
Workshop on Essential Abstractions in GCC

GCC Configuration and Building

GCC Resource Center

(www.cse.iitb.ac.in/grc)

Department of Computer Science and Engineering,

Indian Institute of Technology, Bombay

July 2010

July 2010 Config and Build: Outline 1/34

Outline

• Code Organization of GCC

• Configuration and Building

• Registering New Machine Descriptions

• Testing GCC

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

Part 1

GCC Code Organization

July 2010 Config and Build: GCC Code Organization 2/34

GCC Code Organization

Logical parts are:

• Build configuration files

• Front end + generic + generator sources

• Back end specifications

• Emulation libraries
(eg. libgcc to emulate operations not supported on the target)

• Language Libraries (except C)

• Support software (e.g. garbage collector)

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: GCC Code Organization 3/34

GCC Code Organization

Front End Code

• Source language dir: $(SOURCE D)/<lang dir>

• Source language dir contains
◮ Parsing code (Hand written)
◮ Additional AST/Generic nodes, if any
◮ Interface to Generic creation

Except for C – which is the “native” language of the compiler

C front end code in: $(SOURCE D)/gcc

Optimizer Code and Back End Generator Code

• Source language dir: $(SOURCE D)/gcc

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: GCC Code Organization 4/34

Back End Specification

• $(SOURCE D)/gcc/config/<target dir>/

Directory containing back end code

• Two main files: <target>.h and <target>.md,
e.g. for an i386 target, we have
$(SOURCE D)/gcc/config/i386/i386.md and
$(SOURCE D)/gcc/config/i386/i386.h

• Usually, also <target>.c for additional processing code
(e.g. $(SOURCE D)/gcc/config/i386/i386.c)

• Some additional files

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

Part 2

Configuration and Building

July 2010 Config and Build: Configuration and Building 5/34

Configuration

Preparing the GCC source for local adaptation:

• The platform on which it will be compiled

• The platform on which the generated compiler will execute

• The platform for which the generated compiler will generate code

• The directory in which the source exists

• The directory in which the compiler will be generated

• The directory in which the generated compiler will be installed

• The input languages which will be supported

• The libraries that are required

• etc.

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 6/34

Pre-requisites for Configuring and Building GCC 4.5.0

• ISO C90 Compiler / GCC 2.95 or later

• GNU bash: for running configure etc

• Awk: creating some of the generated source file for GCC

• bzip/gzip/untar etc. For unzipping the downloaded source file

• GNU make version 3.8 (or later)

• GNU Multiple Precision Library (GMP) version 4.2 (or later)

• MPFR Library version 2.3.2 (or later)
(multiple precision floating point with correct rounding)

• MPC Library version 0.8.0 (or later)

• Parma Polyhedra Library (PPL) version 0.10

• CLooG-PPL (Chunky Loop Generator) version 0.15

• jar, or InfoZIP (zip and unzip)

• libelf version 0.8.12 (or later) (for LTO)

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 7/34

Our Conventions for Directory Names

• GCC source directory : $(SOURCE D)

• GCC build directory : $(BUILD)

• GCC install directory : $(INSTALL)

• Important
◮ $(SOURCE D) 6= $(BUILD) 6= $(INSTALL)
◮ None of the above directories should be contained in any of the

above directories

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 8/34

Configuring GCC

configure

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 8/34

Configuring GCC

configure

config.guess

configure.in config/*

config.sub

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 8/34

Configuring GCC

configure

config.guess

configure.in config/*

config.sub

config.log config.cache config.status

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 8/34

Configuring GCC

configure

config.guess

configure.in config/*

config.sub

config.log config.cache config.status

config.h.in Makefile.in

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 8/34

Configuring GCC

configure

config.guess

configure.in config/*

config.sub

config.log config.cache config.status

config.h.in Makefile.in

Makefile config.h

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 9/34

Steps in Configuration and Building

Usual Steps

• Download and untar the
source

• cd $(SOURCE D)

