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Arithmetic Operations Required in Level 2

Dest < Src1%5Srco | Rj — Ri%Ry | rem ri, rj, rk
Dest < Srcy % Srco | Rj «— Rj*x R | mul ri, rj, rk

Operation Primitive Implementation Remark
Variants
Dest < Srcy — Srcp | Ri — Rj — Ry | sub ri, rj, rk
Dest «— —Src R; — —R; neg ri, rj
Dest «— Srcy/Srcs Ri — R;j/Rx div rj, rk level 2
mflo ri
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Notes
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Bitwise Operations Required in Level 2

Operation Primitive Implementation Remark
Variants

Dest < Src; < Srca | R+ R < Ry | sllv ri, rj, rk
Ri— R < (| s11 ri, rj, c

Dest < Src1 > Srcy | Ry «+— R; > Ry | srav ri, rj, rk
Ri— R;> (5 | sra ri, rj, c

Dest < Src1&Src; Ri — R;j&Ry and ri, rj, rk
Ri — R;j&C andi ri, rj, c level 2

Dest < Srcq|Src; Ri — Rj|R« or ri, rj, rk
Ri — R;|C ori ri, rj, c

Dest < Src; ~ Srco | Rj+— R; " R | xor ri, rj, rk
Ri—R; "~ C xori ri, rj, ¢

Dest «—~ Src R; —~R; not ri, rj
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Divide Operation in spim2.md using define_insn

e For division, the spim architecture imposes use of multiple asm
instructions for single operation.

e Two ASM instructions are emitted using single RTL pattern

(define_insn "divsi3"
[(set (match operand:SI O "register_operand" "=r")
(div:SI (match_operand:SI 1 "register_operand" "r"
(match_operand:SI 2 "register_operand" "r"))

)]
nn
" AEPNNEALN%2\ \n\ \ tHETSNNELO"
)
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Divide Operation in spim2.md using define_insn

Notes

Advantages/Disadvantages of using define_insn

Very simple to add the pattern
e Primitive target feature represented as single insn pattern in .md

e Unnecessary atomic grouping of instructions

May hamper optimizations in general, and
instruction scheduling, in particluar

Essential Abstractions in GCC GCC Resource Center, IIT Bombayn
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Advantages/Disadvantages of using define_insn

Notes
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Divide Operation in spim2.md using define_expand

e The RTL pattern can be expanded into two different RTLs.

(define_expand "divsi3"
[(parallel[(set (match_operand:SI O "register_operand" "")
(div:SI (match_operand:SI 1 "register_operand" "")
(match_operand:SI 2 "register_operand" ""))
)
(clobber (reg:SI 26))
(clobber (reg:SI 27))1)]
{
emit_insn(gen IITB divide(gen rtx REG(SImode,26),
operands[1], operands[2]));
emit_insn(gen IITB move_from lo(operands[0],
gen_rtx REG(SImode,26)));
DONE ;
}

GCC Resource Center, IIT Bombaynp%
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Divide Operation in spim2.md using define_expand

Notes

Divide Operation in spim2.md using define_expand

e Divide pattern equivalent to div instruction in architecture.

(define_insn "IITB_divide"
[(parallel[(set (match_operand:SI O "LO_register_operand" "=q")
(div:SI (matchoperand:SI 1 "register_operand" "r")
(match_operand:SI 2 "register_operand" "r"))
)
(clobber (reg:SI 27))1)]

"div t%1, %2"

GCC Resource Center, IIT Bombaynp%
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Divide Operation in spim2.md using define_expand

Notes
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Divide Operation in spim2.md using define_expand

e Moving contents of special purpose register LO to/from general
purpose register

(define_insn "IITB_move_from_lo"
[(set (match_operand:SI O "register_operand" "=r")
(match_operand:SI 1 "LO_register_operand" "q"))]
nn
"mflo \\t%0"
)

(define_insn "IITB_move_to_lo"
[(set (match_operand:SI 0 "LO_register_operand" "=q")
(match_operand:SI 1 "register_operand" "r"))]

"mtlo \\t%1"

)
Essential Abstractions in GCC GCC Resource Center, |IT Bombay !ﬁ
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Divide Operation in spim2.md using define_expand

Notes

Divide Operation in spim2.md using define_expand

e Divide pattern equivalent to div instruction in architecture.

