Workshop on Essential Abstractions in GCC

Introduction to RTL

GCC Resource Center

(www.cse.iitb.ac.in/grc)

Department of Computer Science and Engineering,
Indian Institute of Technology, Bombay

July 2009

Part 1

Introduction

July 09 RTL: OQutline

1/19

Outline

e |ntroduction
e RTL Basics
e RTL Functions

Essential Abstrations in GCC

July 09 RTL: Introduction

GCC Resource Center, IIT Bombaynt%

2/19

What is RTL ?

RTL = Register Transfer Language

Assembler for an abstract machine with infinite registers !

Essential Abstrations in GCC

GCC Resource Center, IIT Bombaynp%j

July 09 RTL: Introduction 3/19

July 09 RTL: Introduction 3/19

Why Should We Care About RTL ?

A lot of work in the back-end depends on RTL. Like,

e Low level optimizations like loop optimization, loop dependence,
common subexpression elimination, etc

e Instruction scheduling
e Register Allocation

o Register Movement

GCC Resource Center, IIT Bombaynp%

Essential Abstrations in GCC

July 09 RTL: Introduction 4/19

Why Should We Care About RTL ?

Notes

GCC Resource Center, IIT Bombaynﬁ%

Essential Abstrations in GCC

July 09 RTL: Introduction 4/19

Why Should We Care About RTL ?

For tasks such as those, RTL supports many low level features, like,

Register classes

Memory addressing modes

Word sizes and types

e Compare and branch instructions

Calling Conventions

Bitfield operations

GCC Resource Center, IIT Bombaynp%

Essential Abstrations in GCC

Why Should We Care About RTL ?

Notes

Essential Abstrations in GCC GCC Resource Center, |IT Bombay

July 09 RTL: Introduction 5/19 July 09 RTL: Introduction 5/19

A Feel of RTL... A Feel of RTL...

(jump_insn 15 14 16 4 pl.c:6 (set (pc)
(if_then_else (1t (reg:CCGC 17 flags)
(const_int 0 [0x0]))
(label ref 12)
(pc))) (mil)
(nil)))

Notes

pc = rl7 <0 7 label(12) : pc

e Nested parentheses form used in debugging dumps

e Internal representation has algebraic structure with pointers to
components which are themselves structures

Essential Abstrations in GCC GCC Resource Center, |IT Bombay I Essential Abstrations in GCC GCC Resource Center, |IT Bombay

Part 2

RTL Basics

July 09 RTL: RTL Basics 6/19 July 09 RTL: RTL Basics 6/19

RTL Objects RTL Objects

RTL objects are of the following types:

e Expressions

Integers

Wide Integers

Strings

Vectors

Notes

Expressions in RTX are highly regular

e An expression is a C structure, usually referred to by a pointer

The typedef name of this pointer is rtx

Essential Abstrations in GCC GCC Resource Center, IIT Bombay Essential Abstrations in GCC GCC Resource Center, IIT BombayQ
July 09 RTL: RTL Basics 7/19 July 09 RTL: RTL Basics 7/19
RTX codes RTX codes

RTL Expressions are classified into RTX codes :

Expressions codes are names defined in rtl.def

RTX codes are C enumeration constants

e Expression codes and their meanings are machine-independent
Extract the code of a RTX with the macro GET_CODE (x)

Notes

Essential Abstrations in GCC GCC Resource Center, |IT Bombay Essential Abstrations in GCC GCC Resource Center, |IT Bombay

July 09 RTL: RTL Basics

8/19

RTX codes (contd..)

The RTX codes are defined in rtl.def using cpp macro call
DEF_RTL_EXPR, like :
o DEF_RTL EXPR(INSN, "insn", "iuuBieie", RTX_INSN)
o DEF RTL EXPR(SET, "set", "ee", RTX_EXTRA)

e DEF _RTL_EXPR(IF_THEN_ELSE, "if_then_else", "eee",
RTX_TERNARY)

The operands of the macro are :

e Internal name of the rtx used in C source. It's a tag in

enumeration ¢ ‘enum rtx_code"
e name of the rtx in the external ASCII format
e Format string of the rtx, defined in rtx_format []

e (Class of the rtx

Essential Abstrations in GCC

July 09 RTL: RTL Basics

GCC Resource Center, |IT Bombay

9/19

July 09

RTL: RTL Basics

8/19

Notes

RTX codes (contd..)

