptr

Gen=∅, Kill ={z}

z = New class of z

Gen ={y}, Kill ={y}
y = y.lptr

Gen ={x , y , z}, Kill =∅

z.sum = x.data + y.data

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Introduction to Data Flow Analysis 8/37

Performing Live Variables Analysis

Gen ={x}, Kill ={w}

w = x

Gen ={x}, Kill =∅

while (x.data < max)

Gen={x}, Kill ={x}
x = x.rptr

Gen={x}, Kill ={y}
y = x.lptr

Gen=∅, Kill ={z}

z = New class of z

Gen ={y}, Kill ={y}
y = y.lptr

Gen ={x , y , z}, Kill =∅

z.sum = x.data + y.data

Gen and Kill need not be
mutually exclusive

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Introduction to Data Flow Analysis 8/37

Performing Live Variables Analysis

Gen ={x}, Kill ={w}

w = x

Gen ={x}, Kill =∅

while (x.data < max)

Gen={x}, Kill ={x}
x = x.rptr

Gen={x}, Kill ={y}
y = x.lptr

Gen=∅, Kill ={z}

z = New class of z

Gen ={y}, Kill ={y}
y = y.lptr

Gen ={x , y , z}, Kill =∅

z.sum = x.data + y.data

z is an r-value occurrence and
not an l-value occurrence

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Introduction to Data Flow Analysis 8/37

Performing Live Variables Analysis

Gen ={x}, Kill ={w}

w = x

Gen ={x}, Kill =∅

while (x.data < max)

Gen={x}, Kill ={x}
x = x.rptr

Gen={x}, Kill ={y}
y = x.lptr

Gen=∅, Kill ={z}

z = New class of z

Gen ={y}, Kill ={y}
y = y.lptr

Gen ={x , y , z}, Kill =∅

z.sum = x.data + y.data

x , y , z are considered to be used
based purely on local use even if
the value of z is not use later. A
different analysis called faint vari-
ables analysis improves on this.

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Introduction to Data Flow Analysis 8/37

Performing Live Variables Analysis

Gen ={x}, Kill ={w}

w = x

Gen ={x}, Kill =∅

while (x.data < max)

Gen={x}, Kill ={x}
x = x.rptr

Gen={x}, Kill ={y}
y = x.lptr

Gen=∅, Kill ={z}

z = New class of z

Gen ={y}, Kill ={y}
y = y.lptr

Gen ={x , y , z}, Kill =∅

z.sum = x.data + y.data Initialization
∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Introduction to Data Flow Analysis 8/37

Performing Live Variables Analysis

Gen ={x}, Kill ={w}

w = x

Gen ={x}, Kill =∅

while (x.data < max)

Gen={x}, Kill ={x}
x = x.rptr

Gen={x}, Kill ={y}
y = x.lptr

Gen=∅, Kill ={z}

z = New class of z

Gen ={y}, Kill ={y}
y = y.lptr

Gen ={x , y , z}, Kill =∅

z.sum = x.data + y.data∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

Traversal

Iteration #1
{x , y , z}

{x , y , z}

{x , y , z}

{x , y , z}

{x , y}

{x , y}

{x}

∅

{x}

{x}

{x}

{x}

{x}
Ignoring max be-
cause we are doing
analysis for pointer
variables w, x, y, z

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Introduction to Data Flow Analysis 8/37

Performing Live Variables Analysis

Gen ={x}, Kill ={w}

w = x

Gen ={x}, Kill =∅

while (x.data < max)

Gen={x}, Kill ={x}
x = x.rptr

Gen={x}, Kill ={y}
y = x.lptr

Gen=∅, Kill ={z}

z = New class of z

Gen ={y}, Kill ={y}
y = y.lptr

Gen ={x , y , z}, Kill =∅

z.sum = x.data + y.data∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

Traversal

Iteration #1
{x , y , z}

{x , y , z}

{x , y , z}

{x , y , z}

{x , y}

{x , y}

{x}

∅

{x}

{x}

{x}

{x}

{x}
Ignoring max be-
cause we are doing
analysis for pointer
variables w, x, y, z

Iteration #2
∅

{x , y , z}

{x , y , z}

{x , y , z}

{x , y , z}

{x , y}

{x , y}

{x}

{x}

{x}

{x}

{x}

{x}

{x}

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Introduction to Data Flow Analysis 9/37

Performing Live Variables Analysis

Gen ={x}, Kill ={w}

w = x

Gen ={x}, Kill =∅
while (x.data < max)

Gen={x}, Kill ={x}

x = x.rptr
Gen={x}, Kill ={y , z}

y = x.lptr
z = New class of z

y = y.lptr
z.sum = x.data + y.data

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Introduction to Data Flow Analysis 10/37

Using Data Flow Information of Live Variables Analysis

• Used for register allocation.
If variable x is live in a basic block b, it is a potential candidate for
register allocation.

