
Workshop on Essential Abstractions in GCC

Introduction to Gimple IR

GCC Resource Center

(www.cse.iitb.ac.in/grc)

Department of Computer Science and Engineering,

Indian Institute of Technology, Bombay

July 2009

July 09 Gimple IR: Outline 1/27

Outline

• Introduction to Gimple IR

• Adding a pass to GCC

• Working with the Gimple API

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

Part 1

Introduction to GIMPLE

July 09 Gimple IR: Introduction to GIMPLE 2/27

Recall GCC CGF

Language
Specific
Code

Language and
Machine

Independent
Generic Code

Machine
Dependent
Generator

Code

Machine
Descriptions

Compiler Generation Framework

Parser Genericizer Gimplifier
Tree SSA
Optimizer

RTL
Generator

Optimizer
Code

Generator

Generated Compiler (cc1)

Source
Program

Assembly Program

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Introduction to GIMPLE 2/27

Recall GCC CGF

N
o
te

s

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Introduction to GIMPLE 2/27

Recall GCC CGF

Language
Specific
Code

Language and
Machine

Independent
Generic Code

Machine
Dependent
Generator

Code

Machine
Descriptions

Compiler Generation Framework

Parser Genericizer Gimplifier
Tree SSA
Optimizer

RTL
Generator

Optimizer
Code

Generator

Generated Compiler (cc1)

Source
Program

Assembly Program

Input Language Target Name

Selected Copied

Copied
Generated

Generated

Development
Time

Build
Time

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Introduction to GIMPLE 2/27

Recall GCC CGF

N
o
te

s

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Introduction to GIMPLE 3/27

Basics of GIMPLE

• GIMPLE is a language-independent IR for GCC.

• It is based on tree data structure.

• GIMPLE is simple.

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Introduction to GIMPLE 3/27

Basics of GIMPLE

N
o
te

s

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Introduction to GIMPLE 4/27

Motivation behind GIMPLE

• Previously, the only common IR was RTL (Register Transfer
Language)

• Drawbacks of RTL for performing high-level optimizations :

◮ RTL is a low-level IR, works well for optimizations close to machine
(e.g., register allocation)

◮ Some high level information is difficult to extract from RTL (e.g.
array references, data types etc.)

◮ Optimizations involving such higher level information are difficult to
do using RTL.

◮ Introduces stack too soon, even if later optimizations dont demand it.

Notice
Inlining at tree level could partially address the the last limitation of
RTL.

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Introduction to GIMPLE 4/27

Motivation behind GIMPLE

N
o
te

s

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Introduction to GIMPLE 5/27

Why not ASTs for optimization ?

• ASTs contain detailed function information but are not suitable for
optimization because

◮ Lack of a common representation
◮ No single AST shared by all front-ends
◮ So each language would have to have a different implementation of

the same optimizations
◮ Difficult to maintain and upgrade so many optimization frameworks

◮ Structural Complexity
◮ Lots of complexity due to the syntactic constructs of each language

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Introduction to GIMPLE 5/27

Why not ASTs for optimization ?

N
o
te

s

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Introduction to GIMPLE 6/27

Need for a new IR

• In the past, compiler would only build up trees for a single
statement,and then lower them to RTL before moving on to the
next statement.

• For higher level optimizations, entire function needs to be
represented in trees in a language-independent way.

• Result of this effort - GENERIC and GIMPLE

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Introduction to GIMPLE 6/27

Need for a new IR

N
o
te

s

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Introduction to GIMPLE 7/27

What is GENERIC ?

• Language independent IR for a complete function in the form of
trees

• Obtained by removing language specific constructs from ASTs

• All tree codes defined in $(SOURCE)/gcc/tree.def

• Each language frontend may still have its own AST.

• Once parsing is complete they must emit GENERIC

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Introduction to GIMPLE 7/27

What is GENERIC ?

N
o
te

s

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Introduction to GIMPLE 8/27

What is GIMPLE ?

