
Workshop on Essential Abstractions in GCC

Advanced Issues in Machine Descriptions

GCC Resource Center

(www.cse.iitb.ac.in/grc)

Department of Computer Science and Engineering,

Indian Institute of Technology, Bombay

July 2010

July 2010 Advanced MD Issues: Outline 1/27

Outline

• Some details of MD constructs
◮ On names of patterns in .md files
◮ On the role of define expand
◮ On the role of constraints
◮ Mode and code iterators
◮ Defining attributes
◮ Other constructs

• Improving machine descriptions and instruction selection
◮ New constructs to factor out redundancy
◮ Tree tiling based instruction selection

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

Part 1

Some Details of MD Constructs

July 2010 Advanced MD Issues: Some Details of MD Constructs 2/27

Pattern Names in .md File

All Patterns

Named Patterns Unnamed Patterns

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Some Details of MD Constructs 2/27

Pattern Names in .md File

All Patterns

Named Patterns Unnamed Patterns

With ⋆ Without ⋆

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Some Details of MD Constructs 2/27

Pattern Names in .md File

All Patterns

Named Patterns Unnamed Patterns

With ⋆ Without ⋆

Standard Non-Standard

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Some Details of MD Constructs 2/27

Pattern Names in .md File

All Patterns

Named Patterns Unnamed Patterns

With ⋆ Without ⋆

Standard Non-Standard

No gen function

No gen function

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Some Details of MD Constructs 2/27

Pattern Names in .md File

All Patterns

Named Patterns Unnamed Patterns

With ⋆ Without ⋆

Standard Non-Standard

No gen function

No gen function

gen name function
Called implicitly
Can be called explicitly

gen name function
Not called implicitly
Can be called explicitly

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Some Details of MD Constructs 3/27

Role of define expand

Uses of define expand

generate RTL do not Generate RTL

setting global variablessetting operands

setting match operands setting constructed operands

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Some Details of MD Constructs 4/27

Using define expand for Generating RTL statements

Calling gen pattern function

implicit call explicit call

standard patternnon-standard pattern

during expansion some other passduring expansion

preparatory statement
of define expand

some function
in a .c file

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Some Details of MD Constructs 5/27

Understanding Constraints

(define insn ""

[(set (match operand:SI 0 "general operand" "=r")

(plus:SI (match dup 0)

(match operand:SI 1 "general operand" "r")))]

""

"...")

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Some Details of MD Constructs 5/27

Understanding Constraints

(define insn ""

[(set (match operand:SI 0 "general operand" "=r")

(plus:SI (match dup 0)

(match operand:SI 1 "general operand" "r")))]

""

"...")

Constraints

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Some Details of MD Constructs 5/27

Understanding Constraints

(define insn ""

[(set (match operand:SI 0 "general operand" "=r")

(plus:SI (match dup 0)

(match operand:SI 1 "general operand" "r")))]

""

"...")

Constraints

• Reloading operands in the most suitable register class

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Some Details of MD Constructs 5/27

Understanding Constraints

(define insn ""

[(set (match operand:SI 0 "general operand" "=r")

(plus:SI (match dup 0)

(match operand:SI 1 "general operand" "r")))]

""

"...")

Constraints

• Reloading operands in the most suitable register class

• Fine tuning within the set of operands allowed by the predicate

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Some Details of MD Constructs 5/27

Understanding Constraints

(define insn ""

[(set (match operand:SI 0 "general operand" "=r")

(plus:SI (match dup 0)

(match operand:SI 1 "general operand" "r")))]

""

"...")

Constraints

• Reloading operands in the most suitable register class

• Fine tuning within the set of operands allowed by the predicate

• If omitted, operands will depend only on the predicates

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Some Details of MD Constructs 6/27

Observations - Role of Constraints

Consider the following two instruction patterns:

• (define_insn ""

[(set (match_operand:SI 0 "general_operand" "=r")

(plus:SI (match_dup 0)

(match_operand:SI 1 "general_operand" "r")))]

""

"...")