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Introduction to Data Flow Analysis 10/37

Using Data Flow Information of Live Variables Analysis

• Used for register allocation.
If variable x is live in a basic block b, it is a potential candidate for
register allocation.

• Used for dead code elimination.
If variable x is not live after an assignment x = . . ., then the
assginment is redundant and can be deleted as dead code.

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Introduction to Data Flow Analysis 11/37

Defining Available Expressions Analysis

An expression e is available at a program point p, if
every path from program entry to p contains an evaluation of e

which is not followed by a definition of any operand of e.

Start

p

End

a ∗ b

a ∗ b

a ∗ b

Start Start

p

End

a ∗ b

a ∗ b

a ∗ b

a =

Start Start

p

End

a ∗ b

a ∗ b

Start

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Introduction to Data Flow Analysis 11/37

Defining Available Expressions Analysis

An expression e is available at a program point p, if
every path from program entry to p contains an evaluation of e

which is not followed by a definition of any operand of e.

a ∗ b is
available at p

Start

p

End

a ∗ b

a ∗ b

a ∗ b

Start Start

p

End

a ∗ b

a ∗ b

a ∗ b

a =

Start Start

p

End

a ∗ b

a ∗ b

Start

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Introduction to Data Flow Analysis 11/37

Defining Available Expressions Analysis

An expression e is available at a program point p, if
every path from program entry to p contains an evaluation of e

which is not followed by a definition of any operand of e.

a ∗ b is
available at p

a ∗ b is not
available at p

Start

p

End

a ∗ b

a ∗ b

a ∗ b

Start Start

p

End

a ∗ b

a ∗ b

a ∗ b

a =

Start Start

p

End

a ∗ b

a ∗ b

Start

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Introduction to Data Flow Analysis 11/37

Defining Available Expressions Analysis

An expression e is available at a program point p, if
every path from program entry to p contains an evaluation of e

which is not followed by a definition of any operand of e.

a ∗ b is
available at p

a ∗ b is not
available at p

a ∗ b is not
available at p

Start

p

End

a ∗ b

a ∗ b

a ∗ b

Start Start

p

End

a ∗ b

a ∗ b

a ∗ b

a =

Start Start

p

End

a ∗ b

a ∗ b

Start

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Introduction to Data Flow Analysis 12/37

Local Data Flow Properties for Available Expressions
Analysis

Genn = { e | expression e is evaluated in basic block n and
this evaluation is not followed by a definition of
any operand of e}

Killn = { e | basic block n contains a definition of an operand of e}

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Introduction to Data Flow Analysis 13/37

Data Flow Equations For Available Expressions Analysis

Inn =







BIn is Start block
⋂

p∈pred(n)

Outp otherwise

Outn = Genn ∪ (Inn − Killn)

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Introduction to Data Flow Analysis 13/37

Data Flow Equations For Available Expressions Analysis

Inn =







BIn is Start block
⋂

p∈pred(n)

Outp otherwise

Outn = Genn ∪ (Inn − Killn)

Alternatively,
Outn = fn(Inn), where

fn(X) = Genn ∪ (X − Killn)

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Introduction to Data Flow Analysis 13/37

Data Flow Equations For Available Expressions Analysis

Inn =







BIn is Start block
⋂

p∈pred(n)

Outp otherwise

Outn = Genn ∪ (Inn − Killn)

Alternatively,
Outn = fn(Inn), where

fn(X) = Genn ∪ (X − Killn)

Inn and Outn are sets of expressions.

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Introduction to Data Flow Analysis 14/37

Using Data Flow Information of Available Expressions
Analysis

• Used for common subsexpression elimination.

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Introduction to Data Flow Analysis 14/37

Using Data Flow Information of Available Expressions
Analysis

• Used for common subsexpression elimination.

◮ If an expression is available at the entry of a block b and

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Introduction to Data Flow Analysis 14/37

Using Data Flow Information of Available Expressions
Analysis

• Used for common subsexpression elimination.

