Workshop on Essential Abstractions in GCC

Introduction to Parallelization and Vectorization

GCC Resource Center

(www.cse.iitb.ac.in/grc)

Department of Computer Science and Engineering,
Indian Institute of Technology, Bombay

July 2010



July 2010 Par-Vect Intro: Outline 1/1

Outline

e Transformation for parallel and vector execution

e Data dependence

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



July 2010 Par-Vect Intro: Outline 2/1

The Scope of this Tutorial

e What this tutorial does not address

» Algorithms used for parallelization and vectoriation
» Machine level issues related to parallelization and vectoriation

e What this tutorial addresses

Basics of Discovering Parallelism using GCC

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



Part 1

Transformations for Parallel and
Vector Execution



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution

3/1

A Taxonomy of Parallel Computation

Single Program

Multiple Programs

Single Data

SPSD

MPSD

Multiple Data

SPMD

MPMD

Essential Abstractions in GCC

GCC Resource Center, IIT Bombay



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution

3/1

A Taxonomy of Parallel Computation

Single Program

Multiple Programs

Single Multiple
Instruction | Instructions
Single Data SISD MISD MPSD
Multiple Data SIMD MIMD MPMD

Essential Abstractions in GCC

GCC Resource Center, IIT Bombay

5



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution

3/1

A Taxonomy of Parallel Computation

Single Program

Multiple Programs

Single Multiple
Instruction | Instructions
Single Data SISD 7 7
Multiple Data SIMD MIMD MPMD

Redundant computation for validation of intermediate steps

Essential Abstractions in GCC

GCC Resource Center, IIT Bombay



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution

3/1

A Taxonomy of Parallel Computation

Single Program

Single Multiple

Instruction Instructions

Multiple Programs

Single Data

SIﬁD MISD

MPSD

Multiple Data

SIMD MIMD MPMD

Transformations performed by a compiler

Essential Abstractions in GCC

GCC Resource Center, IIT Bombay

He



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 4/1

Vectorization: SISD = SIMD

o Parallelism in executing operation on shorter operands
(8-bit, 16-bit, 32-bit operands)
e Existing 32 or 64-bit arithmetic units used to perform multiple

operations in parallel
A 64 bit word = a vector of 2x (32 bits), 4x(16 bits), or 8x(8 bits)

Essential Abstractions in GCC GCC Resource Center, IIT Bombay




July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution

5/1

Example 1

Vectorization  (SISD = SIMD)  : Yes
Parallelization  (SISD = MIMD) : Yes

Original Code

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

=y



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 5/1

Example 1

Vectorization  (SISD = SIMD)  : Yes
Parallelization  (SISD = MIMD) : Yes

Original Code

Observe reads and writes
into a given location

A[0..N]

so.N] NN NNNENEEEENE -

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 5/1

Example 1

Vectorization  (SISD = SIMD)  : Yes
Parallelization  (SISD = MIMD) : Yes

Original Code

Observe reads and writes
into a given location

AN A A0 )

o0 M

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 5/1

Example 1

Vectorization  (SISD = SIMD)  : Yes
Parallelization  (SISD = MIMD) : Yes

Original Code

Observe reads and writes
into a given location

AN A0 A0

o0 Wl

lteration # 1

-3

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 5/1

Example 1

Vectorization  (SISD = SIMD)  : Yes
Parallelization  (SISD = MIMD) : Yes

Original Code

Observe reads and writes
into a given location

AN A0 00

o0 Wl

lteration # 1 2

-3

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 5/1

Example 1

Vectorization  (SISD = SIMD)  : Yes
Parallelization  (SISD = MIMD) : Yes

Original Code

Observe reads and writes
into a given location

N AR A0 )

o0 Wl

lteration # 1 2 3

-3

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 5/1

Example 1

Vectorization  (SISD = SIMD)  : Yes
Parallelization  (SISD = MIMD) : Yes

Original Code

Observe reads and writes
into a given location

AN A0 0000

o0 W ol

lteration # 1 2 3 4

-3

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 5/1

Example 1

Vectorization  (SISD = SIMD)  : Yes
Parallelization  (SISD = MIMD) : Yes

Original Code

Observe reads and writes
into a given location

Ao A Q0 0000

o0 Wl el

lteration # 1 2 3 4 5

-3

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 5/1

Example 1

Vectorization  (SISD = SIMD)  : Yes
Parallelization  (SISD = MIMD) : Yes

Original Code

Observe reads and writes
into a given location

AN A Q 00000

o0 e ol

lteration # 1 2 3 4 5 6

-3

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 5/1

Example 1

Vectorization  (SISD = SIMD)  : Yes
Parallelization  (SISD = MIMD) : Yes

Original Code

Observe reads and writes
into a given location

Ao A1)

o0 el

lteration # 1 2 3 4 5 6 7

-3

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 5/1

Example 1

Vectorization  (SISD = SIMD)  : Yes
Parallelization  (SISD = MIMD) : Yes

Original Code

Observe reads and writes
into a given location

Ao A0 1))

