
Workshop on Essential Abstractions in GCC

An Overview of Compilation and GCC

GCC Resource Center

(www.cse.iitb.ac.in/grc)

Department of Computer Science and Engineering,

Indian Institute of Technology, Bombay

July 2010

July 2010 Overview: Outline 1/29

Outline

• Introduction to Compilation

• An Overview of Compilation Phases

• An Overview of GCC

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

Part 1

Introduction to Compilation

July 2010 Overview: Introduction to Compilation 2/29

Binding

Time

No.of
unbound
objects

Nothing is known except the problem

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: Introduction to Compilation 2/29

Binding

Time

No.of
unbound
objects

Conceptualisation

Overall strategy, algorithm, data structures etc.

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: Introduction to Compilation 2/29

Binding

Time

No.of
unbound
objects

Conceptualisation Coding

Functions, variables, their types etc.

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: Introduction to Compilation 2/29

Binding

Time

No.of
unbound
objects

Conceptualisation Coding Compiling

Machine instructions, registers etc.

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: Introduction to Compilation 2/29

Binding

Time

No.of
unbound
objects

Conceptualisation Coding Compiling Linking

Addresses of functions, external data etc.

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: Introduction to Compilation 2/29

Binding

Time

No.of
unbound
objects

Conceptualisation Coding Compiling Linking Loading

Actual addresses
of code and data

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: Introduction to Compilation 2/29

Binding

Time

No.of
unbound
objects

Conceptualisation Coding Compiling Linking Loading Execution

Values of variables

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: Introduction to Compilation 3/29

Implementation Mechanisms

Source Program

Translator

Target Program

Machine

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: Introduction to Compilation 3/29

Implementation Mechanisms

Source Program

Translator

Target Program

Machine

Input Data

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: Introduction to Compilation 3/29

Implementation Mechanisms

Source Program

Translator

Target Program

Machine

Input Data

Source Program

Interpreter

Machine

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: Introduction to Compilation 4/29

Implementation Mechanisms as “Bridges”

• “Gap” between the “levels” of program specification and execution

Program Specification

Machine

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: Introduction to Compilation 4/29

Implementation Mechanisms as “Bridges”

• “Gap” between the “levels” of program specification and execution

Program Specification

Machine

Translation

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: Introduction to Compilation 4/29

Implementation Mechanisms as “Bridges”

• “Gap” between the “levels” of program specification and execution

Program Specification

Machine

Translation Interpretation

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: Introduction to Compilation 4/29

Implementation Mechanisms as “Bridges”

• “Gap” between the “levels” of program specification and execution

Program Specification

Machine

Translation Interpretation

State : Variables
Operations: Expressions,

Control Flow

State : Memory,
Registers

Operations: Machine
Instructions

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: Introduction to Compilation 5/29

High and Low Level Abstractions

Input C statement

a = b<10?b:c;

Spim Assembly Equivalent

lw $t0, 4($fp) ; t0 <- b # Is b smaller

slti $t0, $t0, 10 ; t0 <- t0 < 10 # than 10?

not $t0, $t0 ; t0 <- !t0

bgtz $t0, L0: ; if t0>=0 goto L0

lw $t0, 4($fp) ; t0 <- b # YES

b L1: ; goto L1

L0: lw $t0, 8($fp) ;L0: t0 <- c # NO

L1: sw 0($fp), $t0 ;L1: a <- t0

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: Introduction to Compilation 5/29

High and Low Level Abstractions

Input C statement

a = b<10?b:c;

Spim Assembly Equivalent

lw $t0, 4($fp) ; t0 <- b # Is b smaller

slti $t0, $t0, 10 ; t0 <- t0 < 10 # than 10?

not $t0, $t0 ; t0 <- !t0

bgtz $t0, L0: ; if t0>=0 goto L0

lw $t0, 4($fp) ; t0 <- b # YES

b L1: ; goto L1

L0: lw $t0, 8($fp) ;L0: t0 <- c # NO

L1: sw 0($fp), $t0 ;L1: a <- t0

Condition

False Part

True Part

Fall throughConditional jump

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: Introduction to Compilation 5/29

High and Low Level Abstractions

Input C statement

a = b<10?b:c;