(define_insn "modsi3"
[(parallel[(set (match_operand:SI 0 "register_operand" "=r")
(mod:SI (match_operand:SI 1 "register_operand" "r"
(match_operand:SI 2 "register_operand" "r"))
)
(clobber (reg:SI 26))
(clobber (reg:SI 27))1)]

"rem \t%0, %1, %2"

Essential Abstractions in GCC GCC Resource Center, |IT Bombay
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Divide Operation in spim2.md using define_expand

Notes
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Advantages/Disadvantages of Using define_expand for
Division

Two instructions are seperated out at GIMPLE to RTL conversion
phase

Both instructions can undergo all RTL optimizations independently

C interface is needed in md

Compilation becomes slower and requires more space

GCC Resource Center, IIT Bombay®
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Advantages/Disadvantages of Using define_expand for
Division

Notes

Divide Operation in spim2.md using define_split

(define_split
[(parallel [(set (match_operand:SI O "register_operand" "")
(div:SI (match_operand:SI 1 "register_operand" "")
(match_operand:SI 2 "register_operand" ""))

)
(clobber (reg:SI 26))
(clobber (reg:SI 27))1)]

"operands [3]=gen rtx REG(SImode,26); "

]

)
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Divide Operation in spim2.md using define_split

Notes
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Operations Required in Level 3

Operation

Primitive
Variants

Implementation

Remark

Dest — fun(Px, ...

, Pn)

call Lgp,n

1w
swW

1w
sSwW

I,
fis

I,
up

[SP+c1]
[SP]

[SP+c2]
[SP-n*4]

Level 1

jal L

New

Dest «— $v0

level 1

fun(Pl, P2, e

, Pn)

call Lgp,n

1w
swW

1w
sw

fi,
ri,

fis
up

[SP+c1]
[SP]

[SP+c2]
[SP-n*4]

Level 1

jal L

New

Essential Abstractions in GCC
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Call Operation in spim3.md

(define_insn "call"
[(call (match_operand:SI O "memory_operand" "m"
(match_operand:SI 1 "immediate_operand" "i"))
(clobber (reg:SI 31))
]

nn
n *

return emit_asm_call(operands,O0);

GCC Resource Center, IIT Bombayn
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Call Operation in spim3.md

(define_insn "call_value"
[(set (match_operand:SI 0 "register_operand" "=r")
(call (match_operand:SI 1 "memory_operand" "m"
(match_operand:SI 2 "immediate_operand" "i")))
(clobber (reg:SI 31))
]

nn
n *

return emit_asm_call(operands,1);
n
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Call Operation in spim3.md

Notes
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Call Operation in spim3.md

Notes
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Activation Record Generation during Call

Caller's Activation Record

e Operations performed by caller Parameter n
» Push parameters on stack. Parameter n — 1
» Load return address in return
address register. Y Parameter 1

» Transfer control to Callee.
Return Address

Caller's FPR (Control Link)
Caller's SPR
Callee Saved Registers

® Operations performed by callee

» Push Return address stored by
caller on stack.

» Push caller's Frame Pointer
Register. Local Variable 1

» Push caller's Stack Pointer. Local Variable 2

» Save callee saved registers, if
used by callee.

» Create local variables frame. Y Local Variable n

» Start callee body execution.
GCC Resource Center, |IT Bombay %
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Activation Record Generation during Call

Notes
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Prologue in spim3.md

(set (mem:SI (reg:SI $sp))
(reg:SI 31 $ra))

(set (mem:SI (plus:SI (reg:SI $sp)

(define_expand "prologue" (const_int -4 )))

[(clobber (const_int 0))] (reg:SI $sp))

{ (set (mem:SI (plus:SI (reg:SI $sp)
spim_prologue(); (const_int -8 )))
DONE; (reg:SI $£p))

b

(set (reg:SI $fp)
(reg:SI $sp))

(set (reg:SI $sp)
(plus:SI (reg:SI $fp)
(const_int -36)))

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

Prologue in spim3.md

Notes
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Epilogue in spim3.md

(set (reg:SI $sp)
(reg:SI $£p))
(define_expand "epilogue"

