Workshop on Essential Abstractions in GCC

Incremental Machine Descriptions for Spim:

Levels 2, 3, and 4

GCC Resource Center

(www.cse.iitb.ac.in/grc)

Department of Computer Science and Engineering,
Indian Institute of Technology, Bombay

July 2010

July 2010 Spim MD Levels 2,3,4: Outline 1/24

Outline

e Constructs supported in level 2
e Constructs supported in level 3

e Constructs supported in level 4

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

Part 1

Constructs Supported in Level 2

July 2010 Spim MD Levels 2,3,4: Constructs Supported in Level 2

2/24

July 2010 Spim MD Levels 2,3,4: Constructs Supported in Level 2 2/24

Arithmetic Operations Required in Level 2

Dest < Src1%5Srco | Rj — Ri%Ry | rem ri, rj, rk
Dest < Srcy % Srco | Rj «— Rj*x R | mul ri, rj, rk

Operation Primitive Implementation Remark
Variants
Dest < Srcy — Srcp | Ri — Rj — Ry | sub ri, rj, rk
Dest «— —Src R; — —R; neg ri, rj
Dest «— Srcy/Srcs Ri — R;j/Rx div rj, rk level 2
mflo ri

Essential Abstractions in GCC

GCC Resource Center, |IT Bombay

Arithmetic Operations Required in Level 2

Notes

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

July 2010 Spim MD Levels 2,3,4: Constructs Supported in Level 2 3/24

July 2010 Spim MD Levels 2,3,4: Constructs Supported in Level 2 3/24
Bitwise Operations Required in Level 2

Operation Primitive Implementation Remark
Variants

Dest < Src; < Srca | R+ R < Ry | sllv ri, rj, rk
Ri— R < (| s11 ri, rj, c

Dest < Src1 > Srcy | Ry «+— R; > Ry | srav ri, rj, rk
Ri— R;> (5 | sra ri, rj, c

Dest < Src1&Src; Ri — R;j&Ry and ri, rj, rk
Ri — R;j&C andi ri, rj, c level 2

Dest < Srcq|Src; Ri — Rj|R« or ri, rj, rk
Ri — R;|C ori ri, rj, c

Dest < Src; ~ Srco | Rj+— R; " R | xor ri, rj, rk
Ri—R; "~ C xori ri, rj, ¢

Dest «—~ Src R; —~R; not ri, rj

Essential Abstractions in GCC

GCC Resource Center, |IT Bombay

Bitwise Operations Required in Level 2

Notes

GCC Resource Center, |IT Bombay !E = Ii

Essential Abstractions in GCC

July 2010 Spim MD Levels 2,3,4: Constructs Supported in Level 2 4/24

Divide Operation in spim2.md using define_insn

e For division, the spim architecture imposes use of multiple asm
instructions for single operation.

e Two ASM instructions are emitted using single RTL pattern

(define_insn "divsi3"
[(set (match operand:SI O "register_operand" "=r")
(div:SI (match_operand:SI 1 "register_operand" "r"
(match_operand:SI 2 "register_operand" "r"))

)]
nn
" AEPNNEALN%2\ \n\ \ tHETSNNELO"
)
Essential Abstractions in GCC GCC Resource Center, |IT Bombay !
July 2010 Spim MD Levels 2,3,4: Constructs Supported in Level 2 5/24

July 2010 Spim MD Levels 2,3,4: Constructs Supported in Level 2

4/24

Divide Operation in spim2.md using define_insn

Notes

Advantages/Disadvantages of using define_insn

Very simple to add the pattern
e Primitive target feature represented as single insn pattern in .md

e Unnecessary atomic grouping of instructions

May hamper optimizations in general, and
instruction scheduling, in particluar

Essential Abstractions in GCC GCC Resource Center, IIT Bombayn

Essential Abstractions in GCC

GCC Resource Center, |IT Bombay

July 2010 Spim MD Levels 2,3,4: Constructs Supported in Level 2

5/24

Advantages/Disadvantages of using define_insn

Notes

Essential Abstractions in GCC

GCC Resource Center, |IT Bombay

July 2010 Spim MD Levels 2,3,4: Constructs Supported in Level 2 6/24

Divide Operation in spim2.md using define_expand

e The RTL pattern can be expanded into two different RTLs.