• GIMPLE is influenced by SIMPLE IR of McCat compiler

• But GIMPLE is not same as SIMPLE (Gimple supports GOTO)

• It is a simplified subset of GENERIC

◮ 3 address representation
◮ Control flow lowering
◮ Cleanups and simplification, restricted grammar

• Benefit : Optimizations become easier

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Introduction to GIMPLE 8/27

What is GIMPLE ?

N
o
te

s

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Introduction to GIMPLE 9/27

GIMPLE Phase sequence in cc1 and GCC

Converting GENERIC to GIMPLE

c_genericize() c-gimplify.c

gimplify_function_tree() gimplify.c

gimplify_body() gimplify.c

gimplify_stmt() gimplify.c

gimplify_expr() gimplify.c

lang_hooks.callgraph.expand_function()

tree_rest_of_compilation() tree-optimize.c

tree_register_cfg_hooks() cfghooks.c

execute_pass_list() passes.c

/* TO: Gimple Optimisations passes */

...

NEXT_PASS(pass_lower_cf)

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Introduction to GIMPLE 9/27

GIMPLE Phase sequence in cc1 and GCC

N
o
te

s

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Introduction to GIMPLE 10/27

GIMPLE Goals

The Goals of GIMPLE are

• Lower control flow
Program = sequenced statements + unrestricted jump

• Simplify expressions
Typically: two operand assignments!

• Simplify scope
move local scope to block begin, including temporaries

Notice
Lowered control flow → nearer to register machines + Easier SSA!

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Introduction to GIMPLE 10/27

GIMPLE Goals

N
o
te

s

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Introduction to GIMPLE 11/27

High GIMPLE

• GIMPLE that is not fully lowered.

• Consists of Intermediate Language before the pass pass lower cf.

• Contains some container statements like lexical scopes and nested
expressions.

• High GIMPLE Instruction Set : GIMPLE BIND, GIMPLE CALL,
GIMPLE CATCH, GIMPLE GOTO, GIMPLE EH FILTER,
GIMPLE RETURN, GIMPLE SWITCH, GIMPLE TRY,
GIMPLE ASSIGN

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Introduction to GIMPLE 11/27

High GIMPLE

N
o
te

s

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Introduction to GIMPLE 12/27

Low GIMPLE

• Gimple that is fully lowered after the pass pass lower cf.

• Exposes all of the implicit jumps for control and exception
expressions.

• Low GIMPLE Instruction Set : GIMPLE CALL, GIMPLE GOTO,
GIMPLE RETURN, GIMPLE SWITCH, GIMPLE ASSIGN

• Lowered Instruction Set : GIMPLE BIND, GIMPLE CATCH,
GIMPLE EH FILTER, GIMPLE TRY

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Introduction to GIMPLE 12/27

Low GIMPLE

N
o
te

s

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Introduction to GIMPLE 13/27

Some GIMPLE Node types

Binary Operator MAX EXPR

Comparison EQ EXPR, LT EXPR

Constants INTEGER CST, STRING CST

Declaration FUNCTION DECL, LABEL DECL , VAR DECL

Expression PLUS EXPR, ADDR EXPR

Reference COMPONENT REF, ARRAY RANGE REF

Statement GIMPLE MODIFY STMT, RETURN EXPR, COND EXPR,
INIT EXPR

Type BOOLEAN TYPE, INTEGER TYPE

Unary ABS EXPR, NEGATE EXPR

Tip :

All tree nodes (∼ 152) in GCC are listed in: $(SOURCE)/gcc/tree.def.

