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Outline

• Code Organization of GCC

• Configuration and Building

• Registering New Machine Descriptions

• Testing GCC
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GCC Code Organization

Logical parts are:

• Build configuration files

• Front end + generic + generator sources

• Back end specifications

• Emulation libraries
(eg. libgcc to emulate operations not supported on the target)

• Language Libraries (except C)

• Support software (e.g. garbage collector)
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GCC Code Organization

Front End Code

• Source language dir: $(SOURCE D)/<lang dir>

• Source language dir contains
◮ Parsing code (Hand written)
◮ Additional AST/Generic nodes, if any
◮ Interface to Generic creation

Except for C – which is the “native” language of the compiler

C front end code in: $(SOURCE D)/gcc

Optimizer Code and Back End Generator Code

• Source language dir: $(SOURCE D)/gcc
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Back End Specification

• $(SOURCE D)/gcc/config/<target dir>/

Directory containing back end code

• Two main files: <target>.h and <target>.md,
e.g. for an i386 target, we have
$(SOURCE D)/gcc/config/i386/i386.md and
$(SOURCE D)/gcc/config/i386/i386.h

• Usually, also <target>.c for additional processing code
(e.g. $(SOURCE D)/gcc/config/i386/i386.c)

• Some additional files
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Configuration

Preparing the GCC source for local adaptation:

• The platform on which it will be compiled

• The platform on which the generated compiler will execute

• The platform for which the generated compiler will generate code

• The directory in which the source exists

• The directory in which the compiler will be generated

• The directory in which the generated compiler will be installed

• The input languages which will be supported

• The libraries that are required

• etc.
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Pre-requisites for Configuring and Building GCC 4.5.0

• ISO C90 Compiler / GCC 2.95 or later

• GNU bash: for running configure etc

• Awk: creating some of the generated source file for GCC

• bzip/gzip/untar etc. For unzipping the downloaded source file

• GNU make version 3.8 (or later)

• GNU Multiple Precision Library (GMP) version 4.2 (or later)

• MPFR Library version 2.3.2 (or later)
(multiple precision floating point with correct rounding)

• MPC Library version 0.8.0 (or later)

• Parma Polyhedra Library (PPL) version 0.10

• CLooG-PPL (Chunky Loop Generator) version 0.15

• jar, or InfoZIP (zip and unzip)

• libelf version 0.8.12 (or later) (for LTO)
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Our Conventions for Directory Names

• GCC source directory : $(SOURCE D)

• GCC build directory : $(BUILD)

• GCC install directory : $(INSTALL)

• Important
◮ $(SOURCE D) 6= $(BUILD) 6= $(INSTALL)
◮ None of the above directories should be contained in any of the

above directories
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Configuring GCC

configure
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Configuring GCC

configure

config.guess

configure.in config/*

config.sub
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Configuring GCC

configure

config.guess

configure.in config/*

config.sub

config.log config.cache config.status
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Configuring GCC

configure

config.guess

configure.in config/*

config.sub

config.log config.cache config.status

config.h.in Makefile.in
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Configuring GCC

configure

config.guess

configure.in config/*

config.sub

config.log config.cache config.status

config.h.in Makefile.in

Makefile config.h
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Steps in Configuration and Building

Usual Steps

• Download and untar the
source

• cd $(SOURCE D)

• ./configure

• make

• make install
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Steps in Configuration and Building

Usual Steps Steps in GCC

• Download and untar the
source

• cd $(SOURCE D)

• ./configure

• make

• make install

• Download and untar the
source

• cd $(BUILD)

• $(SOURCE D)/configure

• make

• make install
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Steps in Configuration and Building

Usual Steps Steps in GCC

• Download and untar the
source

• cd $(SOURCE D)

• ./configure

• make

• make install

• Download and untar the
source

• cd $(BUILD)

• $(SOURCE D)/configure

• make

• make install

GCC generates a large part of source code during a build!
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Building a Compiler: Terminology

• The sources of a compiler are compiled (i.e. built) on Build system,
denoted BS.

• The built compiler runs on the Host system, denoted HS.

• The compiler compiles code for the Target system, denoted TS.

The built compiler itself runs on HS and generates executables that run
on TS.