(define_expand "divsi3"
[(parallel[(set (match_operand:SI O "register_operand" "")
(div:SI (match_operand:SI 1 "register_operand" "")
(match_operand:SI 2 "register_operand" ""))
)
(clobber (reg:SI 26))
(clobber (reg:SI 27))1)]
{
emit_insn(gen IITB divide(gen rtx REG(SImode,26),
operands[1], operands[2]));
emit_insn(gen IITB move_from lo(operands[0],
gen_rtx REG(SImode,26)));
DONE ;
}

GCC Resource Center, IIT Bombaynp%

Essential Abstractions in GCC

July 2010 Spim MD Levels 2,3,4: Constructs Supported in Level 2 7/24

July 2010 Spim MD Levels 2,3,4: Constructs Supported in Level 2 6/24

Divide Operation in spim2.md using define_expand

Notes

Divide Operation in spim2.md using define_expand

e Divide pattern equivalent to div instruction in architecture.

(define_insn "IITB_divide"
[(parallel[(set (match_operand:SI O "LO_register_operand" "=q")
(div:SI (matchoperand:SI 1 "register_operand" "r")
(match_operand:SI 2 "register_operand" "r"))
)
(clobber (reg:SI 27))1)]

"div t%1, %2"

GCC Resource Center, IIT Bombaynp%

Essential Abstractions in GCC

GCC Resource Center, IIT Bombaynﬁ%

Essential Abstractions in GCC

July 2010 Spim MD Levels 2,3,4: Constructs Supported in Level 2 7/24

Divide Operation in spim2.md using define_expand

Notes

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

July 2010 Spim MD Levels 2,3,4: Constructs Supported in Level 2 8/24

Divide Operation in spim2.md using define_expand

e Moving contents of special purpose register LO to/from general
purpose register

(define_insn "IITB_move_from_lo"
[(set (match_operand:SI O "register_operand" "=r")
(match_operand:SI 1 "LO_register_operand" "q"))]
nn
"mflo \\t%0"
)

(define_insn "IITB_move_to_lo"
[(set (match_operand:SI 0 "LO_register_operand" "=q")
(match_operand:SI 1 "register_operand" "r"))]

"mtlo \\t%1"

)
Essential Abstractions in GCC GCC Resource Center, |IT Bombay !ﬁ
July 2010 Spim MD Levels 2,3,4: Constructs Supported in Level 2 9/24

July 2010 Spim MD Levels 2,3,4: Constructs Supported in Level 2

8/24

Divide Operation in spim2.md using define_expand

Notes

Divide Operation in spim2.md using define_expand

e Divide pattern equivalent to div instruction in architecture.

(define_insn "modsi3"
[(parallel[(set (match_operand:SI 0 "register_operand" "=r")
(mod:SI (match_operand:SI 1 "register_operand" "r"
(match_operand:SI 2 "register_operand" "r"))
)
(clobber (reg:SI 26))
(clobber (reg:SI 27))1)]

"rem \t%0, %1, %2"

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

Essential Abstractions in GCC

GCC Resource Center, |IT Bombay

July 2010 Spim MD Levels 2,3,4: Constructs Supported in Level 2

9/24

Divide Operation in spim2.md using define_expand

Notes

Essential Abstractions in GCC

GCC Resource Center, |IT Bombay

July 2010 Spim MD Levels 2,3,4: Constructs Supported in Level 2 10/24

Advantages/Disadvantages of Using define_expand for
Division

Two instructions are seperated out at GIMPLE to RTL conversion
phase

Both instructions can undergo all RTL optimizations independently

C interface is needed in md

Compilation becomes slower and requires more space

GCC Resource Center, IIT Bombay®

Essential Abstractions in GCC -

July 2010 Spim MD Levels 2,3,4: Constructs Supported in Level 2 11/24

July 2010 Spim MD Levels 2,3,4: Constructs Supported in Level 2 10/24
Advantages/Disadvantages of Using define_expand for
Division