Spim Assembly Equivalent

lw $t0, 4($fp) ; t0 <- b # Is b smaller

slti $t0, $t0, 10 ; t0 <- t0 < 10 # than 10?

not $t0, $t0 ; t0 <- !t0

bgtz $t0, L0: ; if t0>=0 goto L0

lw $t0, 4($fp) ; t0 <- b # YES

b L1: ; goto L1

L0: lw $t0, 8($fp) ;L0: t0 <- c # NO

L1: sw 0($fp), $t0 ;L1: a <- t0

NOT Condition

True Part

False Part

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: Introduction to Compilation 5/29

High and Low Level Abstractions

Input C statement

a = b<10?b:c;

Spim Assembly Equivalent

lw $t0, 4($fp) ; t0 <- b # Is b smaller

slti $t0, $t0, 10 ; t0 <- t0 < 10 # than 10?

not $t0, $t0 ; t0 <- !t0

bgtz $t0, L0: ; if t0>=0 goto L0

lw $t0, 4($fp) ; t0 <- b # YES

b L1: ; goto L1

L0: lw $t0, 8($fp) ;L0: t0 <- c # NO

L1: sw 0($fp), $t0 ;L1: a <- t0

NOT Condition

True Part

False Part

Fall throughConditional jump

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: Introduction to Compilation 6/29

Implementation Mechanisms

• Translation = Analysis + Synthesis

Interpretation = Analysis + Execution

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: Introduction to Compilation 6/29

Implementation Mechanisms

• Translation = Analysis + Synthesis

Interpretation = Analysis + Execution

• Translation Instructions
Equivalent

Instructions

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: Introduction to Compilation 6/29

Implementation Mechanisms

• Translation = Analysis + Synthesis

Interpretation = Analysis + Execution

• Translation Instructions
Equivalent

Instructions

Interpretation Instructions
Actions Implied

by Instructions

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: Introduction to Compilation 7/29

Language Implementation Models

Analysis

Synthesis

Execution

Compilation

Interpretation

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: Introduction to Compilation 8/29

Language Processor Models

C,C++

Java,
C#

Front
End

Optimizer

Back
End

Virtual
Machine

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: Introduction to Compilation 9/29

Typical Front Ends

Parser

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: Introduction to Compilation 9/29

Typical Front Ends

ParserSource
Program

Scanner

Tokens

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: Introduction to Compilation 9/29

Typical Front Ends

ParserSource
Program

Scanner

Tokens

Semantic
Analyzer

AST

Parse
Tree

AST or Linear IR
+

Symbol Table

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: Introduction to Compilation 9/29

Typical Front Ends

ParserSource
Program

Scanner

Tokens

Semantic
Analyzer

AST

Parse
Tree

AST or Linear IR
+

Symbol Table

Error
Handler

Symtab
Handler

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: Introduction to Compilation 10/29

Typical Back Ends

m/c Ind.
IR

m/c Ind.
Optimizer

− Compile time
evaluations

− Eliminating
redundant
computations

m/c
Ind.
IR

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: Introduction to Compilation 10/29

Typical Back Ends

m/c Ind.
IR

m/c Ind.
Optimizer

− Compile time
evaluations

− Eliminating
redundant
computations

m/c
Ind.
IR

Code
Generator

m/c
Dep.
IR

− Instruction Selection
− Local Reg Allocation
− Choice of Order of

Evaluation

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: Introduction to Compilation 10/29

Typical Back Ends

m/c Ind.
IR

m/c Ind.
Optimizer

− Compile time
evaluations

− Eliminating
redundant
computations

m/c
Ind.
IR

Code
Generator

m/c
Dep.
IR

− Instruction Selection
− Local Reg Allocation
− Choice of Order of

Evaluation

m/c Dep.
Optimizer

Assembly Code

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: Introduction to Compilation 10/29

Typical Back Ends

m/c Ind.
IR

m/c Ind.
Optimizer

− Compile time
evaluations

− Eliminating
redundant
computations

m/c
Ind.
IR

Code
Generator

m/c
Dep.
IR

− Instruction Selection
− Local Reg Allocation
− Choice of Order of

Evaluation

Assembly Code

Register
Allocator

Instruction
Scheduler

Peephole
Optimizer

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

Part 2

An Overview of Compilation Phases

July 2010 Overview: An Overview of Compilation Phases 11/29

The Structure of a Simple Compiler

Parser

Scanner
Semantic
Analyser

Symtab
Handler

Source Program

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: An Overview of Compilation Phases 11/29