o0 e el

lteration # 1 2 3 4 5 6 7 8

W
a=

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 5/1

Example 1

Vectorization  (SISD = SIMD)  : Yes
Parallelization  (SISD = MIMD) : Yes

Original Code

Observe reads and writes
into a given location

Ao A0 1))

o0 el el

lteration# 1 2 3 4 5 6 7 8 9

W
a=

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 5/1

Example 1

Vectorization  (SISD = SIMD)  : Yes
Parallelization  (SISD = MIMD) : Yes

Original Code

Observe reads and writes
into a given location

Ao A0 0000 ()

o0 e e el

lteration# 1 2 3 4 5 6 7 8 9 10

W
a=

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 5/1

Example 1

Vectorization  (SISD = SIMD)  : Yes
Parallelization  (SISD = MIMD) : Yes

Original Code

Observe reads and writes
into a given location

Ao A0 0000

o0 e ol e el

lteraton# 1 2 3 4 5 6 7 8 9 10 11

W
a=

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 5/1

Example 1

Vectorization  (SISD = SIMD)  : Yes
Parallelization  (SISD = MIMD) : Yes

Original Code

Observe reads and writes
into a given location

Ao A0 00001

o WAl

lteration # 1 2 3 4 5 6 7 8 9 10 11 12

W
a=

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 5/1

Example 1
Vectorization ~ (SISD = SIMD)  : Yes Vectorization
Parallelization  (SISD = MIMD) : Yes Factor
Original Code Vectorized Code

int A[N], B[N], i;
for (i=1; i<N; i=i+(4))
Afi:i+3] = A[i:i+3] + B[i-1:i+2];

AN T AR E 00 )

o0 e e e

Iteration #

W
a=

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 5/1

Example 1
Vectorization ~ (SISD = SIMD)  : Yes Vectorization
Parallelization  (SISD = MIMD) : Yes Factor
Original Code Vectorized Code

int A[N], B[N], i;
for (i=1; i<N; i=i+(4))
Afi:i+3] = A[i:i+3] + B[i-1:i+2];

Ao AR E 00000

o0 W e e

Iteration # (- 1 _1

W
a=

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 5/1

Example 1
Vectorization ~ (SISD = SIMD)  : Yes Vectorization
Parallelization  (SISD = MIMD) : Yes Factor
Original Code Vectorized Code

int A[N], B[N], i;
for (i=1; i<N; i=i+(2))
A[i:i+3] = A[i:i+3] + B[i-1:i+2];

Ao AL

o Wl ettt

Iteration #

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 5/1

Example 1
Vectorization ~ (SISD = SIMD)  : Yes Vectorization
Parallelization  (SISD = MIMD) : Yes Factor
Original Code Vectorized Code

int A[N], BIN], i;
for (i=1; i<N; i=i+(2))
A[i:i+3] = A[i:i+3] + B[i-1:i+2];

Ao A0 00001

o ettt

Iteration #

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 6/1

Example 1

Vectorization  (SISD = SIMD)  : Yes
Parallelization  (SISD = MIMD) : Yes

Original Code

Observe reads and writes
into a given location

&=

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 6/1

Example 1

Vectorization  (SISD = SIMD)  : Yes
Parallelization  (SISD = MIMD) : Yes

Original Code

Observe reads and writes
into a given location

A[0..N]

so.N] NN NNNENEEEENE -

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 6/1

Example 1

Vectorization  (SISD = SIMD)  : Yes
Parallelization  (SISD = MIMD) : Yes

Original Code

Observe reads and writes
into a given location

AN AR QA0 0

o0 o

Iteration #

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 6/1

Example 1

Vectorization  (SISD = SIMD)  : Yes
Parallelization  (SISD = MIMD) : Yes

Original Code Parallelized Code

int A[N], B[N], i
foreach (i=1; i<N; )
A[i] = A[i] + B[i-1];

Ao A0

o ol

Iteration # t

W
a=

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 7/1

Example 1: The Moral of the Story

Vectorization  (SISD = SIMD)  : Yes
Parallelization  (SISD = MIMD) : Yes

Observe reads and writes
into a given location

AN AR Q00 )

o0 Mo

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 7/1

Example 1: The Moral of the Story

Vectorization ~ (SISD = SIMD)  : Yes

Parallelization (SISD = MIMD) : Yes
When the same location is accessed across different iter-
ations, the order of reads and writes must be preserved

Nature of accesses in our example
Iteration i ‘ Iteration i + k ‘ Observation
Read Write
Write Read
Write Write
Read Read

PP PEPEPRPEPEPEPRY

o E e e .

Essential Abstractions in GCC GCC Resource Center, IIT Bombay




July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 7/1

Example 1: The Moral of the Story

Vectorization ~ (SISD = SIMD)  : Yes

Parallelization (SISD = MIMD) : Yes
When the same location is accessed across different iter-
ations, the order of reads and writes must be preserved

Nature of accesses in our example
Iteration i ‘ Iteration i + k ‘ Observation
Read Write No
Write Read
Write Write
Read Read

PP PEPEPRPEPEPEPRY

o E e e .