◮ If an expression is available at the entry of a block b and
◮ a computation of the expression exists in b such that

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Introduction to Data Flow Analysis 14/37

Using Data Flow Information of Available Expressions
Analysis

• Used for common subsexpression elimination.

◮ If an expression is available at the entry of a block b and
◮ a computation of the expression exists in b such that
◮ it is not preceded by a definition of any of its operands

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Introduction to Data Flow Analysis 14/37

Using Data Flow Information of Available Expressions
Analysis

• Used for common subsexpression elimination.

◮ If an expression is available at the entry of a block b and
◮ a computation of the expression exists in b such that
◮ it is not preceded by a definition of any of its operands

Then the expression is redundant.

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Introduction to Data Flow Analysis 14/37

Using Data Flow Information of Available Expressions
Analysis

• Used for common subsexpression elimination.

◮ If an expression is available at the entry of a block b and
◮ a computation of the expression exists in b such that
◮ it is not preceded by a definition of any of its operands

Then the expression is redundant.

• Expression must be upwards exposed or locally anticipable.

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Introduction to Data Flow Analysis 14/37

Using Data Flow Information of Available Expressions
Analysis

• Used for common subsexpression elimination.

◮ If an expression is available at the entry of a block b and
◮ a computation of the expression exists in b such that
◮ it is not preceded by a definition of any of its operands

Then the expression is redundant.

• Expression must be upwards exposed or locally anticipable.

• Expressions in Genn are downwards exposed.

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

Part 3

Common Abstractions in Data Flow Analysis

July 09 GDFA: Common Abstractions in Data Flow Analysis 15/37

Common Form of Data Flow Equations

Xi = f (Yi)

Yi = ⊓ Xj

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Common Abstractions in Data Flow Analysis 15/37

Common Form of Data Flow Equations

Xi = f (Yi)

Yi = ⊓ Xj

Data Flow Information
So far we have seen sets (or bit vectors).
Could be entities other than sets for
non-bit vector frameworks.

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Common Abstractions in Data Flow Analysis 15/37

Common Form of Data Flow Equations

Xi = f (Yi)

Yi = ⊓ Xj

Data Flow Information
So far we have seen sets (or bit vectors).
Could be entities other than sets for
non-bit vector frameworks.

Flow Function

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Common Abstractions in Data Flow Analysis 15/37

Common Form of Data Flow Equations

Xi = f (Yi)

Yi = ⊓ Xj

Data Flow Information
So far we have seen sets (or bit vectors).
Could be entities other than sets for
non-bit vector frameworks.

Flow Function

Confluence
So far we have seen ∪ and ∩.
Could be other operations for non-bit
vector frameworks.

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Common Abstractions in Data Flow Analysis 16/37

A Taxonomy of Bit Vector Data Flow Frameworks

Confluence
Union Intersection

Forward Reaching Definitions Available Expressions
Backward Live Variables Anticipable Exressions
Bidirectional Partial Redundancy Elimination
(limited) (Original M-R Formulation)

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Common Abstractions in Data Flow Analysis 16/37

A Taxonomy of Bit Vector Data Flow Frameworks

Confluence
Union Intersection

Forward Reaching Definitions Available Expressions
Backward Live Variables Anticipable Exressions
Bidirectional Partial Redundancy Elimination
(limited) (Original M-R Formulation)

Any Path

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Common Abstractions in Data Flow Analysis 16/37

A Taxonomy of Bit Vector Data Flow Frameworks

Confluence
Union Intersection

Forward Reaching Definitions Available Expressions
Backward Live Variables Anticipable Exressions
Bidirectional Partial Redundancy Elimination
(limited) (Original M-R Formulation)

Any Path

All Paths

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Common Abstractions in Data Flow Analysis 16/37

A Taxonomy of Bit Vector Data Flow Frameworks

Confluence
Union Intersection

Forward Reaching Definitions Available Expressions
Backward Live Variables Anticipable Exressions
Bidirectional Partial Redundancy Elimination
(limited) (Original M-R Formulation)

Any Path

All Paths

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Common Abstractions in Data Flow Analysis 16/37

A Taxonomy of Bit Vector Data Flow Frameworks

Confluence
Union Intersection

Forward Reaching Definitions Available Expressions
Backward Live Variables Anticipable Exressions
Bidirectional Partial Redundancy Elimination
(limited) (Original M-R Formulation)

Any Path

All Paths

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Common Abstractions in Data Flow Analysis 16/37