The Structure of a Simple Compiler

Parser

Scanner
Semantic
Analyser

Symtab
Handler

Source Program

Instruction
SelectorAST

Register
Allocator

Assembly
EmitterInsn

Assembly
Program

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: An Overview of Compilation Phases 11/29

The Structure of a Simple Compiler

Parser

Scanner
Semantic
Analyser

Symtab
Handler

Source Program

Instruction
SelectorAST

Register
Allocator

Assembly
EmitterInsn

Assembly
Program

Front End Back End

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: An Overview of Compilation Phases 12/29

Translation Sequence in Our Compiler: Parsing

a=b<10?b:c;

Input

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: An Overview of Compilation Phases 12/29

Translation Sequence in Our Compiler: Parsing

a=b<10?b:c;

Input

AsgnStmnt

Lhs = E ;

E ? E : E

E < E

name

name name

name num
Parse Tree

Issues:

• Grammar rules, terminals, non-terminals

• Order of application of grammar rules

eg. is it (a = b<10?) followed by (b:c)?

• Values of terminal symbols

eg. string “10” vs. integer number 10.

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: An Overview of Compilation Phases 13/29

Translation Sequence in Our Compiler: Semantic Analysis

a=b<10?b:c;

Input

AsgnStmnt

Lhs = E ;

E ? E : E

E < E

name

name name

name num
Parse Tree

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: An Overview of Compilation Phases 13/29

Translation Sequence in Our Compiler: Semantic Analysis

a=b<10?b:c;

Input

AsgnStmnt

Lhs = E ;

E ? E : E

E < E

name

name name

name num
Parse Tree

=
name
(a,int) ?: (int)

<

(bool)
name
(b,int)

name
(c,int)

name
(b,int)

num
(10,int)

Abstract Syntax Tree
(with attributes)

Issues:

• Symbol tables

Have variables been declared? What are their types?
What is their scope?

• Type consistency of operators and operands

The result of computing b<10? is bool and not int

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: An Overview of Compilation Phases 14/29

Translation Sequence in Our Compiler: IR Generation

a=b<10?b:c;

Input

AsgnStmnt

Lhs = E ;

E ? E : E

E < E

name

name name

name num
Parse Tree

=
name
(a,int) ?: (int)

<

(bool)
name
(b,int)

name
(c,int)

name
(b,int)

num
(10,int)

Abstract Syntax Tree
(with attributes)

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: An Overview of Compilation Phases 14/29

Translation Sequence in Our Compiler: IR Generation

a=b<10?b:c;

Input

AsgnStmnt

Lhs = E ;

E ? E : E

E < E

name

name name

name num
Parse Tree

=
name
(a,int) ?: (int)

<

(bool)
name
(b,int)

name
(c,int)

name
(b,int)

num
(10,int)

Abstract Syntax Tree
(with attributes)

=

T0
<

b 10
IfGoto

Not L0:

T0

=

T1 b
Goto

L1:
=

T1 c

L0:

=

T1a

L1:

Tree List

Issues:

• Convert to maximal trees which can be
implemented without altering control flow

Simplifies instruction selection and scheduling,
register allocation etc.

• Linearise control flow by flattening nested
control constructs

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: An Overview of Compilation Phases 15/29

Translation Sequence in Our Compiler: Instruction Selection

a=b<10?b:c;

Input

AsgnStmnt

Lhs = E ;

E ? E : E

E < E

name

name name

name num
Parse Tree

=
name
(a,int) ?: (int)

<

(bool)
name
(b,int)

name
(c,int)

name
(b,int)

num
(10,int)

Abstract Syntax Tree
(with attributes)

=

T0
<

b 10
IfGoto

Not L0:

T0

=

T1 b
Goto

L1:
=

T1 c

L0:

=

T1a

L1:

Tree List

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: An Overview of Compilation Phases 15/29

Translation Sequence in Our Compiler: Instruction Selection

a=b<10?b:c;

Input

AsgnStmnt

Lhs = E ;

E ? E : E

E < E

name

name name

name num
Parse Tree

=
name
(a,int) ?: (int)