The destination and left operands must be identical

• (define_insn ""

[(set (match_operand:SI 0 "general_operand" "=r")

(plus:SI (match_operand:SI 1 "general_operand" "z")

(match_operand:SI 2 "general_operand" "r")))]

""

"...")

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Some Details of MD Constructs 7/27

Role of Constraints

• Consider an insn of the form

(insn n prev next

(set (reg:SI 3)

(plus:SI (reg:SI 6) (reg:SI 109)))

...)}

• Predicates of the first pattern does not match

• Constraints do not match for first operand of the second pattern

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Some Details of MD Constructs 7/27

Role of Constraints

• Consider an insn of the form

(insn n prev next

(set (reg:SI 3)

(plus:SI (reg:SI 6) (reg:SI 109)))

...)}

• Predicates of the first pattern does not match

• Constraints do not match for first operand of the second pattern

• Reload pass generates additional insn to that the first pattern can be used

(insn n2 prev n

(set (reg:SI 3) (reg:SI 6))

...)

(insn n n2 next

(set (reg:SI 3)

(plus:SI (reg:SI 3)(reg:SI 109)))

...)

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Some Details of MD Constructs 8/27

Observations: Constraints

• define insns patterns have operand predicates and constraints

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Some Details of MD Constructs 8/27

Observations: Constraints

• define insns patterns have operand predicates and constraints

• While generating the RTL from GIMPLE only the operand
predicates are checked and the constraints are completely ignored

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Some Details of MD Constructs 8/27

Observations: Constraints

• define insns patterns have operand predicates and constraints

• While generating the RTL from GIMPLE only the operand
predicates are checked and the constraints are completely ignored

• The RTL which is generated in the expander is modified in the
reload pass to fulfil the constraint

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Some Details of MD Constructs 8/27

Observations: Constraints

• define insns patterns have operand predicates and constraints

• While generating the RTL from GIMPLE only the operand
predicates are checked and the constraints are completely ignored

• The RTL which is generated in the expander is modified in the
reload pass to fulfil the constraint

• This final form of RTL can be generated in expander by using
constraints early

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Some Details of MD Constructs 9/27

Handling Mode Differences

(define insn “subsi3”
[(set (match operand:SI 0 “register operand” “=d”)

(minus:SI (match operand:SI 1 “register operand” “d”)
(match operand:SI 2 “register operand” “d”)))]

“ ”
“subu\t %0,%1,%2”
[(set attr “type” “arith”)
(set attr “mode” “SI”)])

(define insn “subdi3”
[(set (match operand:DI 0 “register operand” “=d”)

(minus:DI (match operand:DI 1 “register operand” “d”)
(match operand:DI 2 “register operand” “d”)))]

“ ”
“dsubu\t %0,%1,%2”
[(set attr “type” “arith”)
(set attr “mode” “DI”)])

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Some Details of MD Constructs 9/27

Handling Mode Differences

(define insn “subsi3”
[(set (match operand:SI 0 “register operand” “=d”)

(minus:SI (match operand:SI 1 “register operand” “d”)
(match operand:SI 2 “register operand” “d”)))]

“ ”
“subu\t %0,%1,%2”
[(set attr “type” “arith”)
(set attr “mode” “SI”)])

(define insn “subdi3”
[(set (match operand:DI 0 “register operand” “=d”)

(minus:DI (match operand:DI 1 “register operand” “d”)
(match operand:DI 2 “register operand” “d”)))]

“ ”
“dsubu\t %0,%1,%2”
[(set attr “type” “arith”)
(set attr “mode” “DI”)])

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Some Details of MD Constructs 10/27

Mode Iterators: Abstracting Out Mode Differences

(define mode iterator GPR [SI (DI “TARGET 64BIT”)])
(define mode attr d [(SI “ ”) (DI “d”)])
(define insn “sub<mode>3”

[(set (match operand:GPR 0 “register operand” “=d”)
(minus:GPR (match operand:GPR 1 “register operand” “d”)