A Taxonomy of Bit Vector Data Flow Frameworks

Confluence
Union Intersection

Forward Reaching Definitions Available Expressions
Backward Live Variables Anticipable Exressions
Bidirectional Partial Redundancy Elimination
(limited) (Original M-R Formulation)

Any Path

All Paths

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Common Abstractions in Data Flow Analysis 17/37

The Abstraction of Flow Functions

n

m

Inn

Outn

Inm

Outm

−→
f n

−→
f n→m

Forward Flows

−→
f m

Inn

Outn

Inm

Outm

←−
f n

←−
f n→m

Backward Flows

←−
fm

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Common Abstractions in Data Flow Analysis 18/37

The Abstraction of Data Flow Values

Available Expressions Analysis Live Variables Analysis

{e1, e2, e3}

{e1, e2} {e1, e3} {e2, e3}

{e1} {e2} {e3}

∅

∅

{v1} {v2} {v3}

{v1, v2} {v1, v3} {v2, v3}

{v1, v2, v3}

⊑ is ⊆ ⊑ is ⊇

⊓ is ∩ ⊓ is ∪

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Common Abstractions in Data Flow Analysis 19/37

The Abstraction of Data Flow Equations

Inn =











BIStart ⊓
←−
f n(Outn) n = Start

(

m∈pred(n)

−→
f m→n(Outm)

)

⊓
←−
fn(Outn) otherwise

Outn =











BIEnd ⊓
−→
f n(Inn) n = End

(

m∈succ(n)

←−
fm→n(Inm)

)

⊓
−→
f n(Inn) otherwise

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Common Abstractions in Data Flow Analysis 20/37

Iterative Methods of Performing Data Flow Analysis

Successive recomputation after conservative initialization (⊤)

• Round Robin. Repeated traversals over nodes in a fixed order

Termination : After values stabilise

+ Simplest to understand and implement

− May perform unnecessary computations

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Common Abstractions in Data Flow Analysis 20/37

Iterative Methods of Performing Data Flow Analysis

Successive recomputation after conservative initialization (⊤)

• Round Robin. Repeated traversals over nodes in a fixed order

Termination : After values stabilise

+ Simplest to understand and implement

− May perform unnecessary computations

Our examples use
this method.

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Common Abstractions in Data Flow Analysis 20/37

Iterative Methods of Performing Data Flow Analysis

Successive recomputation after conservative initialization (⊤)

• Round Robin. Repeated traversals over nodes in a fixed order

Termination : After values stabilise

+ Simplest to understand and implement

− May perform unnecessary computations

Our examples use
this method.

• Work List. Dynamic list of nodes which need recomputation

Termination : When the list becomes empty

+ Demand driven. Avoid unnecessary computations.

− Overheads of maintaining work list.

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Common Abstractions in Data Flow Analysis 21/37

Common Form of Flow Functions

fn(X) = (X − Killn(X)) ∪ Genn(X)

• For General Data Flow Frameworks

Genn(X) = ConstGenn ∪ DepGenn(X)

Killn(X) = ConstKilln ∪DepKilln(X)

• For bit vector frameworks

Genn(X) = ConstGenn ∪ DepGenn(X)

Killn(X) = ConstKilln ∪DepKilln(X)

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Common Abstractions in Data Flow Analysis 22/37

Defining Flow Functions for Bit Vector Frameworks

• Live variables analysis

Entity Manipulation Exposition

ConstGenn Variable Use Upwards

ConstKilln Variable Modification Anywhere

• Available expressions analysis

Entity Manipulation Exposition

Genn Expression Use Downwards

Killn Expression Modification Anywhere

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

Part 5

Implementing Data Flow Analysis using gdfa

July 09 GDFA: Implementing Data Flow Analysis using gdfa 23/37

Implementing Available Expressions Analysis

1. Specifying available expressions analysis

2. Implementing the entry function of available expressions analysis
pass

3. Registering the available expressions analysis pass

3.1 Declaring the pass
3.2 Registering the pass
3.3 Positioning the pass

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Implementing Data Flow Analysis using gdfa 24/37

Step 1: Specifying Available Expressions Analysis

struct gimple_pfbv_dfa_spec gdfa_ave =

{

entity_expr, /* entity */

ONES, /* top_value */

ZEROS, /* entry_info */

ONES, /* exit_info */

FORWARD, /* traversal_order */

INTERSECTION, /* confluence */

};

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Implementing Data Flow Analysis using gdfa 24/37