RTL Classes

RTL expressions are divided into few classes, like:

e RTX_UNARY : NEG, NOT, ABS

e RTX_BIN_ARITH : MINUS, DIV

e RTX_COMM_ARITH : PLUS, MULT

e RTX_ 0OBJ : REG, MEM, SYMBOL REF

e RTX_COMPARE : GE, LT

e RTX_TERNARY : IF_THEN_ELSE

e RTX_INSN : INSN, JUMP_INSN, CALL_INSN
e RTX_EXTRA : SET, USE

Essential Abstrations in GCC

GCC Resource Center, |IT Bombay

Essential Abstrations in GCC

July 09

GCC Resource Center, |IT Bombay

RTL: RTL Basics

9/19

Notes

RTL Classes

Essential Abstrations in GCC

GCC Resource Center, |IT Bombay

July 09 RTL: RTL Basics 10/19

RTX operands

e Type of an RTX operand depends on the context - on the type of
the containing expression

e DEF RTL_EXPR(PLUS, ‘‘plus", ‘‘ee", RTX_COMM_ARITH)

e DEF RTL_EXPR(SYMBOL REF, ‘symbol_ref", ¢‘s00",
RTX_CONST_0BJ)

e No operand iterators

e Useful macros are :

GET_RTX_LENGTH Number of operands

GET_RTX_FORMAT Format String describing operand types
XEXP/XINT/XSTR.. Operand accessors

GET_RTX_CLASS Extracting the class of a RTX code

vvyVvyy

GCC Resource Center, IIT Bombaynt%

Essential Abstrations in GCC

July 09 RTL: RTL Basics 11/19

July 09 RTL: RTL Basics 10/19

RTX operands

Notes

Examining RTL Dump

e ./gcc -da test.c
e RTL Expand Dump test.c.131r.expand

;; if (@ > b)
if(a > b) (insn 8 7 9 test.c:7 (set (reg:SI 61)
b=4; (mem/c/1:8I (plus:SI (reg/f:SI 54
else virtual-stack-vars)
b=5; (const_int -8 [Oxfffffff8])) [0 a+0 S4 A32])) -1
(nil))

Essential Abstrations in GCC

GCC Resource Center, IIT Bombaynp%

GCC Resource Center, IIT Bombaynﬁ%

Essential Abstrations in GCC

July 09 RTL: RTL Basics 11/19

Examining RTL Dump

Notes

Essential Abstrations in GCC

GCC Resource Center, IIT Bombaym&%j

July 09 RTL: RTL Basics 11/19

Examining RTL Dump

e ./gcc -da test.c
e RTL Expand Dump test.c.131r.expand

(insn 9 8 10 test.c:7 (set (reg:CCGC 17 flags)

if(a > b) (compare:CCGC (reg:SI 61)
b=4; (mem/c/1i:SI (plus:SI (reg/f:SI 54
else virtual-stack-vars)
b=5; (const_int -4 [Oxfffffffc])) [0 b+0 S4 A32])))
-1 (nil))

GCC Resource Center, IIT Bombaynt%

Essential Abstrations in GCC

July 09 RTL: RTL Basics 11/19

July 09 RTL: RTL Basics 11/19

Examining RTL Dump

Notes

Essential Abstrations in GCC GCC Resource Center, |IT Bombay

July 09 RTL: RTL Basics 11/19

Examining RTL Dump

e ./gcc -da test.c
e RTL Expand Dump test.c.131r.expand

(insn 9 8 10 test.c:7 (set (reg:CCGC 17 flags)

if(a > b) (compare:CCGC (reg:SI 61)
b=4; (mem/c/i:SI (plus:SI (reg/f:SI 54
else virtual-stack-vars)
b=5; (const_int -4 [Oxfffffffc])) [0 b+0 S4 A32])))
-1 (nil))

GCC Resource Center, IIT Bombaynp%

Essential Abstrations in GCC

Examining RTL Dump

Notes

Essential Abstrations in GCC GCC Resource Center, |IT Bombay

July 09 RTL: RTL Basics 12/19

July 09

RTL: RTL Basics

12/19

RTL passes

e RTL generated after pass_expand (cfgexpand.c)
e RTL passes are sub-passes of pass rest of compilation :

Optimization Passes pass_cse, pass_rtl_fwprop etc
Instruction Scheduling pass -1 (pass_sched)

Local Register Allocation (pass_local_alloc)

Global Register Allocation (pass_global_alloc)
Instruction Scheduling pass-2 (pass_sched?2)

vV vy VY VvVYy

Essential Abstrations in GCC GCC Resource Center, |IT Bombay !