(match operand:GPR 2 “register operand” “d”)))]
“ ”
“<d>subu\t %0,%1,%2”
[(set attr “type” “arith”)
(set attr “mode” “<MODE>”)])

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Some Details of MD Constructs 11/27

Handling Code Differences

(define expand “bunordered”
[(set (pc) (if then else (unordered:CC (cc0) (const int 0))

(label ref (match operand 0 “ ”))
(pc)))]

“ ”
{ mips expand conditional branch (operands, UNORDERED);

DONE;

})

(define expand “bordered”
[(set (pc) (if then else (ordered:CC (cc0) (const int 0))

(label ref (match operand 0 “ ”))
(pc)))]

“ ”
{ mips expand conditional branch (operands, ORDERED);

DONE;

})

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Some Details of MD Constructs 11/27

Handling Code Differences

(define expand “bunordered”
[(set (pc) (if then else (unordered:CC (cc0) (const int 0))

(label ref (match operand 0 “ ”))
(pc)))]

“ ”
{ mips expand conditional branch (operands, UNORDERED);

DONE;

})

(define expand “bordered”
[(set (pc) (if then else (ordered:CC (cc0) (const int 0))

(label ref (match operand 0 “ ”))
(pc)))]

“ ”
{ mips expand conditional branch (operands, ORDERED);

DONE;

})

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Some Details of MD Constructs 12/27

Code Iterators: Abstracting Out Code Differences

(define code iterator any cond [unordered ordered])

(define expand “b<code>”
[(set (pc)

(if then else (any cond:CC (cc0)

(const int 0))

(label ref (match operand 0 “ ”))
(pc)))]

“ ”
{ mips expand conditional branch (operands, <CODE>);

DONE;

})

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Some Details of MD Constructs 13/27

Defining Attributes

• Classifications are need based

• Useful to GCC phases – e.g. pipelining

Property: Pipelining
Need: To classify target instructions
Construct: define attr

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Some Details of MD Constructs 13/27

Defining Attributes

• Classifications are need based

• Useful to GCC phases – e.g. pipelining

Property: Pipelining
Need: To classify target instructions
Construct: define attr

;; Instruction type.

(define_attr "type"

"other,multi, alu,alu1,negnot, ... str ,cld, ..."

(const_string "other"))

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Some Details of MD Constructs 13/27

Defining Attributes

• Classifications are need based

• Useful to GCC phases – e.g. pipelining

Property: Pipelining
Need: To classify target instructions
Construct: define attr

;; Instruction type.

(define_attr "type"

"other,multi, alu,alu1,negnot, ... str ,cld, ..."

(const_string "other"))

Fields:
Attribute name,

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Some Details of MD Constructs 13/27

Defining Attributes

• Classifications are need based

• Useful to GCC phases – e.g. pipelining

Property: Pipelining
Need: To classify target instructions
Construct: define attr

;; Instruction type.

(define_attr "type"

"other,multi, alu,alu1,negnot, ... str ,cld, ..."

(const_string "other"))

Fields:
Attribute name, all possible values,

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Some Details of MD Constructs 13/27

Defining Attributes

• Classifications are need based

• Useful to GCC phases – e.g. pipelining

Property: Pipelining
Need: To classify target instructions
Construct: define attr

;; Instruction type.

(define_attr "type"

"other,multi, alu,alu1,negnot, ... str ,cld, ..."

(const_string "other"))

Fields:
Attribute name, all possible values, one of the possible values,

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Some Details of MD Constructs 13/27

Defining Attributes

• Classifications are need based

• Useful to GCC phases – e.g. pipelining

Property: Pipelining
Need: To classify target instructions
Construct: define attr

;; Instruction type.

(define_attr "type"

"other,multi, alu,alu1,negnot, ... str ,cld, ..."

(const_string "other"))

Fields:
Attribute name, all possible values, one of the possible values, default.