<

(bool)
name
(b,int)

name
(c,int)

name
(b,int)

num
(10,int)

Abstract Syntax Tree
(with attributes)

=

T0
<

b 10
IfGoto

Not L0:

T0

=

T1 b
Goto

L1:
=

T1 c

L0:

=

T1a

L1:

Tree List

T0 ← b
T0 ← T0 < 10
T0 ← ! T0

if T0 > 0 goto L0:
T1 ← b
goto L1:

L0: T1 ← c
L1: a ← T1

Instruction List Issues:

• Cover trees with as few
machine instructions as
possible

• Use temporaries and local
registers

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: An Overview of Compilation Phases 16/29

Translation Sequence in Our Compiler: Emitting Instructions

a=b<10?b:c;

Input

AsgnStmnt

Lhs = E ;

E ? E : E

E < E

name

name name

name num
Parse Tree

=
name
(a,int) ?: (int)

<

(bool)
name
(b,int)

name
(c,int)

name
(b,int)

num
(10,int)

Abstract Syntax Tree
(with attributes)

=

T0
<

b 10
IfGoto

Not L0:

T0

=

T1 b
Goto

L1:
=

T1 c

L0:

=

T1a

L1:

Tree List

T0 ← b
T0 ← T0 < 10
T0 ← ! T0

if T0 > 0 goto L0:
T1 ← b
goto L1:

L0: T1 ← c
L1: a ← T1

Instruction List

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: An Overview of Compilation Phases 16/29

Translation Sequence in Our Compiler: Emitting Instructions

a=b<10?b:c;

Input

AsgnStmnt

Lhs = E ;

E ? E : E

E < E

name

name name

name num
Parse Tree

=
name
(a,int) ?: (int)

<

(bool)
name
(b,int)

name
(c,int)

name
(b,int)

num
(10,int)

Abstract Syntax Tree
(with attributes)

=

T0
<

b 10
IfGoto

Not L0:

T0

=

T1 b
Goto

L1:
=

T1 c

L0:

=

T1a

L1:

Tree List

T0 ← b
T0 ← T0 < 10
T0 ← ! T0

if T0 > 0 goto L0:
T1 ← b
goto L1:

L0: T1 ← c
L1: a ← T1

Instruction List

lw $t0, 4($fp)
slti $t0, $t0, 10
not $t0, $t0
bgtz $t0, L0:
lw $t0, 4($fp)
b L1:

L0: lw $t0, 8($fp)
L1: sw 0($fp), $t0

Assembly Code

Issues:

• Offsets of variables in the
stack frame

• Actual register numbers
and assembly mnemonics

• Code to construct and
discard activation records

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

Part 3

GCC ≡ The Great Compiler Challenge

July 2010 Overview: GCC ≡ The Great Compiler Challenge 17/29

What is GCC?

• For the GCC developer community: The GNU Compiler Collection

• For other compiler writers: The Great Compiler Challenge

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 18/29

The GNU Tool Chain

gcc

Source Program

Target Program

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 18/29

The GNU Tool Chain

gcc

Source Program

Target Program

cc1 cpp

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 18/29

The GNU Tool Chain

gcc

Source Program

Target Program

cc1 cpp

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 18/29

The GNU Tool Chain

gcc

Source Program

Target Program

cc1 cpp

as

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 18/29

The GNU Tool Chain

gcc

Source Program

Target Program

cc1 cpp

as

ld

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 18/29

The GNU Tool Chain

gcc

Source Program

Target Program

cc1 cpp

as

ld

glibc/newlib

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 18/29

The GNU Tool Chain

gcc

Source Program

Target Program

cc1 cpp

as

ld

glibc/newlib

GCC

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 19/29

Why is Understanding GCC Difficult?