Step 1: Specifying Available Expressions Analysis

struct gimple_pfbv_dfa_spec gdfa_ave =

{

entity_expr, /* entity */

ONES, /* top_value */

ZEROS, /* entry_info */

ONES, /* exit_info */

FORWARD, /* traversal_order */

INTERSECTION, /* confluence */

entity_use, /* gen_effect */

down_exp, /* gen_exposition */

entity_mod, /* kill_effect */

any_where, /* kill_exposition */

};

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Implementing Data Flow Analysis using gdfa 24/37

Step 1: Specifying Available Expressions Analysis

struct gimple_pfbv_dfa_spec gdfa_ave =

{

entity_expr, /* entity */

ONES, /* top_value */

ZEROS, /* entry_info */

ONES, /* exit_info */

FORWARD, /* traversal_order */

INTERSECTION, /* confluence */

entity_use, /* gen_effect */

down_exp, /* gen_exposition */

entity_mod, /* kill_effect */

any_where, /* kill_exposition */

global_only, /* preserved_dfi */

};

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Implementing Data Flow Analysis using gdfa 24/37

Step 1: Specifying Available Expressions Analysis

struct gimple_pfbv_dfa_spec gdfa_ave =

{

entity_expr, /* entity */

ONES, /* top_value */

ZEROS, /* entry_info */

ONES, /* exit_info */

FORWARD, /* traversal_order */

INTERSECTION, /* confluence */

entity_use, /* gen_effect */

down_exp, /* gen_exposition */

entity_mod, /* kill_effect */

any_where, /* kill_exposition */

global_only, /* preserved_dfi */

identity_forward_edge_flow, /* forward_edge_flow */

stop_flow_along_edge, /* backward_edge_flow */

forward_gen_kill_node_flow, /* forward_node_flow */

stop_flow_along_node /* backward_node_flow */

};

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Implementing Data Flow Analysis using gdfa 25/37

Step 2: Implementing Available Expressions Analysis Pass

pfbv_dfi ** AV_pfbv_dfi = NULL;

static unsigned int

gimple_pfbv_ave_dfa(void)

{

AV_pfbv_dfi = gdfa_driver(gdfa_ave);

return 0;

}

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Implementing Data Flow Analysis using gdfa 26/37

Step 3.1: Declaring the Available Expressions Analysis Pass

struct tree_opt_pass pass_gimple_pfbv_ave_dfa =

{

"gdfa_ave", /* name */

NULL, /* gate */

gimple_pfbv_ave_dfa, /* execute */

NULL, /* sub */

NULL, /* next */

0, /* static_pass_number */

0, /* tv_id */

0, /* properties_required */

0, /* properties_provided */

0, /* properties_destroyed */

0, /* todo_flags_start */

0, /* todo_flags_finish */

0 /* letter */

};

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Implementing Data Flow Analysis using gdfa 27/37

Step 3.2: Registering the Available Expressions Analysis Pass

In file file tree-pass.h

extern struct tree_opt_pass pass_gimple_pfbv_ave_dfa;

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Implementing Data Flow Analysis using gdfa 28/37

Step 3.3: Positioning the Pass

In function init optimization passes in file passes.c.

NEXT_PASS (pass_build_cfg);

/* Intraprocedural dfa passes begin */

NEXT_PASS (pass_init_gimple_pfbvdfa);

NEXT_PASS (pass_gimple_pfbv_ave_dfa);

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Implementing Data Flow Analysis using gdfa 29/37

Specifying Live Variables Analysis

• Entity should be entity_var

• ⊤, BIStart and BIEnd should be ZEROS

• Direction should be BACKWARD

• Confluence should be UNION

• Exposition should be up_exp

• Forward edge flow should be stop_flow_along_edge

• Forward node flow should be stop_flow_along_node

• Backward edge flow should be identity_backward_edge_flow

• Backward node flow should be backward_gen_kill_node_flow

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

Part 7

gdfa: Design and Implementation

July 09 GDFA: gdfa: Design and Implementation 30/37

Specification Data Structure

struct gimple_pfbv_dfa_spec

{

entity_name entity;

initial_value top_value_spec;

initial_value entry_info;

initial_value exit_info;

traversal_direction traversal_order;

meet_operation confluence;

};

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: gdfa: Design and Implementation 30/37

