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Implementation Mechanisms as “Bridges”

• “Gap” between the “levels” of program specification and execution

Program Specification

Machine
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Implementation Mechanisms as “Bridges”

• “Gap” between the “levels” of program specification and execution

Program Specification

Machine

Translation Interpretation

State : Variables
Operations: Expressions,

Control Flow

State : Memory,
Registers

Operations: Machine
Instructions
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High and Low Level Abstractions

Input C statement

a = b<10?b:c;

Spim Assembly Equivalent

lw $t0, 4($fp) ; t0 <- b # Is b smaller

slti $t0, $t0, 10 ; t0 <- t0 < 10 # than 10?

not $t0, $t0 ; t0 <- !t0

bgtz $t0, L0: ; if t0>=0 goto L0

lw $t0, 4($fp) ; t0 <- b # YES

b L1: ; goto L1

L0: lw $t0, 8($fp) ;L0: t0 <- c # NO

L1: sw 0($fp), $t0 ;L1: a <- t0
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Implementation Mechanisms

• Translation = Analysis + Synthesis

Interpretation = Analysis + Execution
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Implementation Mechanisms

• Translation = Analysis + Synthesis

Interpretation = Analysis + Execution

• Translation Instructions
Equivalent

Instructions

Interpretation Instructions
Actions Implied

by Instructions
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Language Implementation Models
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Language Processor Models

C,C++

Java,
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End
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Typical Front Ends

Parser
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The Structure of a Simple Compiler

Parser

Scanner
Semantic
Analyser

Symtab
Handler

Source Program
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The Structure of a Simple Compiler
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Translation Sequence in Our Compiler: Parsing

a=b<10?b:c;

Input
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Translation Sequence in Our Compiler: Parsing

a=b<10?b:c;

Input

AsgnStmnt

Lhs = E ;

E ? E : E

E < E

name

name name

name num
Parse Tree

Issues:

• Grammar rules, terminals, non-terminals

• Order of application of grammar rules

eg. is it (a = b<10?) followed by (b:c)?

• Values of terminal symbols

eg. string “10” vs. integer number 10.
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Translation Sequence in Our Compiler: Semantic Analysis
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Translation Sequence in Our Compiler: Semantic Analysis

a=b<10?b:c;

Input

AsgnStmnt

Lhs = E ;

E ? E : E

E < E

name

name name

name num
Parse Tree

=
name
(a,int) ?: (int)

<

(bool)
name
(b,int)

name
(c,int)

name
(b,int)

num
(10,int)

Abstract Syntax Tree
(with attributes)

Issues:

• Symbol tables

Have variables been declared? What are their types?
What is their scope?

• Type consistency of operators and operands

The result of computing b<10? is bool and not int
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Translation Sequence in Our Compiler: IR Generation
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Translation Sequence in Our Compiler: IR Generation

a=b<10?b:c;

Input

AsgnStmnt

Lhs = E ;

E ? E : E

E < E

name

name name

name num
Parse Tree

=
name
(a,int) ?: (int)

<

(bool)
name
(b,int)

name
(c,int)

name
(b,int)

num
(10,int)

Abstract Syntax Tree
(with attributes)

=

T0
<

b 10
IfGoto

Not L0:

T0

=

T1 b
Goto

L1:
=

T1 c

L0:

=

T1a

L1:

Tree List

Issues:

• Convert to maximal trees which can be
implemented without altering control flow

Simplifies instruction selection and scheduling,
register allocation etc.

• Linearise control flow by flattening nested
control constructs
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Translation Sequence in Our Compiler: Instruction Selection
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T0

=

T1 b
Goto
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Tree List

T0 ← b
T0 ← T0 < 10
T0 ← ! T0

if T0 > 0 goto L0:
T1 ← b
goto L1:

L0: T1 ← c
L1: a ← T1

Instruction List Issues:

• Cover trees with as few
machine instructions as
possible

• Use temporaries and local
registers
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Translation Sequence in Our Compiler: Emitting Instructions

a=b<10?b:c;

Input

AsgnStmnt

Lhs = E ;

E ? E : E

E < E

name
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Parse Tree
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Goto
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=
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=
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T0 ← T0 < 10
T0 ← ! T0

if T0 > 0 goto L0:
T1 ← b
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L0: T1 ← c
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Instruction List

lw $t0, 4($fp)
slti $t0, $t0, 10
not $t0, $t0
bgtz $t0, L0:
lw $t0, 4($fp)
b L1:

L0: lw $t0, 8($fp)
L1: sw 0($fp), $t0

Assembly Code

Issues:

• Offsets of variables in the
stack frame

• Actual register numbers
and assembly mnemonics

• Code to construct and
discard activation records
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What is GCC?