Notes

Divide Operation in spim2.md using define_split

(define_split
[(parallel [(set (match_operand:SI O "register_operand" "")
(div:SI (match_operand:SI 1 "register_operand" "")
(match_operand:SI 2 "register_operand" ""))

)
(clobber (reg:SI 26))
(clobber (reg:SI 27))1)]

"operands [3]=gen rtx REG(SImode,26); "

]

)
Essential Abstractions in GCC %

GCC Resource Center, |IT Bombay “==y

GCC Resource Center, IIT Bombay®

Essential Abstractions in GCC —

July 2010 Spim MD Levels 2,3,4: Constructs Supported in Level 2 11/24

Divide Operation in spim2.md using define_split

Notes

Essential Abstractions in GCC GCC Resource Center, |IT Bombay “==y

Part 2

Constructs Supported in Level 3

July 2010

Spim MD Levels 2,3,4: Constructs Supported in Level 3

12/24

July 2010 Spim MD Levels 2,3,4: Constructs Supported in Level 3 12/24

Operations Required in Level 3

Operation

Primitive
Variants

Implementation

Remark

Dest — fun(Px, ...

, Pn)

call Lgp,n

1w
swW

1w
sSwW

I,
fis

I,
up

[SP+c1]
[SP]

[SP+c2]
[SP-n*4]

Level 1

jal L

New

Dest «— $v0

level 1

fun(Pl, P2, e

, Pn)

call Lgp,n

1w
swW

1w
sw

fi,
ri,

fis
up

[SP+c1]
[SP]

[SP+c2]
[SP-n*4]

Level 1

jal L

New

Essential Abstractions in GCC

GCC Resource Center, |IT Bombay

Operations Required in Level 3

Notes

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

July 2010 Spim MD Levels 2,3,4: Constructs Supported in Level 3 13/24

Call Operation in spim3.md

(define_insn "call"
[(call (match_operand:SI O "memory_operand" "m"
(match_operand:SI 1 "immediate_operand" "i"))
(clobber (reg:SI 31))
]

nn
n *

return emit_asm_call(operands,O0);

GCC Resource Center, IIT Bombayn

Essential Abstractions in GCC

July 2010 Spim MD Levels 2,3,4: Constructs Supported in Level 3 14/24
Call Operation in spim3.md

(define_insn "call_value"
[(set (match_operand:SI 0 "register_operand" "=r")
(call (match_operand:SI 1 "memory_operand" "m"
(match_operand:SI 2 "immediate_operand" "i")))
(clobber (reg:SI 31))
]

nn
n *

return emit_asm_call(operands,1);
n

Essential Abstractions in GCC

GCC Resource Center, IIT Bombaynp%

July 2010 Spim MD Levels 2,3,4: Constructs Supported in Level 3 13/24
Call Operation in spim3.md

Notes

GCC Resource Center, IIT Bombaynﬁ%

Essential Abstractions in GCC

July 2010 Spim MD Levels 2,3,4: Constructs Supported in Level 3 14/24
Call Operation in spim3.md

Notes

GCC Resource Center, IIT Bombaynp%

Essential Abstractions in GCC

July 2010 Spim MD Levels 2,3,4: Constructs Supported in Level 3 15/24

Activation Record Generation during Call

Caller's Activation Record

e Operations performed by caller Parameter n
» Push parameters on stack. Parameter n — 1
» Load return address in return
address register. Y Parameter 1

» Transfer control to Callee.
Return Address

Caller's FPR (Control Link)
Caller's SPR
Callee Saved Registers

® Operations performed by callee

» Push Return address stored by
caller on stack.

» Push caller's Frame Pointer
Register. Local Variable 1

» Push caller's Stack Pointer. Local Variable 2

» Save callee saved registers, if
used by callee.