Specification Data Structure

struct gimple_pfbv_dfa_spec

{

entity_name entity;

initial_value top_value_spec;

initial_value entry_info;

initial_value exit_info;

traversal_direction traversal_order;

meet_operation confluence;

entity_manipulation gen_effect;

entity_occurrence gen_exposition;

entity_manipulation kill_effect;

entity_occurrence kill_exposition;

};

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: gdfa: Design and Implementation 30/37

Specification Data Structure

struct gimple_pfbv_dfa_spec

{

entity_name entity;

initial_value top_value_spec;

initial_value entry_info;

initial_value exit_info;

traversal_direction traversal_order;

meet_operation confluence;

entity_manipulation gen_effect;

entity_occurrence gen_exposition;

entity_manipulation kill_effect;

entity_occurrence kill_exposition;

dfi_to_be_preserved preserved_dfi;

dfvalue (*forward_edge_flow)(basic_block src, basic_block dest);

dfvalue (*backward_edge_flow)(basic_block src, basic_block dest);

dfvalue (*forward_node_flow)(basic_block bb);

dfvalue (*backward_node_flow)(basic_block bb);

};

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: gdfa: Design and Implementation 31/37

Specification Primitives

Enumerated Type Possible Values

entity_name entity_expr, entity_var, entity_defn

initial_value ONES, ZEROS

traversal_direction FORWARD, BACKWARD, BIDIRECTIONAL

meet_operation UNION, INTERSECTION

entity_manipulation entity_use, entity_mod

entity_occurrence up_exp, down_exp, any_where

dfi_to_be_preserved all, global_only, no_value

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: gdfa: Design and Implementation 32/37

Pre-Defined Edge Flow Functions

• Edge Flow Functions

Edge Flow Function Returned value

identity_forward_edge_flow(src, dest) CURRENT_OUT(src)

identity_backward_edge_flow(src, dest) CURRENT_IN(dest)

stop_flow_along_edge(src, dest) top_value

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: gdfa: Design and Implementation 32/37

Pre-Defined Edge Flow Functions

• Edge Flow Functions

Edge Flow Function Returned value

identity_forward_edge_flow(src, dest) CURRENT_OUT(src)

identity_backward_edge_flow(src, dest) CURRENT_IN(dest)

stop_flow_along_edge(src, dest) top_value

• Node Flow Functions

Node Flow Function Returned value

identity_forward_node_flow(bb) CURRENT_IN(bb)

identity_backward_node_flow(bb) CURRENT_OUT(bb)

stop_flow_along_node(bb) top_value

forward_gen_kill_node_flow(bb)

CURRENT_GEN(bb) ∪
(CURRENT_IN(bb) -
CURRENT_KILL(bb))

backward_gen_kill_node_flow(bb)

CURRENT_GEN(bb) ∪
(CURRENT_OUT(bb) -
CURRENT_KILL(bb))

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: gdfa: Design and Implementation 33/37

The Generic Driver for Global Data Flow Analysis

pfbv_dfi ** gdfa_driver(struct gimple_pfbv_dfa_spec dfa_spec)

{ if (find_entity_size(dfa_spec) == 0) return NULL;

initialize_special_values(dfa_spec);

create_dfi_space();

traversal_order = dfa_spec.traversal_order;

confluence = dfa_spec.confluence;

local_dfa(dfa_spec);

forward_edge_flow = dfa_spec.forward_edge_flow;

backward_edge_flow = dfa_spec.backward_edge_flow;

forward_node_flow = dfa_spec.forward_node_flow;

backward_node_flow = dfa_spec.backward_node_flow;

perform_pfbvdfa();

preserve_dfi(dfa_spec.preserved_dfi);

return current_pfbv_dfi;

}

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: gdfa: Design and Implementation 34/37

The Generic Driver for Local Data Flow Analysis

• The Main Difficulty: Interface with the intermediate representation details

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: gdfa: Design and Implementation 34/37

The Generic Driver for Local Data Flow Analysis

• The Main Difficulty: Interface with the intermediate representation details

• State of Art: The user is expected to supply the flow function
implementation

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: gdfa: Design and Implementation 34/37

The Generic Driver for Local Data Flow Analysis

• The Main Difficulty: Interface with the intermediate representation details

• State of Art: The user is expected to supply the flow function
implementation

• Our Key Ideas:

◮ Local data flow analysis is a special case of global data flow analysis
Other than the start and end blocks (≡ statements), every block has
just one predecessor and one successor

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: gdfa: Design and Implementation 34/37

