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Outline

• Some details of MD constructs
◮ On names of patterns in .md files
◮ On the role of define expand
◮ On the role of constraints
◮ Mode and code iterators
◮ Defining attributes
◮ Other constructs

• Improving machine descriptions and instruction selection
◮ New constructs to factor out redundancy
◮ Tree tiling based instruction selection
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Some Details of MD Constructs
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Pattern Names in .md File

All Patterns

Named Patterns Unnamed Patterns
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All Patterns

Named Patterns Unnamed Patterns
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Pattern Names in .md File

All Patterns

Named Patterns Unnamed Patterns

With ⋆ Without ⋆

Standard Non-Standard

No gen function

No gen function

gen name function
Called implicitly
Can be called explicitly

gen name function
Not called implicitly
Can be called explicitly
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Role of define expand

Uses of define expand

generate RTL do not Generate RTL

setting global variablessetting operands

setting match operands setting constructed operands
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Using define expand for Generating RTL statements

Calling gen pattern function

implicit call explicit call

standard patternnon-standard pattern

during expansion some other passduring expansion

preparatory statement
of define expand

some function
in a .c file
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Understanding Constraints

(define insn ""

[(set (match operand:SI 0 "general operand" "=r")

(plus:SI (match dup 0)

(match operand:SI 1 "general operand" "r")))]

""

"...")
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(define insn ""

[(set (match operand:SI 0 "general operand" "=r")

(plus:SI (match dup 0)

(match operand:SI 1 "general operand" "r")))]

""

"...")

Constraints

• Reloading operands in the most suitable register class
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Understanding Constraints

(define insn ""

[(set (match operand:SI 0 "general operand" "=r")

(plus:SI (match dup 0)

(match operand:SI 1 "general operand" "r")))]

""

"...")

Constraints

• Reloading operands in the most suitable register class

• Fine tuning within the set of operands allowed by the predicate

• If omitted, operands will depend only on the predicates
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Observations - Role of Constraints

Consider the following two instruction patterns:

• (define_insn ""

[(set (match_operand:SI 0 "general_operand" "=r")

(plus:SI (match_dup 0)

(match_operand:SI 1 "general_operand" "r")))]

""

"...")

The destination and left operands must be identical

• (define_insn ""

[(set (match_operand:SI 0 "general_operand" "=r")

(plus:SI (match_operand:SI 1 "general_operand" "z")

(match_operand:SI 2 "general_operand" "r")))]

""

"...")
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Role of Constraints

• Consider an insn of the form

(insn n prev next

(set (reg:SI 3)

(plus:SI (reg:SI 6) (reg:SI 109)))

...)}

• Predicates of the first pattern does not match

• Constraints do not match for first operand of the second pattern
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Role of Constraints

• Consider an insn of the form

(insn n prev next

(set (reg:SI 3)

(plus:SI (reg:SI 6) (reg:SI 109)))

...)}

• Predicates of the first pattern does not match

• Constraints do not match for first operand of the second pattern

• Reload pass generates additional insn to that the first pattern can be used

(insn n2 prev n

(set (reg:SI 3) (reg:SI 6))

...)

(insn n n2 next

(set (reg:SI 3)

(plus:SI (reg:SI 3)(reg:SI 109)))

...)
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Observations: Constraints

• define insns patterns have operand predicates and constraints
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• define insns patterns have operand predicates and constraints

• While generating the RTL from GIMPLE only the operand
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Observations: Constraints

• define insns patterns have operand predicates and constraints

• While generating the RTL from GIMPLE only the operand
predicates are checked and the constraints are completely ignored

• The RTL which is generated in the expander is modified in the
reload pass to fulfil the constraint

• This final form of RTL can be generated in expander by using
constraints early

Essential Abstractions in GCC GCC Resource Center, IIT Bombay
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Handling Mode Differences

(define insn “subsi3”
[(set (match operand:SI 0 “register operand” “=d”)

(minus:SI (match operand:SI 1 “register operand” “d”)
(match operand:SI 2 “register operand” “d”)))]

“ ”
“subu\t %0,%1,%2”
[(set attr “type” “arith”)
(set attr “mode” “SI”)])

(define insn “subdi3”
[(set (match operand:DI 0 “register operand” “=d”)

(minus:DI (match operand:DI 1 “register operand” “d”)
(match operand:DI 2 “register operand” “d”)))]

“ ”
“dsubu\t %0,%1,%2”
[(set attr “type” “arith”)
(set attr “mode” “DI”)])
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(define insn “subdi3”
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(minus:DI (match operand:DI 1 “register operand” “d”)
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“ ”
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Mode Iterators: Abstracting Out Mode Differences

(define mode iterator GPR [SI (DI “TARGET 64BIT”)])
(define mode attr d [(SI “ ”) (DI “d”)])
(define insn “sub<mode>3”

[(set (match operand:GPR 0 “register operand” “=d”)
(minus:GPR (match operand:GPR 1 “register operand” “d”)

(match operand:GPR 2 “register operand” “d”)))]
“ ”
“<d>subu\t %0,%1,%2”
[(set attr “type” “arith”)
(set attr “mode” “<MODE>”)])