Essential Abstractions in GCC GCC Resource Center, IIT Bombay




July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 7/1

Example 1: The Moral of the Story

Vectorization ~ (SISD = SIMD)  : Yes

Parallelization (SISD = MIMD) : Yes
When the same location is accessed across different iter-
ations, the order of reads and writes must be preserved

Nature of accesses in our example
Iteration i ‘ Iteration i + k ‘ Observation
Read Write No
Write Read No
Write Write
Read Read

PP PEPEPRPEPEPEPRY

o E e e .

Essential Abstractions in GCC GCC Resource Center, IIT Bombay




July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 7/1

Example 1: The Moral of the Story

Vectorization ~ (SISD = SIMD)  : Yes

Parallelization (SISD = MIMD) : Yes
When the same location is accessed across different iter-
ations, the order of reads and writes must be preserved

Nature of accesses in our example
Iteration i ‘ Iteration i + k ‘ Observation
Read Write No
Write Read No
Write Write No
Read Read

PP PEPEPRPEPEPEPRY

o E e e .

Essential Abstractions in GCC GCC Resource Center, IIT Bombay




July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 7/1

Example 1: The Moral of the Story

Vectorization ~ (SISD = SIMD)  : Yes

Parallelization (SISD = MIMD) : Yes
When the same location is accessed across different iter-
ations, the order of reads and writes must be preserved

Nature of accesses in our example
Iteration i ‘ Iteration i + k ‘ Observation
Read Write No
Write Read No
Write Write No
Read Read Does not matter

PP PEPEPRPEPEPEPRY

o E e e .

Essential Abstractions in GCC GCC Resource Center, IIT Bombay




July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 8/1

Example 2

Vectorization  (SISD = SIMD)  : Yes
Parallelization  (SISD = MIMD) : No

Original Code

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 8/1

Example 2

Vectorization  (SISD = SIMD)  : Yes
Parallelization  (SISD = MIMD) : No

Original Code

Observe reads and writes
into a given location

A[0..N]

so.N e
Essential Abstractions in GCC GCC Resource Center, IIT Bombayn%j

ey




July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 8/1

Example 2

Vectorization  (SISD = SIMD)  : Yes
Parallelization  (SISD = MIMD) : No

Original Code

Observe reads and writes
into a given location

AN WA W WA

oo e e e e

Iteration #

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 8/1

Example 2

Vectorization  (SISD = SIMD)  : Yes
Parallelization  (SISD = MIMD) : No

Original Code

Observe reads and writes
into a given location

AN 4 WA WA

oo e e e

lteration # 1

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 8/1

Example 2

Vectorization  (SISD = SIMD)  : Yes
Parallelization  (SISD = MIMD) : No

Original Code

Observe reads and writes
into a given location

AT

Ao {0 IATATATA
PO 8 A A e
-

Iteration #
Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 8/1

Example 2

Vectorization  (SISD = SIMD)  : Yes
Parallelization  (SISD = MIMD) : No

Original Code

Observe reads and writes
into a given location

MWW

A[0..N] {
B[0..N] ‘
1

Iteration #

2

{) IATATATA
IR e A A A A
3

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 8/1

Example 2

Vectorization  (SISD = SIMD)  : Yes
Parallelization  (SISD = MIMD) : No

Original Code

Observe reads and writes
into a given location

MU WU N

A[0..N] {
B[0..N] ‘
1

Iteration #

2 4

1 6 e o e A
3

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 8/1

Example 2

Vectorization  (SISD = SIMD)  : Yes
Parallelization  (SISD = MIMD) : No

Original Code

Observe reads and writes
into a given location

{ ARRAES:

A[0..N] {
B[0..N] ‘
1

Iteration #

2

DO
S e e e

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 8/1

Example 2

Vectorization  (SISD = SIMD)  : Yes
Parallelization  (SISD = MIMD) : No

Original Code

Observe reads and writes
into a given location

{30

i

5 6

A[0..N] {
B[0..N] ‘
1

Iteration #

2

NOON
I

avaYava
b

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 8/1

Example 2

Vectorization  (SISD = SIMD)  : Yes
Parallelization  (SISD = MIMD) : No

Original Code

Observe reads and writes
into a given location

A[0..N] {
B[0..N] ‘
1

Iteration #

2

(\/\i\f\ 28

7

SEEEEEL:
6

5
Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 8/1

Example 2

Vectorization  (SISD = SIMD)  : Yes
Parallelization  (SISD = MIMD) : No

Original Code

Observe reads and writes
into a given location

laatatatets
L

5

LU

A[0..N] {
B[0..N] ‘
1

Iteration #

2

I
8

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 8/1

Example 2

Vectorization  (SISD = SIMD)  : Yes
Parallelization  (SISD = MIMD) : No

Original Code

Observe reads and writes
into a given location

laatatatets
L

5

MU

A[0..N] {
B[0..N] ‘
1

Iteration #

2

i
.