The Generic Driver for Local Data Flow Analysis

• The Main Difficulty: Interface with the intermediate representation details

• State of Art: The user is expected to supply the flow function
implementation

• Our Key Ideas:

◮ Local data flow analysis is a special case of global data flow analysis
Other than the start and end blocks (≡ statements), every block has
just one predecessor and one successor

◮ ConstGenn and ConstKilln are just different names given to particular
sets of entities accumulated by traversing these basic blocks

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: gdfa: Design and Implementation 35/37

The Generic Driver for Local Data Flow Analysis

• Traverse statements in a basic block in appropriate order

Exposition Direction

up_exp backward

down_exp forward

any_where don’t care

• Solve the recurrence

accumulated_entities = (accumulated_entities

− remove_entities)

∪ add_entities

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: gdfa: Design and Implementation 36/37

Example for Available Expressions Analysis

Entity is entity_expr.

Let expr(x) denote the set of all expressions of x

Exposition Manipulation
a = b ∗ c b = b ∗ c

add remove add remove

upwards use

downwards use

upwards modification

downwards modification

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: gdfa: Design and Implementation 36/37

Example for Available Expressions Analysis

Entity is entity_expr.

Let expr(x) denote the set of all expressions of x

Exposition Manipulation
a = b ∗ c b = b ∗ c

add remove add remove

upwards use b ∗ c

downwards use

upwards modification

downwards modification

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: gdfa: Design and Implementation 36/37

Example for Available Expressions Analysis

Entity is entity_expr.

Let expr(x) denote the set of all expressions of x

Exposition Manipulation
a = b ∗ c b = b ∗ c

add remove add remove

upwards use b ∗ c expr(a)

downwards use

upwards modification

downwards modification

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: gdfa: Design and Implementation 36/37

Example for Available Expressions Analysis

Entity is entity_expr.

Let expr(x) denote the set of all expressions of x

Exposition Manipulation
a = b ∗ c b = b ∗ c

add remove add remove

upwards use b ∗ c expr(a) b ∗ c

downwards use

upwards modification

downwards modification

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: gdfa: Design and Implementation 36/37

Example for Available Expressions Analysis

Entity is entity_expr.

Let expr(x) denote the set of all expressions of x

Exposition Manipulation
a = b ∗ c b = b ∗ c

add remove add remove

upwards use b ∗ c expr(a) b ∗ c expr(b)

downwards use

upwards modification

downwards modification

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: gdfa: Design and Implementation 36/37

Example for Available Expressions Analysis

Entity is entity_expr.

Let expr(x) denote the set of all expressions of x

Exposition Manipulation
a = b ∗ c b = b ∗ c

add remove add remove

upwards use b ∗ c expr(a) b ∗ c expr(b)

downwards use b ∗ c

upwards modification

downwards modification

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: gdfa: Design and Implementation 36/37

Example for Available Expressions Analysis

Entity is entity_expr.

Let expr(x) denote the set of all expressions of x

Exposition Manipulation
a = b ∗ c b = b ∗ c

add remove add remove

upwards use b ∗ c expr(a) b ∗ c expr(b)

downwards use b ∗ c expr(a)

upwards modification

downwards modification

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: gdfa: Design and Implementation 36/37

Example for Available Expressions Analysis

Entity is entity_expr.

Let expr(x) denote the set of all expressions of x

Exposition Manipulation
a = b ∗ c b = b ∗ c

add remove add remove

upwards use b ∗ c expr(a) b ∗ c expr(b)

downwards use b ∗ c expr(a) ∅

upwards modification

downwards modification

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: gdfa: Design and Implementation 36/37

Example for Available Expressions Analysis

Entity is entity_expr.

Let expr(x) denote the set of all expressions of x

Exposition Manipulation
a = b ∗ c b = b ∗ c

add remove add remove

upwards use b ∗ c expr(a) b ∗ c expr(b)

downwards use b ∗ c expr(a) ∅ expr(b)

upwards modification

downwards modification

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: gdfa: Design and Implementation 36/37

Example for Available Expressions Analysis

Entity is entity_expr.

Let expr(x) denote the set of all expressions of x

Exposition Manipulation
a = b ∗ c b = b ∗ c

add remove add remove

upwards use b ∗ c expr(a) b ∗ c expr(b)

downwards use b ∗ c expr(a) ∅ expr(b)

upwards modification expr(a)

downwards modification

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: gdfa: Design and Implementation 36/37

Example for Available Expressions Analysis

Entity is entity_expr.