• For the GCC developer community: The GNU Compiler Collection

• For other compiler writers: The Great Compiler Challenge
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The GNU Tool Chain

gcc

Source Program

Target Program
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The GNU Tool Chain
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Target Program
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The GNU Tool Chain

gcc

Source Program

Target Program

cc1 cpp

as

ld

glibc/newlib

GCC
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Why is Understanding GCC Difficult?

Some of the obvious reasons:

• Comprehensiveness

GCC is a production quality framework in terms of completeness
and practical usefulness

• Open development model

Could lead to heterogeneity. Design flaws may be difficult to correct

• Rapid versioning

GCC maintenance is a race against time. Disruptive corrections are
difficult

Essential Abstractions in GCC GCC Resource Center, IIT Bombay
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Open Source and Free Software Development Model

The Cathedral and the Bazaar [Eric S Raymond, 1997]
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Open Source and Free Software Development Model

The Cathedral and the Bazaar [Eric S Raymond, 1997]

• Cathedral: Total Centralized Control
Design, implement, test, release

• Bazaar: Total Decentralization
Release early, release often, make users partners in software

development

“Given enough eyeballs, all bugs are shallow”
Code errors, logical errors, and architectural errors

A combination of the two seems more sensible
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The Current Development Model of GCC

GCC follows a combination of the Cathedral and the Bazaar approaches

• GCC Steering Committee: Free Software Foundation has given
charge

◮ Major policy decisions
◮ Handling Administrative and Political issues

• Release Managers:
◮ Coordination of releases

• Maintainers:
◮ Usually area/branch/module specific
◮ Responsible for design and implementation
◮ Take help of reviewers to evaluate submitted changes

Essential Abstractions in GCC GCC Resource Center, IIT Bombay
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Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:
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C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86),

◮ Lesser-known target processors:

◮ Additional processors independently supported:
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Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64,

◮ Lesser-known target processors:

◮ Additional processors independently supported:
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Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64,

◮ Lesser-known target processors:

◮ Additional processors independently supported:
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Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000,

◮ Lesser-known target processors:

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS,

◮ Lesser-known target processors:

◮ Additional processors independently supported:
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Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,

◮ Lesser-known target processors:

◮ Additional processors independently supported:
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Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11,

◮ Lesser-known target processors:

◮ Additional processors independently supported:
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Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC,

◮ Lesser-known target processors:

◮ Additional processors independently supported:
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Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C,

◮ Lesser-known target processors:

◮ Additional processors independently supported:
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Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,

◮ Lesser-known target processors:

◮ Additional processors independently supported:
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Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries,

◮ Lesser-known target processors:

◮ Additional processors independently supported:
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Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH,

◮ Lesser-known target processors:

◮ Additional processors independently supported:
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Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC,

◮ Lesser-known target processors:

◮ Additional processors independently supported:
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Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:

◮ Additional processors independently supported:
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Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K,

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC,

◮ Additional processors independently supported:
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Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS,

◮ Additional processors independently supported:
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Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V,

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay
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Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx,

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay
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Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30,

◮ Additional processors independently supported:
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Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay
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Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,
Intel i960,

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,
Intel i960, IP2000,

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay
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Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,
Intel i960, IP2000, M32R,

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay
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Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,
Intel i960, IP2000, M32R, 68HC11,

◮ Additional processors independently supported:
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Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,
Intel i960, IP2000, M32R, 68HC11, MCORE,

◮ Additional processors independently supported:
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Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,
Intel i960, IP2000, M32R, 68HC11, MCORE, MMIX,

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay
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Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,
Intel i960, IP2000, M32R, 68HC11, MCORE, MMIX,
MN10200,

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay
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Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,
Intel i960, IP2000, M32R, 68HC11, MCORE, MMIX,
MN10200, MN10300,

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay
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Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,
Intel i960, IP2000, M32R, 68HC11, MCORE, MMIX,
MN10200, MN10300, Motorola 88000,

◮ Additional processors independently supported:
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Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,
Intel i960, IP2000, M32R, 68HC11, MCORE, MMIX,
MN10200, MN10300, Motorola 88000, NS32K,

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay
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Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,
Intel i960, IP2000, M32R, 68HC11, MCORE, MMIX,
MN10200, MN10300, Motorola 88000, NS32K, ROMP,

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay
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Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,
Intel i960, IP2000, M32R, 68HC11, MCORE, MMIX,
MN10200, MN10300, Motorola 88000, NS32K, ROMP,
Stormy16,

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay
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Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,
Intel i960, IP2000, M32R, 68HC11, MCORE, MMIX,
MN10200, MN10300, Motorola 88000, NS32K, ROMP,
Stormy16, V850,