Essential Abstractions in GCC GCC Resource Center, IIT Bombay
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Handling Code Differences

(define expand “bunordered”
[(set (pc) (if then else (unordered:CC (cc0) (const int 0))

(label ref (match operand 0 “ ”))
(pc)))]

“ ”
{ mips expand conditional branch (operands, UNORDERED);

DONE;

})

(define expand “bordered”
[(set (pc) (if then else (ordered:CC (cc0) (const int 0))

(label ref (match operand 0 “ ”))
(pc)))]

“ ”
{ mips expand conditional branch (operands, ORDERED);

DONE;

})
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Handling Code Differences

(define expand “bunordered”
[(set (pc) (if then else (unordered:CC (cc0) (const int 0))

(label ref (match operand 0 “ ”))
(pc)))]

“ ”
{ mips expand conditional branch (operands, UNORDERED);

DONE;

})

(define expand “bordered”
[(set (pc) (if then else (ordered:CC (cc0) (const int 0))

(label ref (match operand 0 “ ”))
(pc)))]

“ ”
{ mips expand conditional branch (operands, ORDERED);

DONE;

})
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Code Iterators: Abstracting Out Code Differences

(define code iterator any cond [unordered ordered])

(define expand “b<code>”
[(set (pc)

(if then else (any cond:CC (cc0)

(const int 0))

(label ref (match operand 0 “ ”))
(pc)))]

“ ”
{ mips expand conditional branch (operands, <CODE>);

DONE;

})

Essential Abstractions in GCC GCC Resource Center, IIT Bombay
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Defining Attributes

• Classifications are need based

• Useful to GCC phases – e.g. pipelining

Property: Pipelining
Need: To classify target instructions
Construct: define attr
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Defining Attributes

• Classifications are need based

• Useful to GCC phases – e.g. pipelining

Property: Pipelining
Need: To classify target instructions
Construct: define attr

;; Instruction type.

(define_attr "type"
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Defining Attributes

• Classifications are need based

• Useful to GCC phases – e.g. pipelining

Property: Pipelining
Need: To classify target instructions
Construct: define attr

;; Instruction type.

(define_attr "type"

"other,multi, alu,alu1,negnot, ... str ,cld, ..."

(const_string "other") )

Fields:
Attribute name, all possible values, one of the possible values,
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Defining Attributes

• Classifications are need based

• Useful to GCC phases – e.g. pipelining

Property: Pipelining
Need: To classify target instructions
Construct: define attr

;; Instruction type.

(define_attr "type"

"other,multi, alu,alu1,negnot, ... str ,cld, ..."

(const_string "other") )

Fields:
Attribute name, all possible values, one of the possible values, default.
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Specifying Instruction Attributes

• Optional field of a define insn

• For an i386, we choose to mark string instructions with the
attribute value str

(define_insn "*strmovdi_rex_1"

[(set (mem:DI (match_operand:DI 2 ...)]

"TARGET_64BIT && (TARGET_SINGLE_ ...)"

"movsq"

[ (set_attr "type" "str")

...

(set_attr "memory" "both")])

NOTE
An instruction may have more than one attribute!

Essential Abstractions in GCC GCC Resource Center, IIT Bombay
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Using Attributes

(define_insn_reservation "pent_str" 12

(and (eq_attr "cpu" "pentium")

(eq_attr "type" "str") )

"pentium-np*12")

Pipeline specification requires the CPU type to be “pentium”
and the instruction type to be “str”

Essential Abstractions in GCC GCC Resource Center, IIT Bombay
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Some Other RTL Constructs

• define split: Split complex insn into simpler ones
e.g. for better use of delay slots

• define insn and split: A combination of define insn and
define split

Used when the split pattern matches and insn exactly.

• define peephole2: Peephole optimization over insns that
substitutes insns. Run after register allocation, and before
scheduling.

• define constants: Use literal constants in rest of the MD.

Essential Abstractions in GCC GCC Resource Center, IIT Bombay
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Improving Machine Descriptions and Instruction Selection

The Problems:

• Instruction selection algorithms are quite adhoc

• The specification mechanism for Machine descriptions is quite adhoc

• Adhoc design decisions
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Improving Machine Descriptions and Instruction Selection

The Problems:

• Instruction selection algorithms are quite adhoc

◮ Full tree maching instead of tree tiling

• The specification mechanism for Machine descriptions is quite adhoc

◮ Only syntax borrowed from LISP, neither semantics not spirit!
◮ Non-composable rules
◮ Mode and code iterator mechanisms are insufficient

• Adhoc design decisions

◮ Honouring operand constraints delayed to global register allocation
During GIMPLE to RTL translation, a lot of C code is required

◮ Choice of insertion of NOPs

Essential Abstractions in GCC GCC Resource Center, IIT Bombay
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Design Flaws in Machine Descriptions

Multiple patterns with same structure

• Repetition of almost similar RTL expressions across multiple
define insn an define expand patterns

◮ Only Modes, Predicates, Constraints, Boolean Condition, or RTL
Expression may differ

◮ One RTL expression may appears as a sub-expression of some other
RTL expression

• Repetition of C code along with RTL expressions in these patterns.