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



July 2010 Config and Build: Configuration and Building 11/34

Variants of Compiler Builds

BS = HS = TS Native Build

BS = HS 6= TS Cross Build

BS 6= HS 6= TS Canadian Cross

Example

Native i386: built on i386, hosted on i386, produces i386 code.
Sparc cross on i386: built on i386, hosted on i386, produces Sparc code.
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T Notation for a Compiler

C

i386

i386

cc
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T Notation for a Compiler

C

i386

i386

cc

input language
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T Notation for a Compiler

C

i386

i386

cc

input language output language
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T Notation for a Compiler

C

i386

i386

cc

input language output language

implementation or
execution language
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T Notation for a Compiler

C

i386

i386

cc

input language output language

implementation or
execution language

name of the translator
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Bootstrapping: The Conventional View

ass

m/c

m/c

Assembly language
Machine language

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



July 2010 Config and Build: Configuration and Building 13/34

Bootstrapping: The Conventional View

ass

m/c

m/c

input language output language

implementation language

Assembly language
Machine language
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Bootstrapping: The Conventional View

C0

ass

m/c

input language output language

implementation language

Level 0 C
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Bootstrapping: The Conventional View

ass

m/c

m/c

C0

ass

m/c

input language output language

implementation language

Level 0 C
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Bootstrapping: The Conventional View

C1

C0

m/c

input language output language

implementation language
Level 1 C
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Bootstrapping: The Conventional View

C0

ass

m/c

C1

C0

m/c

input language output language

implementation language
Level 1 C
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Bootstrapping: The Conventional View

Cn

Cn−1

m/c

input language output language

implementation language

Level n C
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Bootstrapping: The Conventional View

Cn−1

Cn−2

m/c

Cn

Cn−1

m/c

input language output language

implementation language

Level n C
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Bootstrapping: GCC View

• Language need not change, but the compiler may change
Compiler is improved, bugs are fixed and newer versions are released

• To build a new version of a compiler given a built old version:
◮ Stage 1: Build the new compiler using the old compiler
◮ Stage 2: Build another new compiler using compiler from stage 1
◮ Stage 3: Build another new compiler using compiler from stage 2

Stage 2 and stage 3 builds must result in identical compilers

⇒ Building cross compilers stops after Stage 1!
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A Native Build on i386

Requirement: BS = HS = TS = i386

GCC
Source
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A Native Build on i386

Requirement: BS = HS = TS = i386

GCC
Source

C

i386

i386

cc

Execution language
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A Native Build on i386

Requirement: BS = HS = TS = i386

GCC
Source

C

i386

i386

cc

Execution languageC i386
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A Native Build on i386

Requirement: BS = HS = TS = i386

GCC
Source

C

i386

i386

cc

C i386
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A Native Build on i386

Requirement: BS = HS = TS = i386

• Stage 1 build compiled using cc

GCC
Source

C

i386

i386

cc

C i386

C

i386

i386

gcc

Stage 1 Build
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A Native Build on i386

Requirement: BS = HS = TS = i386

• Stage 1 build compiled using cc

GCC
Source

C

i386

i386

cc

C i386

C

i386

i386

gcc

Stage 1 Build
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A Native Build on i386

Requirement: BS = HS = TS = i386

• Stage 1 build compiled using cc

• Stage 2 build compiled using gcc

GCC
Source

C

i386

i386

cc

C i386

C

i386

i386

gcc

Stage 1 Build

C

i386

i386

gcc

Stage 2 Build
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A Native Build on i386

Requirement: BS = HS = TS = i386

• Stage 1 build compiled using cc

• Stage 2 build compiled using gcc

GCC
Source

C

i386

i386

cc

C i386

C

i386

i386

gcc

Stage 1 Build

C

i386

i386

gcc

Stage 2 Build
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A Native Build on i386

Requirement: BS = HS = TS = i386

• Stage 1 build compiled using cc

• Stage 2 build compiled using gcc

• Stage 3 build compiled using gcc

GCC
Source

C

i386

i386

cc

C i386

C

i386

i386

gcc

Stage 1 Build

C

i386

i386

gcc

Stage 2 Build

C

i386

i386

gcc

Stage 3 Build
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A Native Build on i386

Requirement: BS = HS = TS = i386

• Stage 1 build compiled using cc

• Stage 2 build compiled using gcc

• Stage 3 build compiled using gcc

• Stage 2 and Stage 3 Builds must be
identical for a successful native build

GCC
Source

C

i386

i386

cc

C i386

C

i386

i386

gcc

Stage 1 Build

C

i386

i386

gcc

Stage 2 Build

C

i386

i386

gcc

Stage 3 Build
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A Cross Build on i386