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay
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Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,
Intel i960, IP2000, M32R, 68HC11, MCORE, MMIX,
MN10200, MN10300, Motorola 88000, NS32K, ROMP,
Stormy16, V850, Xtensa,

◮ Additional processors independently supported:
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Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,
Intel i960, IP2000, M32R, 68HC11, MCORE, MMIX,
MN10200, MN10300, Motorola 88000, NS32K, ROMP,
Stormy16, V850, Xtensa, AVR32

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay
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Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,
Intel i960, IP2000, M32R, 68HC11, MCORE, MMIX,
MN10200, MN10300, Motorola 88000, NS32K, ROMP,
Stormy16, V850, Xtensa, AVR32

◮ Additional processors independently supported:
D10V,
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Intel i960, IP2000, M32R, 68HC11, MCORE, MMIX,
MN10200, MN10300, Motorola 88000, NS32K, ROMP,
Stormy16, V850, Xtensa, AVR32

◮ Additional processors independently supported:
D10V, LatticeMico32, MeP,
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Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX
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A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,
Intel i960, IP2000, M32R, 68HC11, MCORE, MMIX,
MN10200, MN10300, Motorola 88000, NS32K, ROMP,
Stormy16, V850, Xtensa, AVR32

◮ Additional processors independently supported:
D10V, LatticeMico32, MeP, Motorola 6809,
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Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
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System/390/zSeries, SuperH, SPARC, VAX
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A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,
Intel i960, IP2000, M32R, 68HC11, MCORE, MMIX,
MN10200, MN10300, Motorola 88000, NS32K, ROMP,
Stormy16, V850, Xtensa, AVR32

◮ Additional processors independently supported:
D10V, LatticeMico32, MeP, Motorola 6809, MicroBlaze,
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Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,
Intel i960, IP2000, M32R, 68HC11, MCORE, MMIX,
MN10200, MN10300, Motorola 88000, NS32K, ROMP,
Stormy16, V850, Xtensa, AVR32

◮ Additional processors independently supported:
D10V, LatticeMico32, MeP, Motorola 6809, MicroBlaze,
MSP430,
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Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,
Intel i960, IP2000, M32R, 68HC11, MCORE, MMIX,
MN10200, MN10300, Motorola 88000, NS32K, ROMP,
Stormy16, V850, Xtensa, AVR32

◮ Additional processors independently supported:
D10V, LatticeMico32, MeP, Motorola 6809, MicroBlaze,
MSP430, Nios II and Nios,
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Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,
Intel i960, IP2000, M32R, 68HC11, MCORE, MMIX,
MN10200, MN10300, Motorola 88000, NS32K, ROMP,
Stormy16, V850, Xtensa, AVR32

◮ Additional processors independently supported:
D10V, LatticeMico32, MeP, Motorola 6809, MicroBlaze,
MSP430, Nios II and Nios, PDP-10,
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Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,
Intel i960, IP2000, M32R, 68HC11, MCORE, MMIX,
MN10200, MN10300, Motorola 88000, NS32K, ROMP,
Stormy16, V850, Xtensa, AVR32

◮ Additional processors independently supported:
D10V, LatticeMico32, MeP, Motorola 6809, MicroBlaze,
MSP430, Nios II and Nios, PDP-10, TIGCC (m68k variant),
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Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,
Intel i960, IP2000, M32R, 68HC11, MCORE, MMIX,
MN10200, MN10300, Motorola 88000, NS32K, ROMP,
Stormy16, V850, Xtensa, AVR32

◮ Additional processors independently supported:
D10V, LatticeMico32, MeP, Motorola 6809, MicroBlaze,
MSP430, Nios II and Nios, PDP-10, TIGCC (m68k variant),
Z8000,
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Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,
Intel i960, IP2000, M32R, 68HC11, MCORE, MMIX,
MN10200, MN10300, Motorola 88000, NS32K, ROMP,
Stormy16, V850, Xtensa, AVR32

◮ Additional processors independently supported:
D10V, LatticeMico32, MeP, Motorola 6809, MicroBlaze,
MSP430, Nios II and Nios, PDP-10, TIGCC (m68k variant),
Z8000, PIC24/dsPIC,
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Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,
Intel i960, IP2000, M32R, 68HC11, MCORE, MMIX,
MN10200, MN10300, Motorola 88000, NS32K, ROMP,
Stormy16, V850, Xtensa, AVR32

◮ Additional processors independently supported:
D10V, LatticeMico32, MeP, Motorola 6809, MicroBlaze,
MSP430, Nios II and Nios, PDP-10, TIGCC (m68k variant),
Z8000, PIC24/dsPIC, NEC SX architecture
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Comprehensiveness of GCC: Size

Count gcc-4.3.0 gcc-4.4.2 gcc-4.5.0

Lines
The main source 2029115 2187216 2320963
Libraries 1546826 1633558 1671501

Files

Subdirectories 3527 3794 4055

Total number of files 57660 62301 77782
C source files 15477 18225 20024
Header files 9646 9213 9389
C++ files 3708 4232 4801
Java files 6289 6340 6340
Makefiles and templates 163 163 169
Configuration scripts 52 52 56
Machine description files 186 206 229

(Line counts estimated by David A. Wheeler’s sloccount program)
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Why is Understanding GCC Difficult?