Essential Abstractions in GCC GCC Resource Center, IIT Bombay
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Consequence of Design Flaws in Machine Descriptions

• The machine descriptions are too verbose, detailed, repetitive and
require a lot of C code

• A compiler developer needs to visualize and specify meaningful
combinations of instructions for generating good quality code

• The machine descriptions are difficult to construct, understand,
maintain, and enhance

• GCC has become a hacker’s paradise instead of a clean, production
quality compiler generation framework

Essential Abstractions in GCC GCC Resource Center, IIT Bombay
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Insufficient Iterator Mechanism

• Iterators can not be used across define insn, define expand,
define peephole2 and other patterns

• Defining iterator attribute for each varying parameter becomes
tedious.

• For same set of modes and rtx codes change in other fields of
pattern makes use of iterators impossible

• Mode and code attributes can not be defined for operator or
operand number, name of the pattern.

• Patterns with different RTL template share attribute value vector
for which iterators can not be used.

Essential Abstractions in GCC GCC Resource Center, IIT Bombay
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Many Similar Patterns Cannot be Combined

(define expand “iordi3”
[(set (match operand:DI 0 “nonimmediate operand” “ ”)

(ior:DI (match operand:DI 1 “nonimmediate operand” “ ”)
(match operand:DI 2 “x86 64 general operand” “ ”)))

(clobber (reg:CC FLAGS REG))]

“TARGET 64BIT”
“ix86 expand binary operator (IOR, DImode, operands); DONE;”)

(define insn “*iordi 1 rex64”
[(set (match operand:DI 0 “nonimmediate operand” “=rm,r”)

(ior:DI (match operand:DI 1 “nonimmediate operand” “%0,0”)
(match operand:DI 2 “x86 64 general operand” “re,rme” )))

(clobber (reg:CC FLAGS REG))]

“TARGET 64BIT

&& ix86 binary operator ok (IOR, DImode, operands)”
“or{q}\t{%2, %0|%0, %2}”
[(set attr “type” “alu”)
(set attr “mode” “DI”)])

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



July 2010 Advanced MD Issues: Improving MD and Instruction Selection 22/27

Step 1: Avoiding Verbosity in Machine Description

• New contructs to facilitate more concise machine descriptions
◮ define rtltemplate

Introduces non-terminals for common RTL expressions instead of
rewriting them in each define insn or define expand pattern

◮ define code

Introduces non-terminals for C/Assembly code instead of rewriting
them in each define insn or define expand pattern

◮ define pattern

Allows specification of multiple define insn and define expand

sharing RTL template, assembly template, or C code

Essential Abstractions in GCC GCC Resource Center, IIT Bombay
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Step 1: Avoiding Verbosity in Machine Description

• New contructs to facilitate more concise machine descriptions
◮ define rtltemplate defining

Introduces non-terminals for common RTL expressions instead of
rewriting them in each define insn or define expand pattern

◮ define code defining
Introduces non-terminals for C/Assembly code instead of rewriting
them in each define insn or define expand pattern

◮ define pattern instantiating
Allows specification of multiple define insn and define expand

sharing RTL template, assembly template, or C code

• Generate exisiting machine descriptions from new descriptions

⇒ No change in GCC source
⇒ Incremental changes with gradual transition to new descriptions
⇒ Non-disruptive transition

Essential Abstractions in GCC GCC Resource Center, IIT Bombay
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Improvement Statistics for ‘i386.md’

Machine description file i386.md is rewritten. 5720 lines are reduced
from current MD specification for ‘i386.md(21474 lines). Ignoring the
comments this reduction is 28% of the complete MD file.

Instruction Group
Instruction
Pattern count

define rtltemplate
count

Arithmetic instructions 154 50

Control flow and data move
instructions

626 169

Logical and relational in-
structions

212 56

Shift and rotate instructions 311 67

Total 1303 342

Improvement statistics in terms of reduction in RTL templates

Essential Abstractions in GCC GCC Resource Center, IIT Bombay
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Step 2: Improving Instruction Selection

• Since rules become composable, tree tiling based instruction
selection algorithms can be used
Currently rules are non-composable and GCC uses full tree maching
algorithm

Essential Abstractions in GCC GCC Resource Center, IIT Bombay
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Full Tree Matching

Instructions are viewed as independent non-composable rules

Instructions Subject Tree Modified Trees

=

reg +

reg reg

=

reg ∗

reg reg
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Tree Tiling

Instructions are viewed as composable rules

Instructions Subject Tree

=

reg Reg

reg

+

Reg Reg

∗

Reg Reg
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Improving Machine Descriptions and Instruction Selection

Current Status:

• Preliminary investigations seem very promising
◮ Fewer rules
◮ Simple rules
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Improving Machine Descriptions and Instruction Selection

Current Status:

• Preliminary investigations seem very promising
◮ Fewer rules
◮ Simple rules

• Prototype of new code generator generator (cgg) is being tested in
a toy compiler set up
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