Requirement: BS = HS = i386, TS = mips

GCC
Source

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



July 2010 Config and Build: Configuration and Building 16/34

A Cross Build on i386

Requirement: BS = HS = i386, TS = mips

GCC
Source

C

i386

i386

cc
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A Cross Build on i386

Requirement: BS = HS = i386, TS = mips

GCC
Source

C

i386

i386

cc

C mips
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A Cross Build on i386

Requirement: BS = HS = i386, TS = mips

GCC
Source

C

i386

i386

cc

C mips
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A Cross Build on i386

Requirement: BS = HS = i386, TS = mips

• Stage 1 build compiled using cc

GCC
Source

C

i386

i386

cc

C mips

C

i386

mips

gcc

Stage 1 Build
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A Cross Build on i386

Requirement: BS = HS = i386, TS = mips

• Stage 1 build compiled using cc

GCC
Source

C

i386

i386

cc

C mips

C

i386

mips

gcc

Stage 1 Build
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A Cross Build on i386

Requirement: BS = HS = i386, TS = mips

• Stage 1 build compiled using cc

• Stage 2 build compiled using gcc
Its HS = mips and not i386!

GCC
Source

C

i386

i386

cc

C mips

C

i386

mips

gcc

Stage 1 Build

C

mips

mips

gcc

Stage 2 Build
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A Cross Build on i386

Requirement: BS = HS = i386, TS = mips

• Stage 1 build compiled using cc

• Stage 2 build compiled using gcc
Its HS = mips and not i386!

GCC
Source

C

i386

i386

cc

C mips

C

i386

mips

gcc

Stage 1 Build

C

mips

mips

gcc

Stage 2 BuildStage 2 build is
inappropriate for

cross build
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A More Detailed Look at Building

gcc

Source Program

Target Program

cc1 cpp

as

ld

glibc/newlib

GCC
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A More Detailed Look at Building

gcc

Source Program

Target Program

cc1 cpp

as

ld

glibc/newlib

cc1 cpp

Partially generated and downloaded
source is compiled into executables
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A More Detailed Look at Building

gcc

Source Program

Target Program

cc1 cpp

as

ld

glibc/newlib

cc1 cpp

Partially generated and downloaded
source is compiled into executables

as

ld

glibc/newlib

Existing executables are directly used
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A More Detailed Look at Building

gcc

Source Program

Target Program

cc1 cpp

as

ld

glibc/newlib

cc1 cpp

Partially generated and downloaded
source is compiled into executables

as

ld

glibc/newlib

Existing executables are directly used

gcc
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A More Detailed Look at Cross Build

GCC
Source

C

i386

i386

cc

C mips

Requirement: BS = HS = i386, TS = mips

we have
not built binutils

for mips
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A More Detailed Look at Cross Build

GCC
Source

C

i386

i386

cc

C mips

C

i386

mips.a

cc1

Stage 1 Build

mips assembly

Requirement: BS = HS = i386, TS = mips

• Stage 1 cannot build gcc but can build only cc1

we have
not built binutils

for mips
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A More Detailed Look at Cross Build

GCC
Source

C

i386

i386

cc

C mips

C

i386

mips.a

cc1

Stage 1 Build

mips assembly

Requirement: BS = HS = i386, TS = mips

• Stage 1 cannot build gcc but can build only cc1

• Stage 1 build cannot create executables

• Library sources cannot be compiled for mips
using stage 1 build

we have
not built binutils

for mips
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A More Detailed Look at Cross Build

GCC
Source

C

i386

i386

cc

C mips

C

i386

mips.a

cc1

Stage 1 Build

mips assembly

C

mips

mips

gcc

Stage 2 Build×Requirement: BS = HS = i386, TS = mips

• Stage 1 cannot build gcc but can build only cc1

• Stage 1 build cannot create executables

• Library sources cannot be compiled for mips
using stage 1 build

• Stage 2 build is not possible

we have
not built binutils

for mips
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A More Detailed Look at Cross Build

GCC
Source

C

i386

i386

cc

C mips

C

i386

mips.a

cc1

Stage 1 Build

mips assembly

C

mips

mips

gcc

Stage 2 Build×Requirement: BS = HS = i386, TS = mips

• Stage 1 cannot build gcc but can build only cc1

• Stage 1 build cannot create executables

• Library sources cannot be compiled for mips
using stage 1 build

• Stage 2 build is not possible

Stage 2 build is
infeasible for
cross build

we have
not built binutils

for mips
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Cross Build Revisited