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 8/1

Example 2

Vectorization  (SISD = SIMD)  : Yes
Parallelization  (SISD = MIMD) : No

Original Code

Observe reads and writes
into a given location

o 4 OO OO
oo .Mﬁ b

Iteration # 1 2 4 5 7 9 10

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 8/1

Example 2

Vectorization  (SISD = SIMD)  : Yes
Parallelization  (SISD = MIMD) : No

Original Code

Observe reads and writes
into a given location

Ao OO
oo .m ﬁﬁﬁﬁﬁﬁ

lteration # 1 2 4 5 6 7 9 10 11

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 8/1

Example 2

Vectorization  (SISD = SIMD)  : Yes
Parallelization  (SISD = MIMD) : No

Original Code

Observe reads and writes
into a given location

Ao OO
oo .m ﬁﬁﬁﬁﬁﬁ

lteration # 1 2 4 5 6 7 9 10 11 12

'

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 8/1

Example 2

Vectorization  (SISD = SIMD)  : Yes
Parallelization  (SISD = MIMD) : No

Original Code

e Vector instruction is synchronized: All
reads before writes in a given instruction

¥ aYatata¥atatatataal

o AL

Iteration #

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 8/1

Example 2

Vectorization  (SISD = SIMD)  : Yes
Parallelization  (SISD = MIMD) : No

Original Code

e Vector instruction is synchronized: All
reads before writes in a given instruction

A[0..N]

B[0..N]

Iteration #

&=

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 8/1

Example 2

Vectorization  (SISD = SIMD)  : Yes
Parallelization  (SISD = MIMD) : No

Original Code

e Vector instruction is synchronized: All
reads before writes in a given instruction

A[0..N]

B[0..N]

Iteration #

-3

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 8/1

Example 2

Vectorization  (SISD = SIMD)  : Yes
Parallelization  (SISD = MIMD) : No

Original Code

e Vector instruction is synchronized: All
reads before writes in a given instruction

A[0..N]

B[0..N]

Iteration #

-3

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 8/1

Example 2

Vectorization  (SISD = SIMD)  : Yes
Parallelization  (SISD = MIMD) : No

Original Code

e Vector instruction is synchronized: All
reads before writes in a given instruction

e Read-writes across multiple instructions ex-
ecuting in parallel may not be synchronized

IaYavatatatatataly

pijtitststsiien

W
a=

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 9/1

Example 2: The Moral of the Story

Vectorization  (SISD = SIMD)  : Yes
Parallelization  (SISD = MIMD) : No

Original Code

Observe reads and writes
into a given location

Y avaVaTaYatatatatatal

W AAEAAAAERAAATY

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 9/1

Example 2: The Moral of the Story

Vectorization ~ (SISD = SIMD)  : Yes

Parallelization (SISD = MIMD) : No
When the same location is accessed across different iter-
ations, the order of reads and writes must be preserved

Nature of accesses in our example
Iteration i ‘ Iteration i + k ‘ Observation
Read Write
Write Read
Write Write
Read Read

AN T80 303030 30 30 A0 A A de de
NI

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

i



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 9/1

Example 2: The Moral of the Story

Vectorization ~ (SISD = SIMD)  : Yes

Parallelization  (SISD = MIMD) : No -—__
When the same location is accessed aciQss different iter-
ations, the order of reads and writes must be preserved

Nature of accesses in our example
Iteration i ‘ Iteration i + k ‘ Obserpation
Read Write Yes
Write Read
Write Write
Read Read

AN T80 303030 30 30 A0 A A de de
NI

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

i



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 9/1

Example 2: The Moral of the Story

Vectorization ~ (SISD = SIMD)  : Yes

Parallelization  (SISD = MIMD) : No -—__
When the same location is accessed aciQss different iter-
ations, the order of reads and writes must be preserved

Nature of accesses in our example
Iteration i ‘ Iteration i + k ‘ Obserpation
Read Write Yes
Write Read No
Write Write
Read Read

AN T80 303030 30 30 A0 A A de de
NI

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

i



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 9/1

Example 2: The Moral of the Story

Vectorization ~ (SISD = SIMD)  : Yes

Parallelization  (SISD = MIMD) : No -—__
When the same location is accessed aciQss different iter-
ations, the order of reads and writes must be preserved

Nature of accesses in our example
Iteration i ‘ Iteration i + k ‘ Obserpation
Read Write Yes
Write Read No
Write Write No
Read Read

AN T80 303030 30 30 A0 A A de de
NI

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

i



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 9/1

Example 2: The Moral of the Story

Vectorization ~ (SISD = SIMD)  : Yes

Parallelization  (SISD = MIMD) : No -—__
When the same location is accessed aciQss different iter-
ations, the order of reads and writes must be preserved

Nature of accesses in our example
Iteration i ‘ Iteration i + k ‘ Obserpation
Read Write Yes
Write Read No
Write Write No
Read Read Does not matter