• ./configure

• make

• make install

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 9/34

Steps in Configuration and Building

Usual Steps Steps in GCC

• Download and untar the
source

• cd $(SOURCE D)

• ./configure

• make

• make install

• Download and untar the
source

• cd $(BUILD)

• $(SOURCE D)/configure

• make

• make install

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 9/34

Steps in Configuration and Building

Usual Steps Steps in GCC

• Download and untar the
source

• cd $(SOURCE D)

• ./configure

• make

• make install

• Download and untar the
source

• cd $(BUILD)

• $(SOURCE D)/configure

• make

• make install

GCC generates a large part of source code during a build!

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 10/34

Building a Compiler: Terminology

• The sources of a compiler are compiled (i.e. built) on Build system,
denoted BS.

• The built compiler runs on the Host system, denoted HS.

• The compiler compiles code for the Target system, denoted TS.

The built compiler itself runs on HS and generates executables that run
on TS.

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 11/34

Variants of Compiler Builds

BS = HS = TS Native Build

BS = HS 6= TS Cross Build

BS 6= HS 6= TS Canadian Cross

Example

Native i386: built on i386, hosted on i386, produces i386 code.
Sparc cross on i386: built on i386, hosted on i386, produces Sparc code.

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 12/34

T Notation for a Compiler

C

i386

i386

cc

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 12/34

T Notation for a Compiler

C

i386

i386

cc

input language

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 12/34

T Notation for a Compiler

C

i386

i386

cc

input language output language

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 12/34

T Notation for a Compiler

C

i386

i386

cc

input language output language

implementation or
execution language

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 12/34

T Notation for a Compiler

C

i386

i386

cc

input language output language

implementation or
execution language

name of the translator

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 13/34

Bootstrapping: The Conventional View

ass

m/c

m/c

Assembly language
Machine language

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 13/34

Bootstrapping: The Conventional View

ass

m/c

m/c

input language output language

implementation language

Assembly language
Machine language

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 13/34

Bootstrapping: The Conventional View

C0

ass

m/c

input language output language

implementation language

Level 0 C

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 13/34

Bootstrapping: The Conventional View

ass

m/c

m/c

C0

ass

m/c

input language output language

implementation language

Level 0 C

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 13/34

Bootstrapping: The Conventional View

C1

C0

m/c

input language output language

implementation language
Level 1 C

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 13/34

Bootstrapping: The Conventional View

C0

ass

m/c

C1

C0

m/c

input language output language

implementation language
Level 1 C

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 13/34

Bootstrapping: The Conventional View

Cn

Cn−1

m/c

input language output language

implementation language

Level n C

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 13/34

Bootstrapping: The Conventional View

Cn−1

Cn−2

m/c

Cn

Cn−1

m/c

input language output language

implementation language

Level n C

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 14/34

Bootstrapping: GCC View

• Language need not change, but the compiler may change
Compiler is improved, bugs are fixed and newer versions are released

• To build a new version of a compiler given a built old version:
◮ Stage 1: Build the new compiler using the old compiler
◮ Stage 2: Build another new compiler using compiler from stage 1
◮ Stage 3: Build another new compiler using compiler from stage 2

Stage 2 and stage 3 builds must result in identical compilers

⇒ Building cross compilers stops after Stage 1!