Let expr(x) denote the set of all expressions of x

Exposition Manipulation
a = b ∗ c b = b ∗ c

add remove add remove

upwards use b ∗ c expr(a) b ∗ c expr(b)

downwards use b ∗ c expr(a) ∅ expr(b)

upwards modification expr(a) b ∗ c

downwards modification

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: gdfa: Design and Implementation 36/37

Example for Available Expressions Analysis

Entity is entity_expr.

Let expr(x) denote the set of all expressions of x

Exposition Manipulation
a = b ∗ c b = b ∗ c

add remove add remove

upwards use b ∗ c expr(a) b ∗ c expr(b)

downwards use b ∗ c expr(a) ∅ expr(b)

upwards modification expr(a) b ∗ c
expr(b) -
{b ∗ c}

downwards modification

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: gdfa: Design and Implementation 36/37

Example for Available Expressions Analysis

Entity is entity_expr.

Let expr(x) denote the set of all expressions of x

Exposition Manipulation
a = b ∗ c b = b ∗ c

add remove add remove

upwards use b ∗ c expr(a) b ∗ c expr(b)

downwards use b ∗ c expr(a) ∅ expr(b)

upwards modification expr(a) b ∗ c
expr(b) -
{b ∗ c}

b ∗ c

downwards modification

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: gdfa: Design and Implementation 36/37

Example for Available Expressions Analysis

Entity is entity_expr.

Let expr(x) denote the set of all expressions of x

Exposition Manipulation
a = b ∗ c b = b ∗ c

add remove add remove

upwards use b ∗ c expr(a) b ∗ c expr(b)

downwards use b ∗ c expr(a) ∅ expr(b)

upwards modification expr(a) b ∗ c
expr(b) -
{b ∗ c}

b ∗ c

downwards modification expr(a)

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: gdfa: Design and Implementation 36/37

Example for Available Expressions Analysis

Entity is entity_expr.

Let expr(x) denote the set of all expressions of x

Exposition Manipulation
a = b ∗ c b = b ∗ c

add remove add remove

upwards use b ∗ c expr(a) b ∗ c expr(b)

downwards use b ∗ c expr(a) ∅ expr(b)

upwards modification expr(a) b ∗ c
expr(b) -
{b ∗ c}

b ∗ c

downwards modification expr(a) b ∗ c

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: gdfa: Design and Implementation 36/37

Example for Available Expressions Analysis

Entity is entity_expr.

Let expr(x) denote the set of all expressions of x

Exposition Manipulation
a = b ∗ c b = b ∗ c

add remove add remove

upwards use b ∗ c expr(a) b ∗ c expr(b)

downwards use b ∗ c expr(a) ∅ expr(b)

upwards modification expr(a) b ∗ c
expr(b) -
{b ∗ c}

b ∗ c

downwards modification expr(a) b ∗ c expr(b)

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: gdfa: Design and Implementation 36/37

Example for Available Expressions Analysis

Entity is entity_expr.

Let expr(x) denote the set of all expressions of x

Exposition Manipulation
a = b ∗ c b = b ∗ c

add remove add remove

upwards use b ∗ c expr(a) b ∗ c expr(b)

downwards use b ∗ c expr(a) ∅ expr(b)

upwards modification expr(a) b ∗ c
expr(b) -
{b ∗ c}

b ∗ c

downwards modification expr(a) b ∗ c expr(b) ∅

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: gdfa: Design and Implementation 36/37

Example for Available Expressions Analysis

Entity is entity_expr.

Let expr(x) denote the set of all expressions of x

Exposition Manipulation
a = b ∗ c b = b ∗ c

add remove add remove

upwards use b ∗ c expr(a) b ∗ c expr(b)

downwards use b ∗ c expr(a) ∅ expr(b)

upwards modification expr(a) b ∗ c
expr(b) -
{b ∗ c}

b ∗ c

downwards modification expr(a) b ∗ c expr(b) ∅

Note: In the case of modifications, if we first add then remove the
entities modication, the set difference is not required

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 GDFA: Future Work 37/37

Future Work

Main thrust

• Supporting general data flow frameworks

• Supporting interprocedural analysis

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

	Outline
	Introduction to Data Flow Analysis
	Introduction to Data Flow Analysis
	Common Abstractions in Data Flow Analysis
	Common Abstractions in Data Flow Analysis
	Implementing Data Flow Analysis using gdfa
	Implementing Data Flow Analysis using gdfa
	gdfa: Design and Implementation
	Future Work