AN T80 303030 30 30 A0 A A de de
A A A

Essential Abstractions in GCC GCC Resource Center, IIT Bombay




July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 10/1

Example 3
Vectorization  (SISD = SIMD) : No
Parallelization  (SISD = MIMD) : No

Observe reads and writes
into a given location

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 10/1

Example 3
Vectorization  (SISD = SIMD) : No
Parallelization  (SISD = MIMD) : No

Observe reads and writes
into a given location

A[0..N]

so.n] ENEEEEEEEEEE -

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 10/1

Example 3
Vectorization  (SISD = SIMD) : No
Parallelization  (SISD = MIMD) : No

Observe reads and writes
into a given location

Ao YA

oo 0 e e

Iteration #

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 10/1

Example 3
Vectorization  (SISD = SIMD) : No
Parallelization  (SISD = MIMD) : No

Observe reads and writes
into a given location

Ao Y YA

o mbbb bbb

Iteration #

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 10/1

Example 3
Vectorization  (SISD = SIMD) : No
Parallelization  (SISD = MIMD) : No

Observe reads and writes
into a given location

Ao Y YA

 msbbbbbbbbiL

Iteration #

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 10/1

Example 3
Vectorization  (SISD = SIMD) : No
Parallelization  (SISD = MIMD) : No

Observe reads and writes
into a given location

Ao Y YA

s I e e e

Iteration # 1 2 3

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 10/1

Example 3
Vectorization  (SISD = SIMD) : No
Parallelization  (SISD = MIMD) : No

Observe reads and writes
into a given location

Ao Y M

s e e e

Iteration # 1 2 3 4

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 10/1

Example 3
Vectorization  (SISD = SIMD) : No
Parallelization  (SISD = MIMD) : No

Observe reads and writes
into a given location

Ao Y M

oo e e e

Iteration # 1 2 3 4 5

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 10/1

Example 3
Vectorization  (SISD = SIMD) : No
Parallelization  (SISD = MIMD) : No

Observe reads and writes
into a given location

ap.n Y

oo 0 e e e

Iteration # 1 2 3 4 5 6

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 10/1

Example 3
Vectorization  (SISD = SIMD) : No
Parallelization  (SISD = MIMD) : No

Observe reads and writes
into a given location

Aoy Y

oo e e el e

Iteration # 1 2 3 45 6 7

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 10/1

Example 3
Vectorization  (SISD = SIMD) : No
Parallelization  (SISD = MIMD) : No

Observe reads and writes
into a given location

Aoy Y

oo e el e

Iteration # 1 2 3 45 6 7 8

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 10/1

Example 3
Vectorization  (SISD = SIMD) : No
Parallelization  (SISD = MIMD) : No

Observe reads and writes
into a given location

o Y

oo e e e e

Iteration # 1 2 3 45 6 7 8 9

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 10/1

Example 3
Vectorization  (SISD = SIMD) : No
Parallelization  (SISD = MIMD) : No

Observe reads and writes
into a given location

Aoy Y W

o e e e e

Iteration # 1 2 3 45 6 7 8 910

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 10/1

Example 3
Vectorization  (SISD = SIMD) : No
Parallelization  (SISD = MIMD) : No

Observe reads and writes
into a given location

Aoy Y Y

oo ke e e e

Iteration # 1 2 3 45 6 7 8 9 1011

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 10/1

Example 3
Vectorization  (SISD = SIMD) : No
Parallelization  (SISD = MIMD) : No

Observe reads and writes
into a given location

Aoy OO

o e e e e

Iteration # 1 2 3 45 6 7 8 9 10 11 12

'

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution

10/1

Example 3

Vectorization ~ (SISD = SIMD) : No
Parallelization  (SISD = MIMD) : No

Nature of accesses in our example
Iteration i ‘ Iteration i + k ‘ Observation
Read Write No
Write Read
Write Write
Read Read

oy YN

I o s o o e A A

Iteration # 1 2 3 45 6 7 8 9 10 11 12

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 10/1

Example 3
Vectorization  (SISD = SIMD) : No
Parallelization (SISD = MIMD) No\
N\
Nature of accksses in our exampl
Iteration f ‘ Iteration i + k ‘ Observatjion
Read Write \ No
Write Read ~——VYes
Write Write
Read Read

oy YN

I o s o o e A A

Iteration # 1 2 3 45 6 7 8 9 10 11 12

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 10/1

Example 3
Vectorization  (SISD = SIMD) : No
Parallelization (SISD = MIMD) No\
N\
Nature of accksses in our exampl
Iteration f ‘ Iteration i + k ‘ Observatjion
Read Write \ No
Write Read ~——VYes
Write Write No
Read Read

oy YN

I o s o o e A A

Iteration # 1 2 3 45 6 7 8 9 10 11 12

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 10/1

Example 3
Vectorization  (SISD = SIMD) : No
Parallelization (SISD = MIMD) No\
N\
Nature of accksses in our exampl
Iteration i ‘ IteratioN / + k ‘ Observatjion
Read Write \ No
Write Read S~—— VYes
Write Write No
Read Read Does not matter

oy YN

I o s o o e A A

Iteration # 1 2 3 45 6 7 8 9 10 11 12

Essential Abstractions in GCC GCC Resource Center, |IT Bombay ==y’