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 15/34

A Native Build on i386

Requirement: BS = HS = TS = i386

GCC
Source

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 15/34

A Native Build on i386

Requirement: BS = HS = TS = i386

GCC
Source

C

i386

i386

cc

Execution language

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 15/34

A Native Build on i386

Requirement: BS = HS = TS = i386

GCC
Source

C

i386

i386

cc

Execution languageC i386

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 15/34

A Native Build on i386

Requirement: BS = HS = TS = i386

GCC
Source

C

i386

i386

cc

C i386

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 15/34

A Native Build on i386

Requirement: BS = HS = TS = i386

• Stage 1 build compiled using cc

GCC
Source

C

i386

i386

cc

C i386

C

i386

i386

gcc

Stage 1 Build

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 15/34

A Native Build on i386

Requirement: BS = HS = TS = i386

• Stage 1 build compiled using cc

GCC
Source

C

i386

i386

cc

C i386

C

i386

i386

gcc

Stage 1 Build

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 15/34

A Native Build on i386

Requirement: BS = HS = TS = i386

• Stage 1 build compiled using cc

• Stage 2 build compiled using gcc

GCC
Source

C

i386

i386

cc

C i386

C

i386

i386

gcc

Stage 1 Build

C

i386

i386

gcc

Stage 2 Build

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 15/34

A Native Build on i386

Requirement: BS = HS = TS = i386

• Stage 1 build compiled using cc

• Stage 2 build compiled using gcc

GCC
Source

C

i386

i386

cc

C i386

C

i386

i386

gcc

Stage 1 Build

C

i386

i386

gcc

Stage 2 Build

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 15/34

A Native Build on i386

Requirement: BS = HS = TS = i386

• Stage 1 build compiled using cc

• Stage 2 build compiled using gcc

• Stage 3 build compiled using gcc

GCC
Source

C

i386

i386

cc

C i386

C

i386

i386

gcc

Stage 1 Build

C

i386

i386

gcc

Stage 2 Build

C

i386

i386

gcc

Stage 3 Build

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 15/34

A Native Build on i386

Requirement: BS = HS = TS = i386

• Stage 1 build compiled using cc

• Stage 2 build compiled using gcc

• Stage 3 build compiled using gcc

• Stage 2 and Stage 3 Builds must be
identical for a successful native build

GCC
Source

C

i386

i386

cc

C i386

C

i386

i386

gcc

Stage 1 Build

C

i386

i386

gcc

Stage 2 Build

C

i386

i386

gcc

Stage 3 Build

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 16/34

A Cross Build on i386

Requirement: BS = HS = i386, TS = mips

GCC
Source

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 16/34

A Cross Build on i386

Requirement: BS = HS = i386, TS = mips

GCC
Source

C

i386

i386

cc

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 16/34

A Cross Build on i386

Requirement: BS = HS = i386, TS = mips

GCC
Source

C

i386

i386

cc

C mips

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 16/34

A Cross Build on i386

Requirement: BS = HS = i386, TS = mips

GCC
Source

C

i386

i386

cc

C mips

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 16/34

A Cross Build on i386

Requirement: BS = HS = i386, TS = mips

• Stage 1 build compiled using cc

GCC
Source

C

i386

i386

cc

C mips

C

i386

mips

gcc

Stage 1 Build

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 16/34

A Cross Build on i386

Requirement: BS = HS = i386, TS = mips

• Stage 1 build compiled using cc

GCC
Source

C

i386

i386

cc

C mips

C

i386

mips

gcc

Stage 1 Build

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 16/34

A Cross Build on i386

Requirement: BS = HS = i386, TS = mips

• Stage 1 build compiled using cc

• Stage 2 build compiled using gcc
Its HS = mips and not i386!

GCC
Source

C

i386

i386

cc

C mips

C

i386

mips

gcc

Stage 1 Build

C

mips

mips

gcc

Stage 2 Build

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 16/34

A Cross Build on i386

Requirement: BS = HS = i386, TS = mips

• Stage 1 build compiled using cc

• Stage 2 build compiled using gcc
Its HS = mips and not i386!