• Option 1: Build binutils in the same source tree as gcc
Copy binutils source in $(SOURCE D), configure and build stage 1

• Option 2:
◮ Compile cross-assembler (as), cross-linker (ld), cross-archiver (ar),

and cross-program to build symbol table in archiver (ranlib),
◮ Copy them in $(INSTALL)/bin
◮ Build stage GCC
◮ Install newlib
◮ Reconfigure and build GCC

Some options differ in the two builds
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Cross Build Revisited

• Option 1: Build binutils in the same source tree as gcc
Copy binutils source in $(SOURCE D), configure and build stage 1

• Option 2:
◮ Compile cross-assembler (as), cross-linker (ld), cross-archiver (ar),

and cross-program to build symbol table in archiver (ranlib),
◮ Copy them in $(INSTALL)/bin
◮ Build stage GCC
◮ Install newlib
◮ Reconfigure and build GCC

Some options differ in the two builds

Details to follow in the lecture on building a cross compiler
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Commands for Configuring and Building GCC

This is what we specify

• cd $(BUILD)
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Commands for Configuring and Building GCC

This is what we specify

• cd $(BUILD)

• $(SOURCE D)/configure <options>

configure output: customized Makefile
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Commands for Configuring and Building GCC

This is what we specify

• cd $(BUILD)

• $(SOURCE D)/configure <options>

configure output: customized Makefile

• make 2> make.err > make.log
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Commands for Configuring and Building GCC

This is what we specify

• cd $(BUILD)

• $(SOURCE D)/configure <options>

configure output: customized Makefile

• make 2> make.err > make.log

• make install 2> install.err > install.log
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Build for a Given Machine

This is what actually happens!

• Generation
◮ Generator sources

($(SOURCE D)/gcc/gen*.c) are read and
generator executables are created in
$(BUILD)/gcc/build

◮ MD files are read by the generator
executables and back end source code is
generated in $(BUILD)/gcc

• Compilation
Other source files are read from
$(SOURCE D) and executables created in
corresponding subdirectories of $(BUILD)

• Installation
Created executables and libraries are copied
in $(INSTALL)
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Build for a Given Machine

This is what actually happens!

• Generation
◮ Generator sources

($(SOURCE D)/gcc/gen*.c) are read and
generator executables are created in
$(BUILD)/gcc/build

◮ MD files are read by the generator
executables and back end source code is
generated in $(BUILD)/gcc

• Compilation
Other source files are read from
$(SOURCE D) and executables created in
corresponding subdirectories of $(BUILD)

• Installation
Created executables and libraries are copied
in $(INSTALL)

genattr
gencheck
genconditions
genconstants
genflags
genopinit
genpreds
genattrtab
genchecksum
gencondmd
genemit
gengenrtl
genmddeps
genoutput
genrecog
genautomata
gencodes
genconfig
genextract
gengtype
genmodes
genpeep
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More Details of an Actual Stage 1 Build for C

native
cc +
native
binutils

GCC
sources
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More Details of an Actual Stage 1 Build for C

native
cc +
native
binutils

GCC
sources

libraries
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More Details of an Actual Stage 1 Build for C

native
cc +
native
binutils

GCC
sources

libraries

libcpp: c preprocessor
zlib: data compression
intl: internationalization
libdecnumber: decimal floating

point numbers
libgomp: GNU Open MP
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More Details of an Actual Stage 1 Build for C

native
cc +
native
binutils

GCC
sources

libraries

libiberty

fixincl

gen*

cc1

cpp
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More Details of an Actual Stage 1 Build for C

native
cc +
native
binutils

GCC
sources

libraries

libiberty

fixincl

gen*

cc1

cpp

xgcc
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More Details of an Actual Stage 1 Build for C

native
cc +
native
binutils

GCC
sources

libraries

libiberty

fixincl

gen*

cc1

cpp

xgcc libgcc

target
binutils
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More Details of an Actual Stage 1 Build for C

native
cc +
native
binutils

GCC
sources

libraries

libiberty

fixincl

gen*

cc1

cpp

xgcc libgcc

target
binutils

cc + binutils
for stage 2
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Build Failures due to Machine Descriptions

Incomplete MD specifications ⇒ Unsuccessful build

Incorrect MD specification ⇒ Successful build but run time
failures/crashes

(either ICE or SIGSEGV)
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Building cc1 Only