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 11/1

Example 4

Vectorization ~ (SISD = SIMD) : No
Parallelization  (SISD = MIMD) : Yes

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 11/1

Example 4

Vectorization ~ (SISD = SIMD) : No
Parallelization  (SISD = MIMD) : Yes

e This case is not possible

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 11/1

Example 4

Vectorization ~ (SISD = SIMD) : No
Parallelization  (SISD = MIMD) : Yes

e This case is not possible

e Vectorization is a limited granularity parallelization

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 11/1

Example 4

Vectorization ~ (SISD = SIMD) : No
Parallelization  (SISD = MIMD) : Yes

e This case is not possible
e Vectorization is a limited granularity parallelization

e If parallelization is possible then vectorization is trivially possible

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 12/1

Data Dependence

Let statements S; and S; access memory location m at time instants t
and t + k

Access in S; | Access in S; ‘ Dependence ‘ Notation
Read m Write m Anti (or Pseudo) SidS
Write m Read m Flow (or True) SidS;
Write m Write m Output (or Pseudo) | S; 09 S;
Read m Read m Does not matter

e Pseudo dependences may be eliminated by some transformations

e True dependence prohibits parallel execution of S; and S;

5

Essential Abstractions in GCC GCC Resource Center, IIT Bombay ﬁl



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 13/1

Loop Carried and Loop Independent Dependences

Consider dependence between statements S; and S; in a loop
e Loop independent dependence. t and t 4+ k occur in the same
iteration of a loop

» S; and S; must be executed sequentially
» Different iterations of the loop can be parallelized

e Loop carried dependence. t and t + k occur in the different
iterations of a loop

» Within an iteration, S; and S; can be executed in parallel
» Different iterations of the loop must be executed sequentially

e 5; and S; may have both loop carried and loop independent
dependences

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 14/1

Dependence in Example 1

e Program

int A[N], B[N], i;
for (i=1; i<N; i++)
A[i] = A[i] + B[i-1]; /* S1 x/

e Dependence graph
OFL=

e No loop carried dependence
Both vectorization and parallelization are possible

GCC Resource Center, IIT Bombay

Essential Abstractions in GCC



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 14/1

Dependence in Example 1

e Program

int A[N], B[N], i;
for (i=1; i<N; i++)
A[i] = A[i] + B[i-1]; /* S1 x/

Dependence in the
same iteration

&)

e No loop carried dependence
Both vectorization and parallelization are possible

e Dependence graph

GCC Resource Center, IIT Bombay

Essential Abstractions in GCC



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 15/1

Dependence in Example 2

e Program

int A[N], BIN], i;
for (i=0; i<N; i++)
A[i] = A[i+1] + B[i]; /* S1 =/

|

e Dependence graph
oy

e Loop carried anti-dependence
Parallelization is not possible
Vectorization is possible since all reads are done before all writes

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 15/1

Dependence in Example 2

e Program

int A[N], BIN], i;
for (i=0; i<N; i++)
A[i] = A[i+1] + B[i]; /* S1 =/

|

e Dependence graph Dependence due to

the outermost loop
&

e Loop carried anti-dependence
Parallelization is not possible
Vectorization is possible since all reads are done before all writes

-

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

5



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 16/1

Dependence in Example 3

e Program

int A[N], BI[N], i;
for (i=0; i<N; i++)
A[i+1] = A[i] + B[i+1]; /% S1 =/

N |

e Dependence graph

&)s

e Loop carried flow-dependence
Neither parallelization not vectorization is possible

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution

Example 4: Dependence

17/1

Program to swap arrays Dependence Graph

g
for (i=0; i<N; i++)
{ T =A[i]; /* S1 x/
A[i] = B[il; /* S2 */
B[i] = T; /* S3 x/
}

Essential Abstractions in GCC GCC Resource Center, IIT Bombay | = I



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution

Example 4: Dependence

17/1

Program to swap arrays Dependence Graph

g
for (i=0; i<N; i++)
{ T =A[i]; /* S1 x/
A[i] = B[il; /* S2 */
B[i] = T; /* S3 x/
}

Loop independent anti dependence due to A[i]

Essential Abstractions in GCC GCC Resource Center, IIT Bombay | = I




July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution

Example 4: Dependence

17/1

Program to swap arrays Dependence Graph

g
for (i=0; i<N; i++)
{ T =A[i]; /* S1 x/
A[i] = B[il; /* S2 */
B[i] = T; /* S3 x/
}

Loop independent anti dependence due to B[i]

Essential Abstractions in GCC GCC Resource Center, IIT Bombay | = I




July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 17/1

Example 4: Dependence

Program to swap arrays Dependence Graph
op
for (i=0; i<N; i++)
{ T =A[i]l; /* 81 */
Ali] = BI[i]; /* 82 */
B[i] = T; /* S3 */
}

Loop independent flow dependence due to T

Essential Abstractions in GCC GCC Resource Center, IIT Bombay | = I




July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution

17/1
Example 4: Dependence

Program to swap arrays Dependence Graph
op
for (i=0; i<N; i++)
{ T =A[i]l; /* 81 */
Ali] = BI[i]; /* 82 */
B[i] = T; /* S3 */
}