GCC
Source

C

i386

i386

cc

C mips

C

i386

mips

gcc

Stage 1 Build

C

mips

mips

gcc

Stage 2 BuildStage 2 build is
inappropriate for

cross build

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 17/34

A More Detailed Look at Building

gcc

Source Program

Target Program

cc1 cpp

as

ld

glibc/newlib

GCC

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 17/34

A More Detailed Look at Building

gcc

Source Program

Target Program

cc1 cpp

as

ld

glibc/newlib

cc1 cpp

Partially generated and downloaded
source is compiled into executables

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 17/34

A More Detailed Look at Building

gcc

Source Program

Target Program

cc1 cpp

as

ld

glibc/newlib

cc1 cpp

Partially generated and downloaded
source is compiled into executables

as

ld

glibc/newlib

Existing executables are directly used

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 17/34

A More Detailed Look at Building

gcc

Source Program

Target Program

cc1 cpp

as

ld

glibc/newlib

cc1 cpp

Partially generated and downloaded
source is compiled into executables

as

ld

glibc/newlib

Existing executables are directly used

gcc

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 18/34

A More Detailed Look at Cross Build

GCC
Source

C

i386

i386

cc

C mips

Requirement: BS = HS = i386, TS = mips

we have
not built binutils

for mips

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 18/34

A More Detailed Look at Cross Build

GCC
Source

C

i386

i386

cc

C mips

C

i386

mips.a

cc1

Stage 1 Build

mips assembly

Requirement: BS = HS = i386, TS = mips

• Stage 1 cannot build gcc but can build only cc1

we have
not built binutils

for mips

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 18/34

A More Detailed Look at Cross Build

GCC
Source

C

i386

i386

cc

C mips

C

i386

mips.a

cc1

Stage 1 Build

mips assembly

Requirement: BS = HS = i386, TS = mips

• Stage 1 cannot build gcc but can build only cc1

• Stage 1 build cannot create executables

• Library sources cannot be compiled for mips
using stage 1 build

we have
not built binutils

for mips

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 18/34

A More Detailed Look at Cross Build

GCC
Source

C

i386

i386

cc

C mips

C

i386

mips.a

cc1

Stage 1 Build

mips assembly

C

mips

mips

gcc

Stage 2 Build×Requirement: BS = HS = i386, TS = mips

• Stage 1 cannot build gcc but can build only cc1

• Stage 1 build cannot create executables

• Library sources cannot be compiled for mips
using stage 1 build

• Stage 2 build is not possible

we have
not built binutils

for mips

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 18/34

A More Detailed Look at Cross Build

GCC
Source

C

i386

i386

cc

C mips

C

i386

mips.a

cc1

Stage 1 Build

mips assembly

C

mips

mips

gcc

Stage 2 Build×Requirement: BS = HS = i386, TS = mips

• Stage 1 cannot build gcc but can build only cc1

• Stage 1 build cannot create executables

• Library sources cannot be compiled for mips
using stage 1 build

• Stage 2 build is not possible

Stage 2 build is
infeasible for
cross build

we have
not built binutils

for mips

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 19/34

Cross Build Revisited

• Option 1: Build binutils in the same source tree as gcc
Copy binutils source in $(SOURCE D), configure and build stage 1

• Option 2:
◮ Compile cross-assembler (as), cross-linker (ld), cross-archiver (ar),

and cross-program to build symbol table in archiver (ranlib),
◮ Copy them in $(INSTALL)/bin
◮ Build stage GCC
◮ Install newlib
◮ Reconfigure and build GCC

Some options differ in the two builds

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 19/34

Cross Build Revisited

• Option 1: Build binutils in the same source tree as gcc
Copy binutils source in $(SOURCE D), configure and build stage 1

• Option 2:
◮ Compile cross-assembler (as), cross-linker (ld), cross-archiver (ar),

and cross-program to build symbol table in archiver (ranlib),
◮ Copy them in $(INSTALL)/bin
◮ Build stage GCC
◮ Install newlib
◮ Reconfigure and build GCC

Some options differ in the two builds

Details to follow in the lecture on building a cross compiler

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 20/34

Commands for Configuring and Building GCC

This is what we specify

• cd $(BUILD)

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 20/34

Commands for Configuring and Building GCC

This is what we specify

• cd $(BUILD)

• $(SOURCE D)/configure <options>

configure output: customized Makefile

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 20/34

Commands for Configuring and Building GCC

This is what we specify

• cd $(BUILD)

• $(SOURCE D)/configure <options>

configure output: customized Makefile

• make 2> make.err > make.log

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 20/34

Commands for Configuring and Building GCC

This is what we specify

• cd $(BUILD)

• $(SOURCE D)/configure <options>

configure output: customized Makefile

• make 2> make.err > make.log

• make install 2> install.err > install.log

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 21/34

Build for a Given Machine

This is what actually happens!