• Add a new target in the Makefile.in

.PHONY cc1:

cc1:

make all-gcc TARGET-gcc=cc1$(exeext)

• Configure and build with the command make cc1.
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Common Configuration Options

--target

• Necessary for cross build

• Possible host-cpu-vendor strings: Listed in
$(SOURCE D)/config.sub

--enable-languages

• Comma separated list of language names

• Default names: c, c++, fortran, java, objc

• Additional names possible: ada, obj-c++, treelang

--prefix=$(INSTALL)

--program-prefix

• Prefix string for executable names

--disable-bootstrap

• Build stage 1 only

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



Part 3

Registering New Machine Descriptions



July 2010 Config and Build: Registering New Machine Descriptions 26/34

Registering New Machine Descriptions

• Define a new system name, typically a triple.
e.g. spim-gnu-linux

• Edit $(SOURCE D)/config.sub to recognize the triple

• Edit $(SOURCE D)/gcc/config.gcc to define
◮ any back end specific variables
◮ any back end specific files
◮ $(SOURCE D)/gcc/config/<cpu> is used as the back end directory

for recognized system names.

Tip

Read comments in $(SOURCE D)/config.sub &
$(SOURCE D)/gcc/config/<cpu>.
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Registering Spim with GCC Build Process

We want to add multiple descriptions:

• Step 1. In the file $(SOURCE D)/config.sub
Add to the case $basic machine

◮ spim* in the part following
# Recognize the basic CPU types without company name.

◮ spim*-* in the part following
# Recognize the basic CPU types with company name.
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Registering Spim with GCC Build Process

• Step 2a. In the file $(SOURCE D)/gcc/config.gcc

In case ${target} used for defining cpu type, i.e. after the line

# Set default cpu type, tm file, tm p file and xm file ...

add the following case

spim*-*-*)

cpu type=spim

;;

This says that the machine description files are available in the
directory $(SOURCE D)/gcc/config/spim.
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Registering Spim with GCC Build Process

• Step 2b. In the file $(SOURCE D)/gcc/config.gcc

Add the following in the case ${target} for
# Support site-specific machine types.

spim*-*-*)

gas=no

gnu ld=no

file base="‘echo ${target}| sed ’s/-.*$//’‘"

tm file="${cpu type}/${file base}.h"

md file="${cpu type}/${file base}.md"

out file="${cpu type}/${file base}.c"

tm p file="${cpu type}/${file base}-protos.h"

echo ${target}

;;
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Building a Cross-Compiler for Spim

• Normal cross compiler build process attempts to use the generated
cc1 to compile the emulation libraries (LIBGCC) into executables
using the assembler, linker, and archiver.

• We are interested in only the cc1 compiler.

• Use make cc1
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Testing GCC

• Pre-requisites - Dejagnu, Expect tools

• Option 1: Build GCC and execute the command
make check

or
make check-gcc

• Option 2: Use the configure option --enable-checking

• Possible list of checks
◮ Compile time consistency checks

assert, fold, gc, gcac, misc, rtl, rtlflag, runtime, tree,
valgrind

◮ Default combination names

◮ yes: assert, gc, misc, rtlflag, runtime, tree
◮ no

◮ release: assert, runtime
◮ all: all except valgrind
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GCC Testing framework

• make will invoke runtest command

• Specifying runtest options using RUNTESTFLAGS to customize
torture testing
make check RUNTESTFLAGS="compile.exp"

• Inspecting testsuite output: $(BUILD)/gcc/testsuite/gcc.log
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Interpreting Test Results

• PASS: the test passed as expected

• XPASS: the test unexpectedly passed

• FAIL: the test unexpectedly failed

• XFAIL: the test failed as expected

• UNSUPPORTED: the test is not supported on this platform

• ERROR: the testsuite detected an error

• WARNING: the testsuite detected a possible problem

GCC Internals document contains an exhaustive list of options for testing
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Configuring and Building GCC – Summary

• Choose the source language: C (--enable-languages=c)

• Choose installation directory: (--prefix=<absolute path>)

• Choose the target for non native builds:
(--target=sparc-sunos-sun)

• Run: configure with above choices

• Run: make to
◮ generate target specific part of the compiler
◮ build the entire compiler

• Run: make install to install the compiler

Tip

Redirect all the outputs:
$ make > make.log 2> make.err
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