July 09 RTL: RTL Basics 13/19

Notes

RTL passes

Essential Abstrations in GCC

July 09

RTL: RTL Basics

GCC Resource Center, |IT Bombay

13/19

RTL Dumps

gce -fdump-rtl-all -da test.c
e pass_expand (test.c.131r.expand)
e pass_sched (test.c.173r.schedl)
e pass_local_alloc (test.c.175r.Ireg)
e pass_global_alloc (test.c.177r.greg)

Essential Abstrations in GCC GCC Resource Center, |IT Bombay

Notes

RTL Dumps

Essential Abstrations in GCC

GCC Resource Center, |IT Bombay

July 09 RTL: RTL Basics 14/19 July 09 RTL: RTL Basics 14/19
RTL statements RTL statements

e RTL statements are instances of type rtx
e RTL insns contain embedded links
e Types of RTL insns :

INSN : Normal non-jumping instruction
JUMP_INSN : Conditional and unconditional jumps
CALL_INSN : Function calls

CODE_LABEL: Target label for JUMP_INSN
BARRIER : End of control Flow

NOTE : Debugging information

Notes

vV vV vV VvY VY

GCC Resource Center, |IT Bombay I I Essential Abstrations in GCC GCC Resource Center, |IT Bombay !

Essential Abstrations in GCC

Part 3

RTL Functions

July 09 RTL: RTL Functions 15/19

July 09 RTL: RTL Functions 15/19

Basic RTL functions

e XEXP,XINT,XWINT,XSTR

» Example: XINT(x,2) accesses the 2nd operand of rtx x as an
integer
» Example: XEXP(x,2) accesses the same operand as an expression

e Any operand can be accessed as any type of RTX object

> So operand accessor to be chosen based on the format string of the

containing expression
e Special macros are available for Vector operands

» XVEC(exp,idx) : Access the vector-pointer which is operand
number idx in exp

» XVECLEN (exp, idx) : Access the length (number of elements) in
the vector which is in operand number idx in exp. This value is an int

» XVECEXP (exp, idx, eltnum) : Access element number
“eltnum” in the vector which is in operand number idx in exp. This

value is an RTX

Essential Abstrations in GCC GCC Resource Center, |IT Bombay

July 09 RTL: RTL Functions 16/19

Basic RTL functions

Notes

Essential Abstrations in GCC GCC Resource Center, |IT Bombay

July 09 RTL: RTL Functions 16/19

RTL insns

A function's code is a doubly linked chain of INSN objects
e Insns are rtxs with special code
Each insn contains atleast 3 extra fields :

» Unique id of the insn , accessed by INSN_UID(i)

» PREV_INSN(i) accesses the chain pointer to the INSN
preceeding i

» NEXT_INSN(i) accesses the chain pointer to the INSN
succeeding i

The first insn is accessed by using get_insns ()

The last insn is accessed by using get last_insn()

Essential Abstrations in GCC GCC Resource Center, |IT Bombay

RTL insns

Notes

GCC Resource Center, IIT Bombaynpé?éi

Essential Abstrations in GCC

July 09

RTL: RTL Functions 17/19

Sample Demo Program

Problem statement : Counting the number of SET objects in a basic
block by adding a new RTL pass

e Add your new pass after pass_expand

e new_rtl _passmain is the main function of the pass

July 09 RTL: RTL Functions 17/19

e [terate through different instructions in the doubly linked list of
instructions and for each expression, call eval _rtx(insn) for that
expression which recurse in the expression tree to find the set
statements

Essential Abstrations in GCC GCC Resource Center, |IT Bombay !

July 09

RTL: RTL Functions 18/19

Sample Demo Program

Notes

int new rtl_passmain(void){
basic_block bb;
rtx last,insn,opdl,opd2;
int bbno,code,type;

count

=O;

for (insn=get_insns(), last=get_last_insn(),

{

}

last=NEXT_INSN(last); insn'=last; insn=NEXT_INSN(insn))
int is_insn;
is_insn = INSN_P (insn);
if (flag_dump new_rtl_pass)

print_rtl_single(dump file,insn);
code = GET_CODE(insn);
if (code==NOTE){ ... }
if (is_insn)
{ rtx subexp = XEXP(insn,5);

eval _rtx(subexp) ;

}

Essential Abstrations in GCC GCC Resource Center, |IT Bombay

Essential Abstrations in GCC GCC Resource Center, |IT Bombay !

July 09 RTL: RTL Functions 18/19

Notes

Essential Abstrations in GCC GCC Resource Center, |IT Bombay

July 09 RTL: RTL Functions 19/19

void eval rtx(rtx exp)
{ rtx temp;
int veclen,i,
int rt_code = GET_CODE(exp);
switch(rt_code)
{ case SET:
if (flag dump new_rtl_pass){
fprintf (dump file,"\nSet statement %d : \t",count+1);
print_rtl_single(dump file,exp);}
count++; break;
case PARALLEL:
veclen = XVECLEN(exp, 0);
for(i = 0; i < veclen; i++)
{ temp = XVECEXP(exp, 0, i);

eval rtx(temp) ;
¥
break;
default: break;

}

}

Essential Abstrations in GCC GCC Resource Center, |IT Bombay

July 09 RTL: RTL Functions 19/19

Notes

Essential Abstrations in GCC GCC Resource Center, |IT Bombay

	Outline
	Introduction
	RTL Basics
	RTL Functions