Some of the obvious reasons:

• Comprehensiveness

GCC is a production quality framework in terms of completeness
and practical usefulness

• Open development model

Could lead to heterogeneity. Design flaws may be difficult to correct

• Rapid versioning

GCC maintenance is a race against time. Disruptive corrections are
difficult

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 20/29

Open Source and Free Software Development Model

The Cathedral and the Bazaar [Eric S Raymond, 1997]

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 20/29

Open Source and Free Software Development Model

The Cathedral and the Bazaar [Eric S Raymond, 1997]

• Cathedral: Total Centralized Control
Design, implement, test, release

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 20/29

Open Source and Free Software Development Model

The Cathedral and the Bazaar [Eric S Raymond, 1997]

• Cathedral: Total Centralized Control
Design, implement, test, release

• Bazaar: Total Decentralization
Release early, release often, make users partners in software

development

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 20/29

Open Source and Free Software Development Model

The Cathedral and the Bazaar [Eric S Raymond, 1997]

• Cathedral: Total Centralized Control
Design, implement, test, release

• Bazaar: Total Decentralization
Release early, release often, make users partners in software

development

“Given enough eyeballs, all bugs are shallow”

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 20/29

Open Source and Free Software Development Model

The Cathedral and the Bazaar [Eric S Raymond, 1997]

• Cathedral: Total Centralized Control
Design, implement, test, release

• Bazaar: Total Decentralization
Release early, release often, make users partners in software

development

“Given enough eyeballs, all bugs are shallow”
Code errors, logical errors, and architectural errors

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 20/29

Open Source and Free Software Development Model

The Cathedral and the Bazaar [Eric S Raymond, 1997]

• Cathedral: Total Centralized Control
Design, implement, test, release

• Bazaar: Total Decentralization
Release early, release often, make users partners in software

development

“Given enough eyeballs, all bugs are shallow”
Code errors, logical errors, and architectural errors

A combination of the two seems more sensible

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 21/29

The Current Development Model of GCC

GCC follows a combination of the Cathedral and the Bazaar approaches

• GCC Steering Committee: Free Software Foundation has given
charge

◮ Major policy decisions
◮ Handling Administrative and Political issues

• Release Managers:
◮ Coordination of releases

• Maintainers:
◮ Usually area/branch/module specific
◮ Responsible for design and implementation
◮ Take help of reviewers to evaluate submitted changes

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:

◮ Lesser-known target processors:

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha,

◮ Lesser-known target processors:

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM,

◮ Lesser-known target processors:

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR,

◮ Lesser-known target processors:

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin,

◮ Lesser-known target processors:

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12,

◮ Lesser-known target processors:

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300,

◮ Lesser-known target processors:

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86),

◮ Lesser-known target processors:

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64,

◮ Lesser-known target processors:

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64,

◮ Lesser-known target processors:

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000,

◮ Lesser-known target processors:

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS,

◮ Lesser-known target processors:

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,

◮ Lesser-known target processors:

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11,

◮ Lesser-known target processors:

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC,

◮ Lesser-known target processors:

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C,

◮ Lesser-known target processors:

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,

◮ Lesser-known target processors:

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries,

◮ Lesser-known target processors:

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH,

◮ Lesser-known target processors:

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC,

◮ Lesser-known target processors:

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K,

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC,

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS,

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V,

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx,

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30,

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,
Intel i960,

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,
Intel i960, IP2000,

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,
Intel i960, IP2000, M32R,

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,
Intel i960, IP2000, M32R, 68HC11,

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,
Intel i960, IP2000, M32R, 68HC11, MCORE,

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,
Intel i960, IP2000, M32R, 68HC11, MCORE, MMIX,

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,
Intel i960, IP2000, M32R, 68HC11, MCORE, MMIX,
MN10200,

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,
Intel i960, IP2000, M32R, 68HC11, MCORE, MMIX,
MN10200, MN10300,

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,
Intel i960, IP2000, M32R, 68HC11, MCORE, MMIX,
MN10200, MN10300, Motorola 88000,

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,
Intel i960, IP2000, M32R, 68HC11, MCORE, MMIX,
MN10200, MN10300, Motorola 88000, NS32K,

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,
Intel i960, IP2000, M32R, 68HC11, MCORE, MMIX,
MN10200, MN10300, Motorola 88000, NS32K, ROMP,

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,
Intel i960, IP2000, M32R, 68HC11, MCORE, MMIX,
MN10200, MN10300, Motorola 88000, NS32K, ROMP,
Stormy16,

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,
Intel i960, IP2000, M32R, 68HC11, MCORE, MMIX,
MN10200, MN10300, Motorola 88000, NS32K, ROMP,
Stormy16, V850,

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,
Intel i960, IP2000, M32R, 68HC11, MCORE, MMIX,
MN10200, MN10300, Motorola 88000, NS32K, ROMP,
Stormy16, V850, Xtensa,