» Create local variables frame. Y Local Variable n

» Start callee body execution.
GCC Resource Center, |IT Bombay %

Essential Abstractions in GCC

July 2010 Spim MD Levels 2,3,4: Constructs Supported in Level 3 16/24

July 2010 Spim MD Levels 2,3,4: Constructs Supported in Level 3 15/24

Activation Record Generation during Call

Notes

July 2010 Spim MD Levels 2,3,4: Constructs Supported in Level 3 16/24

Prologue in spim3.md

(set (mem:SI (reg:SI $sp))
(reg:SI 31 $ra))

(set (mem:SI (plus:SI (reg:SI $sp)

(define_expand "prologue" (const_int -4)))

[(clobber (const_int 0))] (reg:SI $sp))

{ (set (mem:SI (plus:SI (reg:SI $sp)
spim_prologue(); (const_int -8)))
DONE; (reg:SI $£p))

b

(set (reg:SI $fp)
(reg:SI $sp))

(set (reg:SI $sp)
(plus:SI (reg:SI $fp)
(const_int -36)))

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

Prologue in spim3.md

Notes

GCC Resource Center, IIT Bombaynp%i

Essential Abstractions in GCC

July 2010 Spim MD Levels 2,3,4: Constructs Supported in Level 3 17/24

Epilogue in spim3.md

(set (reg:SI $sp)
(reg:SI $£p))
(define_expand "epilogue"

[(clobber (comnst_int 0))] (set (reg:SI $£fp)
" (mem:SI (plus:SI (reg:SI $sp)
(const_int -8))))
spim_epilogue();
DONE; (set (reg:SI $ra)
) (mem:SI (reg:SI $sp)))

(parallel [
(return)
(use (reg:SI $ra))l)

GCC Resource Center, IIT Bombaynt%

Essential Abstractions in GCC

July 2010 Spim MD Levels 2,3,4: Constructs Supported in Level 3 17/24

Epilogue in spim3.md

Notes

GCC Resource Center, IIT Bombaynt%

Essential Abstractions in GCC

Part 3

Constructs Supported in Level 4

July 2010

Spim MD Levels 2,3,4: Constructs Supported in Level 4 18/24

Operations Required in Level 4

Operation Primitive Implementation | Remark
Variants
Srcy < Srcp ?
gotoL: PC | CC+— R <R,

CC<0?gotoL:PC|bltr,rl

Srcy > Srcy ?
goto L: PC

CC—R >R
CC>07?gotoL:PC| bgtr,rl

Src1 < Srep ?
goto L: PC

CC—R <R,
CC<0?gotoL:PC | bler,r,lL

Src1 > Srep 7
goto L: PC

CC—Ri >R
CC>07?gotoL:PC | bgerrlL

Essential Abstractions in GCC

GCC Resource Center, IIT Bombayntés

July 2010 Spim MD Levels 2,3,4: Constructs Supported in Level 4 18/24

Operations Required in Level 4

Notes

July 2010 Spim MD Levels 2,3,4: Constructs Supported in Level 4 19/24
Operations Required in Level 4
Operation Primitive Implementation | Remark
Variants
Src1 == Srep ?
goto L: PC CC— R ==R;

CC==07gotolL : PC| beqryrL

Srcy # Srcp 7
goto L: PC

CC—R #R,
CC#07gotolL:PC

bne r;, rj,L

Essential Abstractions in GCC

GCC Resource Center, |IT Bombay

Essential Abstractions in GCC

GCC Resource Center, IIT Bombayntéh\

July 2010 Spim MD Levels 2,3,4: Constructs Supported in Level 4 19/24

Operations Required in Level 4

Notes

GCC Resource Center, IIT Bombaynpé?éi

Essential Abstractions in GCC

July 2010 Spim MD Levels 2,3,4: Constructs Supported in Level 4 20/24

Conditional Branch Instruction in spim4.md

(define_insn "cbranchsid"
[(set (pc)
(if_then_else
(match_operator:SI O "comparison_operator"