Loop carried anti dependence due to T

GCC Resource Center, IIT BombayQ

Essential Abstractions in GCC



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution

Example 4: Dependence

17/1

Program to swap arrays Dependence Graph

g
for (i=0; i<N; i++)
{ T =A[i]; /* S1 x/
A[i] = B[il; /* S2 */
B[i] = T; /* S3 x/
}

Loop carried output dependence due to T

Essential Abstractions in GCC GCC Resource Center, IIT Bombay | = I




July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 17/1

Example 4: Dependence

Program to swap arrays Dependence Graph
op
for (i=0; i<N; i++)
{ T =A[i]l; /* 81 */
A[i] = BI[i]; /* 82 */
B[i] = T; /* S3 */
}

Essential Abstractions in GCC

GCC Resource Center, IIT BombayQ



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 17/1

Example 4: Dependence

Program to swap arrays Dependence Graph
o7
for (i=0; i<N; i++)
{ T =A[i]; /* S1 x/
Ali] = B[i]; /* 82 x/
B[i] = T; /* S3 */
}

Essential Abstractions in GCC

GCC Resource Center, IIT BombayQ



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 17/1

Example 4: Dependence

Program to swap arrays Dependence Graph
o7
for (i=0; i<N; i++)
{ T =A[i]; /* S1 x/
Ali] = B[i]; /* 82 x/
B[i] = T; /* S3 */
}

Essential Abstractions in GCC

GCC Resource Center, IIT BombayQ



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 18/1

Tutorial Problem for Discovering Dependence

Draw the dependence graph for the following program
(Earlier program modified to swap 2-dimensional arrays)

for (i=0; i<N; i++)
{
for (j=0; j<N; j++)
{ T =A[i]1[j]; /* 81 x/
ATil1[j1 = BI[il[jl; /* 82 %/
B[il[j] = T; /* S3 x/
}
}

GCC Resource Center, IIT Bombay

Essential Abstractions in GCC



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 19/1

Data Dependence in Loops

e Analysis in loop is tricky, as
» Loops may be nested
» Different loop iterations may access same memory location
» Arrays occur frequently
» Far too many array locations to be treated as independent scalars

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 19/1

Data Dependence in Loops

e Analysis in loop is tricky, as
» Loops may be nested
» Different loop iterations may access same memory location
» Arrays occur frequently
» Far too many array locations to be treated as independent scalars

e Consider array location A[4] [9] in the following program

for(i = 0; i <= 5; 1 ++)
for(j = 0; j <= 4; j ++)
{
A[i+1] [3*j]

e 3 /* S1 x/
A[i+3] [2*j+1]; /* S2 */

Essential Abstractions in GCC GCC Resource Center, IIT Bombay | = I



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 19/1

Data Dependence in Loops

e Analysis in loop is tricky, as
» Loops may be nested
» Different loop iterations may access same memory location
» Arrays occur frequently
» Far too many array locations to be treated as independent scalars

e Consider array location A[4] [9] in the following program

for(i = 0; i <= 5; 1 ++)
for(j = 0; j <= 4; j ++)
{
A[i+1][3%j] = ; /* S1 */

A[i+3] [2*j+1]; /* S2 */

S2 accesses in iteration (1,4), S1 accesses in iteration (3,3)

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

5



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution

20/1

Iteration Vectors and Index Vectors: Example 1

for (i=0, i<4; i++)
for (j=0; j<4; j++)
{
ali+11[j] = alil[j] + 2;

Iteration | Index Vector
Vector | LHS | RHS
0,0 1,0 0,0

WWwwhuNDNNNNNHERFREFEEHOOO
WINNF OWNRFOWNFOWNR

WWWwhDhNdNNNNEFERFEEF=OOO
W NP OWNRFOWNREFEOWNHR

PPAPAPPLOOOLONDDNDNONNRRER
WNNF OWNFOWNHFOWNR

Essential Abstractions in GCC

GCC Resource Center, IIT Bombay



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution

20/1

Iteration Vectors and Index Vectors: Example 1

for (j=0; j<4; j++)
{

ali+11[j] = alil[j] + 2;

Loop carried dependence exists if

e there are two distinct iteration
vectors such that

e the index vectors of LHS and RHS
are identical

WwWwWwwhhNhDNhDMNNRERFREFE=OOO
WNFRFOWNRFOWNRFEOWNHR

Iteration | Index Vector
Vector | LHS | RHS
for (i=0, i<4; i++) 0,0 1,0 0,0

PPAPAPPLOOOLONDDNDNONNRRER
WNNF OWNFOWNRFOWNR

WWWwhDhNdNNNNEFERFEEF=OOO
W NP OWNRFRFOWNEFEOWNDHR

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution

20/1

Iteration Vectors and Index Vectors: Example 1

for (j=0; j<4; j++)
{

ali+11[j] = alil[j] + 2;