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Introduction to GIMPLE 13/27

Some GIMPLE Node types

N
o
te

s

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Introduction to GIMPLE 14/27

Journey through GIMPLE

Generic Code (gimple.c)

int main()

{

int a;

if (a)

{

int b;

b = 2 + a + b;

}

return 0;

}

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Introduction to GIMPLE 14/27

Journey through GIMPLE

N
o
te

s

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Introduction to GIMPLE 15/27

Journey through GIMPLE

High GIMPLE (gimple.c.004t.gimple)

main ()

{

int D.1195;

int D.1196;

int a;

if (a != 0)

{

{

int b;

D.1195 = a + 2;

b = D.1195 + b;

}

}

else

{

}

D.1196 = 0;

return D.1196;

}

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Introduction to GIMPLE 15/27

Journey through GIMPLE

N
o
te

s

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Introduction to GIMPLE 16/27

Journey through GIMPLE

Low GIMPLE (gimple.c.013t.cfg) : Lexical scopes removed

main ()

{

int b;

int a;

int D.1196;

int D.1195;

BLOCK 2

PRED: ENTRY (fallthru)

if (a != 0)

goto <bb 3>;

else

goto <bb 4>;

SUCC: 3 (true) 4 (false)

BLOCK 3

PRED: 2 (true)

D.1195 = a + 2;

b = D.1195 + b;

SUCC: 4 (fallthru)

BLOCK 4

PRED: 2 (false) 3 (fallthru)

D.1196 = 0;

SUCC: 5 (fallthru)

BLOCK 5

PRED: 4 (fallthru)

return D.1196;

SUCC: EXIT

}

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Introduction to GIMPLE 16/27

Journey through GIMPLE

N
o
te

s

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Introduction to GIMPLE 17/27

Important Dump Files

• Compile using ./gcc -fdump-tree-all <file-name >.c

• Examine <file-name >.c.013t.cfg

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Introduction to GIMPLE 17/27

Important Dump Files

N
o
te

s

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Introduction to GIMPLE 18/27

Resolving doubts by inspecting GIMPLE

Inspect GIMPLE when in doubt

int main(void)

{

int x=2,y=3;

x= y++ + ++x + ++y ;

printf("\nx = %d", x);

printf("\ny = %d", y);

return 0;

}

x = 2;

y = 3;

x = x + 1;

D.1572 = y + x;

y = y + 1;

x = D.1572 + y;

y = y + 1;

printf (&"\nx = %d"[0], x);

printf (&"\y = %d"[0], y);

x = 10 , y =5

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Introduction to GIMPLE 18/27

Resolving doubts by inspecting GIMPLE

N
o
te

s

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

Part 2

Adding a Pass to GCC

July 09 Gimple IR: Adding a Pass to GCC 19/27

Adding a Pass on Gimple IR

• Step 0. Write function gccwk09 main() in file gccwk09.c.
• Step 1. Create the following data structure in file gccwk09.c.

struct tree_opt_pass pass_gccwk09 =

{ "gccwk09", /* name */

NULL, /* gate, for conditional entry to this pass */

gccwk09_main, /* execute, main entry point */

NULL, /* sub-passes, depending on the gate predicate */

NULL, /* next sub-passes, independ of the gate predicate */

0, /* static_pass_number , used for dump file name*/

0, /* tv_id */

0, /* properties_required, indicated by bit position */

0, /* properties_provided , indicated by bit position*/

0, /* properties_destroyed , indicated by bit position*/

0, /* todo_flags_start */

0, /* todo_flags_finish */

0 /* letter for RTL dump */

};

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Adding a Pass to GCC 19/27

Adding a Pass on Gimple IR

N
o
te

s

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Adding a Pass to GCC 20/27

Adding a Pass on Gimple IR

• Step 2. Add the following line to tree-pass.h

extern struct tree opt pass pass gccwk09;

• Step 3. Include the following call at an appropriate place in the
function init optimization passes() in the file passes.c

NEXT PASS (pass gccwk09);

• Step 4. Add the file name in the Makefile

◮ Either in $SOURCE/gcc/Makefile.in

Reconfigure and remake
◮ Or in $BUILD/gcc/Makefile

Remake

• Step 5. Build the compiler

• Step 6. Debug using gdb if need arises

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Adding a Pass to GCC 20/27

Adding a Pass on Gimple IR

N
o
te

s

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

Part 3

Working with the GIMPLE API

July 09 Gimple IR: Working with the GIMPLE API 21/27

GIMPLE Statements

• GIMPLE Statements are nodes of type tree

• Every basic block contains a doubly linked-list of statements

• Processing of statements can be done through iterators

block_statement_iterator bsi;

basic_block bb;