[(match_operand:SI 1 "register_operand" "")
(match_operand:SI 2 "register_operand" "")])
(label_ref (match_operand 3 "" ""))

(pc)))]

nn
n *
return conditional_insn(GET_CODE (operands[0]),operands) ;

GCC Resource Center, IIT Bombaynt%

Essential Abstractions in GCC

July 2010 Spim MD Levels 2,3,4: Constructs Supported in Level 4 21/24

July 2010 Spim MD Levels 2,3,4: Constructs Supported in Level 4 20/24

Conditional Branch Instruction in spim4.md

Notes

Support for Branch pattern in spim4.c

char *
conditional_insn (enum rtx_code code,rtx operands[])
{
switch(code)
{
case EQ:return "beq %1, %2, %13";
case NE:return "bne %1, %2, %13";
case GE:return "bge %1, %2, %13";
case GT:return "bgt %1, %2, %13";
case LT:return "blt %1, %2, %13";
case LE:return "ble %1, %2, %13";
case GEU:return "bgeu %1, %2, %13";
case GTU:return "bgtu %1, %2, %13";
case LTU:return "bltu %1, %2, %13";
case LEU:return "bleu %1, %2, %13";
default: /* Error. Issue ICE */

:
GCC Resource Center, |IT Bombay %

Essential Abstractions in GCC

GCC Resource Center, IIT Bombaynﬁ%

Essential Abstractions in GCC

July 2010 Spim MD Levels 2,3,4: Constructs Supported in Level 4 21/24

Support for Branch pattern in spim4.c

Notes

GCC Resource Center, IIT Bombaynp%

Essential Abstractions in GCC

July 2010 Spim MD Levels 2,3,4: Constructs Supported in Level 4 22/24

Alternative for Branch: Conditional compare in spim4.md

(define_code_iterator cond_code
[1t 1tu eq ge geu gt gtu le leu nel)

(define_expand "cmpsi"
[(set (cc0) (compare

(match_operand:SI 0 "register_operand" "")
(match_operand:SI 1 "nonmemory_operand" "")))]
{
compare_opO=operands [0] ;
compare_opl=operands[1];
DONE;
}
)

GCC Resource Center, IIT Bombaynt%

Essential Abstractions in GCC

July 2010 Spim MD Levels 2,3,4: Constructs Supported in Level 4 23/24

July 2010 Spim MD Levels 2,3,4: Constructs Supported in Level 4

22/24

Alternative for Branch: Conditional compare in spim4.md

Notes

Alternative for Branch: Branch pattern in spim4.md

(define_expand "b<code>"
[(set (pc) (if_then_else (cond_code:SI (match_dup 1)
(match_dup 2))

(label_ref (match_operand O "" ""))
(pc)))]
{
operands [1]=compare_op0;
operands [2]=compare_op1;
if (immediate_operand (operands[2],SImode))
{
operands [2]=force_reg(SImode,operands[2]) ;
}
}
)

GCC Resource Center, IIT Bombaynp%

Essential Abstractions in GCC

Essential Abstractions in GCC

July 2010 Spim MD Levels 2,3,4: Constructs Supported in Level 4

GCC Resource Center, IIT Bombayn

R

23/24

Alternative for Branch: Branch pattern in spim4.md

Notes

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

July 2010 Spim MD Levels 2,3,4: Constructs Supported in Level 4 24/24

Alternative for Branch: Branch pattern in spim4.md

(define_insn "*insn_b<code>"
[(set (pc)
(if_then_else
(cond_code:SI
(match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "register_operand" "r"))

(label_ref (match_operand O "" ""))
(pc))]

nn
n *
return conditional_insn(<CODE>,operands);

GCC Resource Center, IIT Bombaynt%

Essential Abstractions in GCC

July 2010 Spim MD Levels 2,3,4: Constructs Supported in Level 4

24/24

Alternative for Branch: Branch pattern in spim4.md

Notes

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

	Outline
	Constructs Supported in Level 2
	Constructs Supported in Level 3
	Constructs Supported in Level 4