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Some Details of MD Constructs 14/27

Specifying Instruction Attributes

• Optional field of a define insn

• For an i386, we choose to mark string instructions with the
attribute value str

(define_insn "*strmovdi_rex_1"

[(set (mem:DI (match_operand:DI 2 ...)]

"TARGET_64BIT && (TARGET_SINGLE_ ...)"

"movsq"

[(set_attr "type" "str")

...

(set_attr "memory" "both")])

NOTE
An instruction may have more than one attribute!

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Some Details of MD Constructs 15/27

Using Attributes

(define_insn_reservation "pent_str" 12

(and (eq_attr "cpu" "pentium")

(eq_attr "type" "str"))

"pentium-np*12")

Pipeline specification requires the CPU type to be “pentium”
and the instruction type to be “str”

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Some Details of MD Constructs 16/27

Some Other RTL Constructs

• define split: Split complex insn into simpler ones
e.g. for better use of delay slots

• define insn and split: A combination of define insn and
define split

Used when the split pattern matches and insn exactly.

• define peephole2: Peephole optimization over insns that
substitutes insns. Run after register allocation, and before
scheduling.

• define constants: Use literal constants in rest of the MD.

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

Part 2

Improving Instruction Selection

and Machine Descriptions

July 2010 Advanced MD Issues: Improving MD and Instruction Selection 17/27

Improving Machine Descriptions and Instruction Selection

The Problems:

• Instruction selection algorithms are quite adhoc

• The specification mechanism for Machine descriptions is quite adhoc

• Adhoc design decisions

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Improving MD and Instruction Selection 17/27

Improving Machine Descriptions and Instruction Selection

The Problems:

• Instruction selection algorithms are quite adhoc

◮ Full tree maching instead of tree tiling

• The specification mechanism for Machine descriptions is quite adhoc

• Adhoc design decisions

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Improving MD and Instruction Selection 17/27

Improving Machine Descriptions and Instruction Selection

The Problems:

• Instruction selection algorithms are quite adhoc

◮ Full tree maching instead of tree tiling

• The specification mechanism for Machine descriptions is quite adhoc

◮ Only syntax borrowed from LISP, neither semantics not spirit!
◮ Non-composable rules
◮ Mode and code iterator mechanisms are insufficient

• Adhoc design decisions

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Improving MD and Instruction Selection 17/27

Improving Machine Descriptions and Instruction Selection

The Problems:

• Instruction selection algorithms are quite adhoc

◮ Full tree maching instead of tree tiling

• The specification mechanism for Machine descriptions is quite adhoc

◮ Only syntax borrowed from LISP, neither semantics not spirit!
◮ Non-composable rules
◮ Mode and code iterator mechanisms are insufficient

• Adhoc design decisions

◮ Honouring operand constraints delayed to global register allocation
During GIMPLE to RTL translation, a lot of C code is required

◮ Choice of insertion of NOPs

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Improving MD and Instruction Selection 18/27

Design Flaws in Machine Descriptions

Multiple patterns with same structure

• Repetition of almost similar RTL expressions across multiple
define insn an define expand patterns

◮ Only Modes, Predicates, Constraints, Boolean Condition, or RTL
Expression may differ

◮ One RTL expression may appears as a sub-expression of some other
RTL expression

• Repetition of C code along with RTL expressions in these patterns.

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Improving MD and Instruction Selection 19/27

Consequence of Design Flaws in Machine Descriptions

• The machine descriptions are too verbose, detailed, repetitive and
require a lot of C code

• A compiler developer needs to visualize and specify meaningful
combinations of instructions for generating good quality code

• The machine descriptions are difficult to construct, understand,
maintain, and enhance

• GCC has become a hacker’s paradise instead of a clean, production
quality compiler generation framework

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Improving MD and Instruction Selection 20/27

Insufficient Iterator Mechanism

• Iterators can not be used across define insn, define expand,
define peephole2 and other patterns

• Defining iterator attribute for each varying parameter becomes
tedious.

• For same set of modes and rtx codes change in other fields of
pattern makes use of iterators impossible

• Mode and code attributes can not be defined for operator or
operand number, name of the pattern.