• Generation
◮ Generator sources

($(SOURCE D)/gcc/gen*.c) are read and
generator executables are created in
$(BUILD)/gcc/build

◮ MD files are read by the generator
executables and back end source code is
generated in $(BUILD)/gcc

• Compilation
Other source files are read from
$(SOURCE D) and executables created in
corresponding subdirectories of $(BUILD)

• Installation
Created executables and libraries are copied
in $(INSTALL)

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 21/34

Build for a Given Machine

This is what actually happens!

• Generation
◮ Generator sources

($(SOURCE D)/gcc/gen*.c) are read and
generator executables are created in
$(BUILD)/gcc/build

◮ MD files are read by the generator
executables and back end source code is
generated in $(BUILD)/gcc

• Compilation
Other source files are read from
$(SOURCE D) and executables created in
corresponding subdirectories of $(BUILD)

• Installation
Created executables and libraries are copied
in $(INSTALL)

genattr
gencheck
genconditions
genconstants
genflags
genopinit
genpreds
genattrtab
genchecksum
gencondmd
genemit
gengenrtl
genmddeps
genoutput
genrecog
genautomata
gencodes
genconfig
genextract
gengtype
genmodes
genpeep

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 22/34

More Details of an Actual Stage 1 Build for C

native
cc +
native
binutils

GCC
sources

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 22/34

More Details of an Actual Stage 1 Build for C

native
cc +
native
binutils

GCC
sources

libraries

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 22/34

More Details of an Actual Stage 1 Build for C

native
cc +
native
binutils

GCC
sources

libraries

libcpp: c preprocessor
zlib: data compression
intl: internationalization
libdecnumber: decimal floating

point numbers
libgomp: GNU Open MP

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 22/34

More Details of an Actual Stage 1 Build for C

native
cc +
native
binutils

GCC
sources

libraries

libiberty

fixincl

gen*

cc1

cpp

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 22/34

More Details of an Actual Stage 1 Build for C

native
cc +
native
binutils

GCC
sources

libraries

libiberty

fixincl

gen*

cc1

cpp

xgcc

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 22/34

More Details of an Actual Stage 1 Build for C

native
cc +
native
binutils

GCC
sources

libraries

libiberty

fixincl

gen*

cc1

cpp

xgcc libgcc

target
binutils

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 22/34

More Details of an Actual Stage 1 Build for C

native
cc +
native
binutils

GCC
sources

libraries

libiberty

fixincl

gen*

cc1

cpp

xgcc libgcc

target
binutils

cc + binutils
for stage 2

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 23/34

Build Failures due to Machine Descriptions

Incomplete MD specifications ⇒ Unsuccessful build

Incorrect MD specification ⇒ Successful build but run time
failures/crashes

(either ICE or SIGSEGV)

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 24/34

Building cc1 Only

• Add a new target in the Makefile.in

.PHONY cc1:

cc1:

make all-gcc TARGET-gcc=cc1$(exeext)

• Configure and build with the command make cc1.

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Configuration and Building 25/34

Common Configuration Options

--target

• Necessary for cross build

• Possible host-cpu-vendor strings: Listed in
$(SOURCE D)/config.sub

--enable-languages

• Comma separated list of language names

• Default names: c, c++, fortran, java, objc

• Additional names possible: ada, obj-c++, treelang

--prefix=$(INSTALL)

--program-prefix

• Prefix string for executable names

--disable-bootstrap

• Build stage 1 only

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

Part 3

Registering New Machine Descriptions

July 2010 Config and Build: Registering New Machine Descriptions 26/34

Registering New Machine Descriptions

• Define a new system name, typically a triple.
e.g. spim-gnu-linux

• Edit $(SOURCE D)/config.sub to recognize the triple

• Edit $(SOURCE D)/gcc/config.gcc to define
◮ any back end specific variables
◮ any back end specific files
◮ $(SOURCE D)/gcc/config/<cpu> is used as the back end directory

for recognized system names.