Loop carried dependence exists if

e there are two distinct iteration
vectors such that

e the index vectors of LHS and RHS
are identical

Conclusion: Dependence exists

WwWwWwwhhNhDNhDMNNRERFREFE=OOO
WNFRFOWNRFOWNRFEOWNHR

Iteration | Index Vector
Vector | LHS | RHS
for (i=0, i<4; i++) 0,0 1,0 0,0

PPA AP PLOOOLONDDNDNONNRRER
WNNF OWNFOWNHFOWNR

WWWWNNNNRRFREROOO
WNHOWNHOWNRFROWNR

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution

20/1

Iteration Vectors and Index Vectors: Example 1

Iteration | Index Vector
Vector | LHS | RHS
for (i=0, i<4; i++) 0,0 [1,0] 0,0
for (j=0; j<4; j++) 0,1 1,1 0,1
{ 0,2 1,2 ] 0,2
. . s 0,3 1,3 0,3
+1 = + 2; Y ’ ’
. ali+1]1[j] = alil [j] 10 20| 10
L1 |21 1,1
1,2 | 22| 1,2
. o 1,3 23] 1,3
Loop carried dependence exists if 2.0 30| 2.0
e there are two distinct iteration 2,1 3,1 2,1
vectors such that 2,2 3,2 | 2,2
e the index vectors of LHS and RHS 2,3 3,3 | 23
dentical 3,0 40| 3,0
are identica 3.1 41| 3.1
Conclusion: Dependence exists 3,2 42| 3,2
3,3 |43 3,3
Essential Abstractions in GCC GCC Resource Center, IIT Bombay



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution

20/1

Iteration Vectors and Index Vectors: Example 1

for (j=0; j<4; j++)
{

ali+11[j] = alil[j] + 2;

Loop carried dependence exists if

e there are two distinct iteration
vectors such that

e the index vectors of LHS and RHS
are identical

Conclusion: Dependence exists

WwWwWwwhhNhDNhDMNNRERFREFE=OOO
WNFRFOWNRFOWNRFEOWNHR

Iteration | Index Vector
Vector | LHS | RHS
for (i=0, i<4; i++) 0,0 1,0 0,0

PPAPAPPLOOOLONDDNDNONNRRER
WNNF OWNFOWNHFOWNR

WWWWNNNNRRREROOO
WNHOWNFROWNROWN —

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution

21/1

Iteration Vectors and Index Vectors: Example 2

for (i=0, i<4; i++)
for (j=0; j<4; j++)
{
alil[j] = alil[j]1 + 2;

Iteration | Index Vector
Vector | LHS | RHS
0,0 0,0 0,0

WWwwhuNDNNNNNHERFREFEEHOOO
WINNF OWNRFOWNFOWNR

WWWwhDhNdNNNNEFERFEEF=OOO
W NP OWNRFOWNREFEOWNHRH

WWWwhDhNdNNNNEFERFEEF=OOO
W NP OWNRFOWNREFEOWNHR

Essential Abstractions in GCC

GCC Resource Center, IIT Bombay



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution

21/1

Iteration Vectors and Index Vectors: Example 2

for (i=0, i<4; i++)
for (j=0; j<4; j++)
{
alil (3] = alil[j] + 2;

Loop carried dependence exists if

e there are two distinct iteration
vectors such that

e the index vectors of LHS and RHS
are identical

Iteration | Index Vector
Vector | LHS | RHS
0,0 0,0 0,0

WwWwWwwhhNhDNhDMNNRERFREFE=OOO
WNFRFOWNRFOWNRFEOWNHR

WWWwhDhNdNNNNEFERFEEF=OOO
W NP OWNRFRFOWNREFEOWNDHR

WWWwhDhNdNNNNEFERFEEF=OOO
W NP OWNRFRFOWNEFEOWNDHR

Essential Abstractions in GCC

GCC Resource Center, IIT Bombay



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution

21/1

Iteration Vectors and Index Vectors: Example 2

for (i=0, i<4; i++)
for (j=0; j<4; j++)
{
alil (3] = alil[j] + 2;

Loop carried dependence exists if

e there are two distinct iteration
vectors such that

e the index vectors of LHS and RHS
are identical

Conclusion: No dependence

Iteration | Index Vector
Vector | LHS | RHS
0,0 0,0 0,0

WwWwWwwhhNhDNhDMNNRERFREFE=OOO
WNFRFOWNRFOWNRFEOWNHR

WWWwhDhNdNNNNEFERFEEF=OOO
W NP OWNRFOWNREFEOWNHRH

WWWwhDhNdNNNNEFERFEEF=OOO
W NP OWNRFOWNREFEOWNHR

Essential Abstractions in GCC

GCC Resource Center, IIT Bombay



July 2010 Par-Vect Intro: Transformations for Parallel and Vector Execution 22/1

Data Dependence Theorem

There exists a dependence from statement S; to statement Sy in
common nest of loops if and only if there exist two iteration vectors i
and j for the nest, such that
1. i < jori=jand there exists a path from S; to S, in the body of
the loop,
2. statement S; accesses memory location M on iteration i and
statement S, accesses location M on iteration j, and

3. one of these accesses is a write access.

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