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,
Intel i960, IP2000, M32R, 68HC11, MCORE, MMIX,
MN10200, MN10300, Motorola 88000, NS32K, ROMP,
Stormy16, V850, Xtensa, AVR32

◮ Additional processors independently supported:

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,
Intel i960, IP2000, M32R, 68HC11, MCORE, MMIX,
MN10200, MN10300, Motorola 88000, NS32K, ROMP,
Stormy16, V850, Xtensa, AVR32

◮ Additional processors independently supported:
D10V,

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,
Intel i960, IP2000, M32R, 68HC11, MCORE, MMIX,
MN10200, MN10300, Motorola 88000, NS32K, ROMP,
Stormy16, V850, Xtensa, AVR32

◮ Additional processors independently supported:
D10V, LatticeMico32, MeP,

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,
Intel i960, IP2000, M32R, 68HC11, MCORE, MMIX,
MN10200, MN10300, Motorola 88000, NS32K, ROMP,
Stormy16, V850, Xtensa, AVR32

◮ Additional processors independently supported:
D10V, LatticeMico32, MeP,

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,
Intel i960, IP2000, M32R, 68HC11, MCORE, MMIX,
MN10200, MN10300, Motorola 88000, NS32K, ROMP,
Stormy16, V850, Xtensa, AVR32

◮ Additional processors independently supported:
D10V, LatticeMico32, MeP, Motorola 6809,

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,
Intel i960, IP2000, M32R, 68HC11, MCORE, MMIX,
MN10200, MN10300, Motorola 88000, NS32K, ROMP,
Stormy16, V850, Xtensa, AVR32

◮ Additional processors independently supported:
D10V, LatticeMico32, MeP, Motorola 6809, MicroBlaze,

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,
Intel i960, IP2000, M32R, 68HC11, MCORE, MMIX,
MN10200, MN10300, Motorola 88000, NS32K, ROMP,
Stormy16, V850, Xtensa, AVR32

◮ Additional processors independently supported:
D10V, LatticeMico32, MeP, Motorola 6809, MicroBlaze,
MSP430,

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,
Intel i960, IP2000, M32R, 68HC11, MCORE, MMIX,
MN10200, MN10300, Motorola 88000, NS32K, ROMP,
Stormy16, V850, Xtensa, AVR32

◮ Additional processors independently supported:
D10V, LatticeMico32, MeP, Motorola 6809, MicroBlaze,
MSP430, Nios II and Nios,

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,
Intel i960, IP2000, M32R, 68HC11, MCORE, MMIX,
MN10200, MN10300, Motorola 88000, NS32K, ROMP,
Stormy16, V850, Xtensa, AVR32

◮ Additional processors independently supported:
D10V, LatticeMico32, MeP, Motorola 6809, MicroBlaze,
MSP430, Nios II and Nios, PDP-10,

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,
Intel i960, IP2000, M32R, 68HC11, MCORE, MMIX,
MN10200, MN10300, Motorola 88000, NS32K, ROMP,
Stormy16, V850, Xtensa, AVR32

◮ Additional processors independently supported:
D10V, LatticeMico32, MeP, Motorola 6809, MicroBlaze,
MSP430, Nios II and Nios, PDP-10, TIGCC (m68k variant),

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,
Intel i960, IP2000, M32R, 68HC11, MCORE, MMIX,
MN10200, MN10300, Motorola 88000, NS32K, ROMP,
Stormy16, V850, Xtensa, AVR32

◮ Additional processors independently supported:
D10V, LatticeMico32, MeP, Motorola 6809, MicroBlaze,
MSP430, Nios II and Nios, PDP-10, TIGCC (m68k variant),
Z8000,

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,
Intel i960, IP2000, M32R, 68HC11, MCORE, MMIX,
MN10200, MN10300, Motorola 88000, NS32K, ROMP,
Stormy16, V850, Xtensa, AVR32

◮ Additional processors independently supported:
D10V, LatticeMico32, MeP, Motorola 6809, MicroBlaze,
MSP430, Nios II and Nios, PDP-10, TIGCC (m68k variant),
Z8000, PIC24/dsPIC,

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 22/29

Comprehensiveness of GCC: Wide Applicability

• Input languages supported:
C, C++, Objective-C, Objective-C++, Java, Fortran, and Ada