FOR_EACH_BB (bb)

Basic Block Iterator

for (bsi =bsi_start(bb); !bsi_end_p(bsi); bsi_next(&bsi))

Block Statement Iterator

print_generic_stmt (stderr, bsi_stmt(bsi), 0);

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Working with the GIMPLE API 21/27

GIMPLE Statements

N
o
te

s

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Working with the GIMPLE API 22/27

A simple application

Counting the number of assignment statements in GIMPLE

#include <stdio.h>

int m,q,p;

int main(void)

{

int x,y,z,w;

x = y + 5;

z = x * m;

p = m + q + w ;

return 0;

}

x = y + 5;

m.0 = m;

z = x * m.0;

m.1 = m;

q.2 = q;

D.1580 = m.1 + q.2;

p.3 = D.1580 + w;

p = p.3;

D.1582 = 0;

return D.1582;

The statements in blue are the assignments corresponding to the source.

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Working with the GIMPLE API 22/27

A simple application

N
o
te

s

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Working with the GIMPLE API 23/27

A simple application

Counting the number of assignment statements in GIMPLE

struct tree_opt_pass pass_gccwk09 =

{

"gccwk09",

NULL,

gccwk09_main,

NULL,

NULL,

0,

0,

0,

0,

0,

0,

0,

0

};

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Working with the GIMPLE API 23/27

A simple application

N
o
te

s

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Working with the GIMPLE API 24/27

A simple application

Counting the number of assignment statements in GIMPLE

static unsigned int gccwk09_main(void)

{ basic_block bb;

block_stmt_iterator si;

initialize_stats();

FOR_EACH_BB (bb)

{

for (si=bsi_start(bb); !bsi_end_p(si); bsi_next(&si))

{

tree stmt = bsi_stmt(si);

process_statement(stmt);

}

}

return 0;

}

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Working with the GIMPLE API 24/27

A simple application

N
o
te

s

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Working with the GIMPLE API 25/27

A simple application

Counting the number of assignment statements in GIMPLE

void process_statement(tree stmt)

{ tree lval,rval;

switch (TREE_CODE(stmt))

{ case GIMPLE_MODIFY_STMT:

lval=GIMPLE_STMT_OPERAND(stmt,0);

rval=GIMPLE_STMT_OPERAND(stmt,1);

if(TREE_CODE(lval) == VAR_DECL)

{ if(!DECL_ARTIFICIAL(lval))

{ print_generic_stmt(stderr,stmt,0);

numassigns++;

}

totalassigns++;

}

break;

default :

break;

}

}
Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Working with the GIMPLE API 25/27

A simple application

N
o
te

s

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Working with the GIMPLE API 26/27

A simple application

Counting the number of assignment statements in GIMPLE

• Add the following in $(SOURCE)/gcc/common.opt :

• fpass gccwk09

• Common Report Var (flag pass gccwk09)

• Enable pass named pass gccwk09

Compile using ./gcc -fdump-tree-all -fpass gccwk09 test.c

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Working with the GIMPLE API 26/27

A simple application

N
o
te

s

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Working with the GIMPLE API 27/27

Assignment and Reference

API Reference

• http://gcc.gnu.org/onlinedocs/gccint.pdf Pg- 233-235

• Refere the same document for some detailed documentation

Assignments (by traversing the GIMPLE IR)

• Count the number of copy statements in a program

• Count the number of variables declared ”const” in the program

• Count the number of occurances of arithmatic operators in the
program

• Count the number of references to global variables in the program

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Working with the GIMPLE API 27/27

Assignment and Reference

N
o
te

s

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

	Outline
	Introduction to GIMPLE
	Adding a Pass to GCC
	Working with the GIMPLE API