• Patterns with different RTL template share attribute value vector
for which iterators can not be used.

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Improving MD and Instruction Selection 21/27

Many Similar Patterns Cannot be Combined

(define expand “iordi3”
[(set (match operand:DI 0 “nonimmediate operand” “ ”)

(ior:DI (match operand:DI 1 “nonimmediate operand” “ ”)
(match operand:DI 2 “x86 64 general operand” “ ”)))

(clobber (reg:CC FLAGS REG))]

“TARGET 64BIT”
“ix86 expand binary operator (IOR, DImode, operands); DONE;”)

(define insn “*iordi 1 rex64”
[(set (match operand:DI 0 “nonimmediate operand” “=rm,r”)

(ior:DI (match operand:DI 1 “nonimmediate operand” “%0,0”)
(match operand:DI 2 “x86 64 general operand” “re,rme”)))

(clobber (reg:CC FLAGS REG))]

“TARGET 64BIT

&& ix86 binary operator ok (IOR, DImode, operands)”
“or{q}\t{%2, %0|%0, %2}”
[(set attr “type” “alu”)
(set attr “mode” “DI”)])

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Improving MD and Instruction Selection 22/27

Step 1: Avoiding Verbosity in Machine Description

• New contructs to facilitate more concise machine descriptions
◮ define rtltemplate

Introduces non-terminals for common RTL expressions instead of
rewriting them in each define insn or define expand pattern

◮ define code

Introduces non-terminals for C/Assembly code instead of rewriting
them in each define insn or define expand pattern

◮ define pattern

Allows specification of multiple define insn and define expand

sharing RTL template, assembly template, or C code

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Improving MD and Instruction Selection 22/27

Step 1: Avoiding Verbosity in Machine Description

• New contructs to facilitate more concise machine descriptions
◮ define rtltemplate defining

Introduces non-terminals for common RTL expressions instead of
rewriting them in each define insn or define expand pattern

◮ define code defining
Introduces non-terminals for C/Assembly code instead of rewriting
them in each define insn or define expand pattern

◮ define pattern instantiating
Allows specification of multiple define insn and define expand

sharing RTL template, assembly template, or C code

• Generate exisiting machine descriptions from new descriptions

⇒ No change in GCC source
⇒ Incremental changes with gradual transition to new descriptions
⇒ Non-disruptive transition

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Improving MD and Instruction Selection 23/27

Improvement Statistics for ‘i386.md’

Machine description file i386.md is rewritten. 5720 lines are reduced
from current MD specification for ‘i386.md(21474 lines). Ignoring the
comments this reduction is 28% of the complete MD file.

Instruction Group
Instruction
Pattern count

define rtltemplate
count

Arithmetic instructions 154 50

Control flow and data move
instructions

626 169

Logical and relational in-
structions

212 56

Shift and rotate instructions 311 67

Total 1303 342

Improvement statistics in terms of reduction in RTL templates

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Improving MD and Instruction Selection 24/27

Step 2: Improving Instruction Selection

• Since rules become composable, tree tiling based instruction
selection algorithms can be used
Currently rules are non-composable and GCC uses full tree maching
algorithm

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Improving MD and Instruction Selection 25/27

Full Tree Matching

Instructions are viewed as independent non-composable rules

Instructions Subject Tree Modified Trees

=

reg +

reg reg

=

reg ∗

reg reg

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Improving MD and Instruction Selection 25/27

Full Tree Matching

Instructions are viewed as independent non-composable rules

Instructions Subject Tree Modified Trees

=

reg +

reg reg

=

reg ∗

reg reg

=

a +

a ∗

b c

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Improving MD and Instruction Selection 25/27

Full Tree Matching

Instructions are viewed as independent non-composable rules

Instructions Subject Tree Modified Trees

=

reg +

reg reg

=

reg ∗

reg reg

=

a +

a ∗

b c

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Improving MD and Instruction Selection 25/27