• Processors supported in standard releases:

◮ Common processors:
Alpha, ARM, Atmel AVR, Blackfin, HC12, H8/300, IA-32
(x86), x86-64, IA-64, Motorola 68000, MIPS, PA-RISC,
PDP-11, PowerPC, R8C/M16C/M32C, SPU,
System/390/zSeries, SuperH, SPARC, VAX

◮ Lesser-known target processors:
A29K, ARC, ETRAX CRIS, D30V, DSP16xx, FR-30, FR-V,
Intel i960, IP2000, M32R, 68HC11, MCORE, MMIX,
MN10200, MN10300, Motorola 88000, NS32K, ROMP,
Stormy16, V850, Xtensa, AVR32

◮ Additional processors independently supported:
D10V, LatticeMico32, MeP, Motorola 6809, MicroBlaze,
MSP430, Nios II and Nios, PDP-10, TIGCC (m68k variant),
Z8000, PIC24/dsPIC, NEC SX architecture

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 23/29

Comprehensiveness of GCC: Size

Count gcc-4.3.0 gcc-4.4.2 gcc-4.5.0

Lines
The main source 2029115 2187216 2320963
Libraries 1546826 1633558 1671501

Files

Subdirectories 3527 3794 4055

Total number of files 57660 62301 77782
C source files 15477 18225 20024
Header files 9646 9213 9389
C++ files 3708 4232 4801
Java files 6289 6340 6340
Makefiles and templates 163 163 169
Configuration scripts 52 52 56
Machine description files 186 206 229

(Line counts estimated by David A. Wheeler’s sloccount program)

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 24/29

Why is Understanding GCC Difficult?

Deeper reason: GCC is not a compiler but a compiler generation

framework

There are two distinct gaps that need to be bridged:

• Input-output of the generation framework: The target specification
and the generated compiler

• Input-output of the generated compiler: A source program and the
generated assembly program

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 25/29

The Architecture of GCC

Language
Specific
Code

Language and
Machine

Independent
Generic Code

Machine
Dependent
Generator

Code

Machine
Descriptions

Compiler Generation Framework

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 25/29

The Architecture of GCC

Language
Specific
Code

Language and
Machine

Independent
Generic Code

Machine
Dependent
Generator

Code

Machine
Descriptions

Compiler Generation Framework

Parser Gimplifier
Tree SSA
Optimizer

RTL
Generator

Optimizer
Code

Generator

Generated Compiler (cc1)

Source Program Assembly Program

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 25/29

The Architecture of GCC

Language
Specific
Code

Language and
Machine

Independent
Generic Code

Machine
Dependent
Generator

Code

Machine
Descriptions

Compiler Generation Framework

Parser Gimplifier
Tree SSA
Optimizer

RTL
Generator

Optimizer
Code

Generator

Generated Compiler (cc1)

Source Program Assembly Program

Input Language Target Name

Selected Copied
Copied

Generated

Generated

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 25/29

The Architecture of GCC

Language
Specific
Code

Language and
Machine

Independent
Generic Code

Machine
Dependent
Generator

Code

Machine
Descriptions

Compiler Generation Framework

Parser Gimplifier
Tree SSA
Optimizer

RTL
Generator

Optimizer
Code

Generator

Generated Compiler (cc1)

Source Program Assembly Program

Input Language Target Name

Selected Copied
Copied

Generated

Generated

Development
Time

Build
Time

Use
Time

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 26/29

An Example of The Generation Related Gap

• Predicate function for invoking the loop distribution pass

static bool

gate_tree_loop_distribution (void)

{

return flag_tree_loop_distribution != 0;

}

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 26/29

An Example of The Generation Related Gap

• Predicate function for invoking the loop distribution pass

static bool

gate_tree_loop_distribution (void)

{

return flag_tree_loop_distribution != 0;

}

• There is no declaration of or assignment to variable
flag_tree_loop_distribution in the entire source!