Deeper reason: GCC is not a compiler but a compiler generation

framework

There are two distinct gaps that need to be bridged:

• Input-output of the generation framework: The target specification
and the generated compiler

• Input-output of the generated compiler: A source program and the
generated assembly program
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The Architecture of GCC
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An Example of The Generation Related Gap

• Predicate function for invoking the loop distribution pass

static bool

gate_tree_loop_distribution (void)

{

return flag_tree_loop_distribution != 0;

}
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An Example of The Generation Related Gap

• Predicate function for invoking the loop distribution pass

static bool

gate_tree_loop_distribution (void)

{

return flag_tree_loop_distribution != 0;

}

• There is no declaration of or assignment to variable
flag_tree_loop_distribution in the entire source!

• It is described in common.opt as follows

ftree-loop-distribution

Common Report Var(flag_tree_loop_distribution) Optimization

Enable loop distribution on trees

• The required C statements are generated during the build
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Another Example of The Generation Related Gap

Locating the main function in the directory gcc-4.5.0/gcc using cscope

File Line

0 collect2.c 1111 main (int argc, char **argv)

1 fp-test.c 85 main (void )

2 gcc.c 6803 main (int argc, char **argv)

3 gcov-dump.c 76 main (int argc ATTRIBUTE_UNUSED, char **argv)

4 gcov-iov.c 29 main (int argc, char **argv)

5 gcov.c 355 main (int argc, char **argv)

6 genattr.c 89 main (int argc, char **argv)

7 genattrtab.c 4439 main (int argc, char **argv)

8 genautomata.c 9475 main (int argc, char **argv)

9 genchecksum.c 67 main (int argc, char ** argv)

a gencodes.c 51 main (int argc, char **argv)

b genconditions.c 209 main (int argc, char **argv)

c genconfig.c 261 main (int argc, char **argv)

d genconstants.c 50 main (int argc, char **argv)

e genemit.c 825 main (int argc, char **argv)

f genextract.c 401 main (int argc, char **argv)

g genflags.c 250 main (int argc, char **argv)

h gengenrtl.c 350 main (int argc, char **argv)
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Another Example of The Generation Related Gap

Locating the main function in the directory gcc-4.5.0/gcc using cscope

File Line

g genflags.c 250 main (int argc, char **argv)

h gengenrtl.c 350 main (int argc, char **argv)

i gengtype.c 3694 main (int argc, char **argv)

j genmddeps.c 45 main (int argc, char **argv)

k genmodes.c 1376 main (int argc, char **argv)

l genopinit.c 469 main (int argc, char **argv)

m genoutput.c 1023 main (int argc, char **argv)

n genpeep.c 353 main (int argc, char **argv)

o genpreds.c 1404 main (int argc, char **argv)

p genrecog.c 2722 main (int argc, char **argv)

q lto-wrapper.c 412 main (int argc, char *argv[])

r main.c 33 main (int argc, char **argv)

s mips-tdump.c 1393 main (int argc, char **argv)

t mips-tfile.c 655 main (void )

u mips-tfile.c 4695 main (int argc, char **argv)

v tlink.c 61 const char *main;
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The GCC Challenge: Poor Retargetability Mechanism

• Symptom of poor retargetability mechanism

Large size of specifications
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The GCC Challenge: Poor Retargetability Mechanism

• Symptom of poor retargetability mechanism

Large size of specifications

• Size in terms of line counts

Files i386 mips

*.md 35766 12930

*.c 28643 12572

*.h 15694 5105
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Meeting the GCC Challenge

Goal of Understanding Methodology
Needs Examining

Makefiles Source MD

Translation sequence
of programs

Gray box probing No No No

Build process
Customizing the
configuration and
building

Yes No No

Retargetability
issues and machine
descriptions

Incremental
construction of
machine descriptions

No No Yes

IR data structures
and access
mechanisms

Adding passes to
massage IRs

No Yes Yes

Retargetability
mechanism

Yes Yes Yes
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