[(clobber (comnst_int 0))] (set (reg:SI $£fp)
" (mem:SI (plus:SI (reg:SI $sp)
(const_int -8 ))))
spim_epilogue();
DONE; (set (reg:SI $ra)
) (mem:SI (reg:SI $sp)))

(parallel [
(return)
(use (reg:SI $ra))l)

GCC Resource Center, IIT Bombaynt%
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Epilogue in spim3.md

Notes
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Operations Required in Level 4

Operation Primitive Implementation | Remark
Variants
Srcy < Srcp ?
gotoL: PC | CC+— R <R,

CC<0?gotoL:PC|bltr,rl

Srcy > Srcy ?
goto L: PC

CC—R >R
CC>07?gotoL:PC| bgtr,rl

Src1 < Srep ?
goto L: PC

CC—R <R,
CC<0?gotoL:PC | bler,r,lL

Src1 > Srep 7
goto L: PC

CC—Ri >R
CC>07?gotoL:PC | bgerrlL

Essential Abstractions in GCC
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Operations Required in Level 4

Notes
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Operations Required in Level 4
Operation Primitive Implementation | Remark
Variants
Src1 == Srep ?
goto L: PC CC— R ==R;

CC==07gotolL : PC| beqryrL

Srcy # Srcp 7
goto L: PC

CC—R #R,
CC#07gotolL:PC

bne r;, rj,L

Essential Abstractions in GCC
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Operations Required in Level 4

Notes
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Conditional Branch Instruction in spim4.md

(define_insn "cbranchsid"
[(set (pc)
(if_then_else
(match_operator:SI O "comparison_operator"

[(match_operand:SI 1 "register_operand" "")
(match_operand:SI 2 "register_operand" "")])
(label_ref (match_operand 3 "" ""))

(pc)))]

nn
n *
return conditional_insn(GET_CODE (operands[0]),operands) ;

GCC Resource Center, IIT Bombaynt%
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Conditional Branch Instruction in spim4.md

Notes

Support for Branch pattern in spim4.c

char *
conditional_insn (enum rtx_code code,rtx operands[])
{
switch(code)
{
case EQ:return "beq %1, %2, %13";
case NE:return "bne %1, %2, %13";
case GE:return "bge %1, %2, %13";
case GT:return "bgt %1, %2, %13";
case LT:return "blt %1, %2, %13";
case LE:return "ble %1, %2, %13";
case GEU:return "bgeu %1, %2, %13";
case GTU:return "bgtu %1, %2, %13";
case LTU:return "bltu %1, %2, %13";
case LEU:return "bleu %1, %2, %13";
default: /* Error. Issue ICE */

:
GCC Resource Center, |IT Bombay %
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Support for Branch pattern in spim4.c

Notes
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Alternative for Branch: Conditional compare in spim4.md

(define_code_iterator cond_code
[1t 1tu eq ge geu gt gtu le leu nel)

(define_expand "cmpsi"
[(set (cc0) (compare

(match_operand:SI 0 "register_operand" "")
(match_operand:SI 1 "nonmemory_operand" "")))]
{
compare_opO=operands [0] ;
compare_opl=operands[1];
DONE;
}
)

GCC Resource Center, IIT Bombaynt%
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Alternative for Branch: Conditional compare in spim4.md

Notes

Alternative for Branch: Branch pattern in spim4.md

(define_expand "b<code>"
[(set (pc) (if_then_else (cond_code:SI (match_dup 1)
(match_dup 2))

(label_ref (match_operand O "" ""))
(pc)))]
{
operands [1]=compare_op0;
operands [2]=compare_op1;
if (immediate_operand (operands[2],SImode))
{
operands [2]=force_reg(SImode,operands[2]) ;
}
}
)

GCC Resource Center, IIT Bombaynp%
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Alternative for Branch: Branch pattern in spim4.md

Notes
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Alternative for Branch: Branch pattern in spim4.md

(define_insn "*insn_b<code>"
[(set (pc)
(if_then_else
(cond_code:SI
(match_operand:SI 1 "register_operand" "r")
(match_operand:SI 2 "register_operand" "r"))

(label_ref (match_operand O "" ""))
(pc) )]

nn
n *
return conditional_insn(<CODE>,operands);

GCC Resource Center, IIT Bombaynt%
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Alternative for Branch: Branch pattern in spim4.md

Notes
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