• It is described in common.opt as follows

ftree-loop-distribution

Common Report Var(flag_tree_loop_distribution) Optimization

Enable loop distribution on trees

• The required C statements are generated during the build

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 27/29

Another Example of The Generation Related Gap

Locating the main function in the directory gcc-4.5.0/gcc using cscope

File Line

0 collect2.c 1111 main (int argc, char **argv)

1 fp-test.c 85 main (void)

2 gcc.c 6803 main (int argc, char **argv)

3 gcov-dump.c 76 main (int argc ATTRIBUTE_UNUSED, char **argv)

4 gcov-iov.c 29 main (int argc, char **argv)

5 gcov.c 355 main (int argc, char **argv)

6 genattr.c 89 main (int argc, char **argv)

7 genattrtab.c 4439 main (int argc, char **argv)

8 genautomata.c 9475 main (int argc, char **argv)

9 genchecksum.c 67 main (int argc, char ** argv)

a gencodes.c 51 main (int argc, char **argv)

b genconditions.c 209 main (int argc, char **argv)

c genconfig.c 261 main (int argc, char **argv)

d genconstants.c 50 main (int argc, char **argv)

e genemit.c 825 main (int argc, char **argv)

f genextract.c 401 main (int argc, char **argv)

g genflags.c 250 main (int argc, char **argv)

h gengenrtl.c 350 main (int argc, char **argv)
Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 27/29

Another Example of The Generation Related Gap

Locating the main function in the directory gcc-4.5.0/gcc using cscope

File Line

0 collect2.c 1111 main (int argc, char **argv)

1 fp-test.c 85 main (void)

2 gcc.c 6803 main (int argc, char **argv)

3 gcov-dump.c 76 main (int argc ATTRIBUTE_UNUSED, char **argv)

4 gcov-iov.c 29 main (int argc, char **argv)

5 gcov.c 355 main (int argc, char **argv)

6 genattr.c 89 main (int argc, char **argv)

7 genattrtab.c 4439 main (int argc, char **argv)

8 genautomata.c 9475 main (int argc, char **argv)

9 genchecksum.c 67 main (int argc, char ** argv)

a gencodes.c 51 main (int argc, char **argv)

b genconditions.c 209 main (int argc, char **argv)

c genconfig.c 261 main (int argc, char **argv)

d genconstants.c 50 main (int argc, char **argv)

e genemit.c 825 main (int argc, char **argv)

f genextract.c 401 main (int argc, char **argv)

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 27/29

Another Example of The Generation Related Gap

Locating the main function in the directory gcc-4.5.0/gcc using cscope

File Line

g genflags.c 250 main (int argc, char **argv)

h gengenrtl.c 350 main (int argc, char **argv)

i gengtype.c 3694 main (int argc, char **argv)

j genmddeps.c 45 main (int argc, char **argv)

k genmodes.c 1376 main (int argc, char **argv)

l genopinit.c 469 main (int argc, char **argv)

m genoutput.c 1023 main (int argc, char **argv)

n genpeep.c 353 main (int argc, char **argv)

o genpreds.c 1404 main (int argc, char **argv)

p genrecog.c 2722 main (int argc, char **argv)

q lto-wrapper.c 412 main (int argc, char *argv[])

r main.c 33 main (int argc, char **argv)

s mips-tdump.c 1393 main (int argc, char **argv)

t mips-tfile.c 655 main (void)

u mips-tfile.c 4695 main (int argc, char **argv)

v tlink.c 61 const char *main;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 28/29

The GCC Challenge: Poor Retargetability Mechanism

• Symptom of poor retargetability mechanism

Large size of specifications

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 28/29

The GCC Challenge: Poor Retargetability Mechanism

• Symptom of poor retargetability mechanism

Large size of specifications

• Size in terms of line counts

Files i386 mips

*.md 35766 12930

*.c 28643 12572

*.h 15694 5105

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Overview: GCC ≡ The Great Compiler Challenge 29/29

Meeting the GCC Challenge

Goal of Understanding Methodology
Needs Examining

Makefiles Source MD

Translation sequence
of programs

Gray box probing No No No

Build process
Customizing the
configuration and
building

Yes No No

Retargetability
issues and machine
descriptions

Incremental
construction of
machine descriptions

No No Yes

IR data structures
and access
mechanisms

Adding passes to
massage IRs

No Yes Yes

Retargetability
mechanism

Yes Yes Yes

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

	Outline
	Introduction to Compilation
	An Overview of Compilation Phases
	GCC The redGreat redCompiler redChallenge
	GCC The Great Compiler Challenge