Full Tree Matching

Instructions are viewed as independent non-composable rules

Instructions Subject Tree Modified Trees

=

reg +

reg reg

=

reg ∗

reg reg

=

a +

a ∗

b c

=

t ∗

b c

=

a +

a t

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Improving MD and Instruction Selection 25/27

Full Tree Matching

Instructions are viewed as independent non-composable rules

Instructions Subject Tree Modified Trees

=

reg +

reg reg

=

reg ∗

reg reg

=

a +

a ∗

b c

=

t ∗

b c

=

a +

a t

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Improving MD and Instruction Selection 25/27

Full Tree Matching

Instructions are viewed as independent non-composable rules

Instructions Subject Tree Modified Trees

=

reg +

reg reg

=

reg ∗

reg reg

=

a +

a ∗

b c

=

t ∗

b c

=

a +

a t

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Improving MD and Instruction Selection 26/27

Tree Tiling

Instructions are viewed as composable rules

Instructions Subject Tree

=

reg Reg

reg

+

Reg Reg

∗

Reg Reg

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Improving MD and Instruction Selection 26/27

Tree Tiling

Instructions are viewed as composable rules

Instructions Subject Tree

=

reg Reg

regReg

+

Reg Reg

Reg

∗

Reg Reg

Reg

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Improving MD and Instruction Selection 26/27

Tree Tiling

Instructions are viewed as composable rules

Instructions Subject Tree

=

reg Reg

regReg

+

Reg Reg

Reg

∗

Reg Reg

Reg

=

a +

a ∗

b c

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Improving MD and Instruction Selection 26/27

Tree Tiling

Instructions are viewed as composable rules

Instructions Subject Tree

=

reg Reg

regReg

+

Reg Reg

Reg

∗

Reg Reg

Reg

=

a +

a ∗

b c

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Improving MD and Instruction Selection 26/27

Tree Tiling

Instructions are viewed as composable rules

Instructions Subject Tree

=

reg Reg

regReg

+

Reg Reg

Reg

∗

Reg Reg

Reg

=

a +

Reg ∗

Reg Reg

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Improving MD and Instruction Selection 26/27

Tree Tiling

Instructions are viewed as composable rules

Instructions Subject Tree

=

reg Reg

regReg

+

Reg Reg

Reg

∗

Reg Reg

Reg

=

a +

Reg ∗

Reg Reg

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Improving MD and Instruction Selection 26/27

Tree Tiling

Instructions are viewed as composable rules

Instructions Subject Tree

=

reg Reg

regReg

+

Reg Reg

Reg

∗

Reg Reg

Reg

=

a +

Reg Reg

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Improving MD and Instruction Selection 26/27

Tree Tiling

Instructions are viewed as composable rules

Instructions Subject Tree

=

reg Reg

regReg

+

Reg Reg

Reg

∗

Reg Reg

Reg

=

a +

Reg Reg

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Improving MD and Instruction Selection 26/27

Tree Tiling

Instructions are viewed as composable rules

Instructions Subject Tree

=

reg Reg

regReg

+

Reg Reg

Reg

∗

Reg Reg

Reg

=

a Reg

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Improving MD and Instruction Selection 26/27

Tree Tiling

Instructions are viewed as composable rules

Instructions Subject Tree

=

reg Reg

regReg

+

Reg Reg

Reg

∗

Reg Reg

Reg

=

a Reg

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Improving MD and Instruction Selection 27/27

Improving Machine Descriptions and Instruction Selection

Current Status:

• Preliminary investigations seem very promising
◮ Fewer rules
◮ Simple rules

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Advanced MD Issues: Improving MD and Instruction Selection 27/27

Improving Machine Descriptions and Instruction Selection

Current Status:

• Preliminary investigations seem very promising
◮ Fewer rules
◮ Simple rules

• Prototype of new code generator generator (cgg) is being tested in
a toy compiler set up

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

	Outline
	Some Details of MD Constructs
	3.75inImproving Instruction Selection and Machine Descriptions
	Improving MD and Instruction Selection