Tip

Read comments in $(SOURCE D)/config.sub &
$(SOURCE D)/gcc/config/<cpu>.

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Registering New Machine Descriptions 27/34

Registering Spim with GCC Build Process

We want to add multiple descriptions:

• Step 1. In the file $(SOURCE D)/config.sub
Add to the case $basic machine

◮ spim* in the part following
Recognize the basic CPU types without company name.

◮ spim*-* in the part following
Recognize the basic CPU types with company name.

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Registering New Machine Descriptions 28/34

Registering Spim with GCC Build Process

• Step 2a. In the file $(SOURCE D)/gcc/config.gcc

In case ${target} used for defining cpu type, i.e. after the line

Set default cpu type, tm file, tm p file and xm file ...

add the following case

spim*-*-*)

cpu type=spim

;;

This says that the machine description files are available in the
directory $(SOURCE D)/gcc/config/spim.

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Registering New Machine Descriptions 29/34

Registering Spim with GCC Build Process

• Step 2b. In the file $(SOURCE D)/gcc/config.gcc

Add the following in the case ${target} for
Support site-specific machine types.

spim*-*-*)

gas=no

gnu ld=no

file base="‘echo ${target}| sed ’s/-.*$//’‘"

tm file="${cpu type}/${file base}.h"

md file="${cpu type}/${file base}.md"

out file="${cpu type}/${file base}.c"

tm p file="${cpu type}/${file base}-protos.h"

echo ${target}

;;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Registering New Machine Descriptions 30/34

Building a Cross-Compiler for Spim

• Normal cross compiler build process attempts to use the generated
cc1 to compile the emulation libraries (LIBGCC) into executables
using the assembler, linker, and archiver.

• We are interested in only the cc1 compiler.

• Use make cc1

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

Part 4

Testing

July 2010 Config and Build: Testing 31/34

Testing GCC

• Pre-requisites - Dejagnu, Expect tools

• Option 1: Build GCC and execute the command
make check

or
make check-gcc

• Option 2: Use the configure option --enable-checking

• Possible list of checks
◮ Compile time consistency checks

assert, fold, gc, gcac, misc, rtl, rtlflag, runtime, tree,
valgrind

◮ Default combination names

◮ yes: assert, gc, misc, rtlflag, runtime, tree
◮ no

◮ release: assert, runtime
◮ all: all except valgrind

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Testing 32/34

GCC Testing framework

• make will invoke runtest command

• Specifying runtest options using RUNTESTFLAGS to customize
torture testing
make check RUNTESTFLAGS="compile.exp"

• Inspecting testsuite output: $(BUILD)/gcc/testsuite/gcc.log

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Testing 33/34

Interpreting Test Results

• PASS: the test passed as expected

• XPASS: the test unexpectedly passed

• FAIL: the test unexpectedly failed

• XFAIL: the test failed as expected

• UNSUPPORTED: the test is not supported on this platform

• ERROR: the testsuite detected an error

• WARNING: the testsuite detected a possible problem

GCC Internals document contains an exhaustive list of options for testing

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 Config and Build: Testing 34/34

Configuring and Building GCC – Summary

• Choose the source language: C (--enable-languages=c)

• Choose installation directory: (--prefix=<absolute path>)

• Choose the target for non native builds:
(--target=sparc-sunos-sun)

• Run: configure with above choices

• Run: make to
◮ generate target specific part of the compiler
◮ build the entire compiler

• Run: make install to install the compiler

Tip

Redirect all the outputs:
$ make > make.log 2> make.err

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

	Outline
	GCC Code Organization
	Configuration and Building
	Registering New Machine Descriptions
	Testing

