
Workshop on Essential Abstractions in GCC

Parallelization and Vectorization in GCC 4.5.0

GCC Resource Center

(www.cse.iitb.ac.in/grc)

Department of Computer Science and Engineering,

Indian Institute of Technology, Bombay

July 2010

July 2010 GCC-Par-Vect: Outline 1/49

Outline

• An Overview of Loop Transformations in GCC

• Parallelization and vectorization based on Lambda Framework

• Parallelization based on Polytope Model

• Conclusions

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Outline 2/49

The Scope of this Tutorial

• What this tutorial does not address

◮ Algorithms used for parallelization and vectoriation
◮ Machine level issues related to parallelization and vectoriation

• What this tutorial addresses

Basics of Discovering Parallelism using GCC

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

Part 1

Loop Transformations

July 2010 GCC-Par-Vect: Loop Transformations 3/49

Loop Transforms in GCC

Implementation Issues

• Getting loop information (Loop discovery)

• Finding value spaces of induction variables, index expressions, and
pointer accesses

• Analyzing data dependence

• Performing linear transformations

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Loop Transformations 4/49

Loop Information

Loop0

{ Loop1

{ Loop2

{

}

Loop3

{ Loop4

{

}

}

}

Loop5

{

}

}

Loop Tree

L0

L1 L5

L2 L3

L4

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Loop Transformations 5/49

Problems with Classical Loop Nest Transforms

• Difficult to undo loop transforms - transforms are applied on the
syntactic form

• Difficult to compose transformations - intermediate translation to a
syntactic form after each transformation

• Ordering of transforms is fixed - as defined in file passes.c

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Loop Transformations 6/49

Expected Loop Nest Transforms

Classical Loop Transforms:

Original
Code

GIMPLE

1
GIMPLE

2
. . .

GIMPLE

n
Transformed

Code

Transform 1 Transform 2 Transform n

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Loop Transformations 6/49

Expected Loop Nest Transforms

Classical Loop Transforms:

Original
Code

GIMPLE

1
GIMPLE

2
. . .

GIMPLE

n
Transformed

Code

Transform 1 Transform 2 Transform n

Expected Loop Transforms with Composition:

Transform 1

Original
Code

Intermediate
Representation

Transformed
Code

Transform n

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Loop Transformations 7/49

Loop Transformation Frameworks in GCC

• Linear Loop Transformations in GCC 4.5.0 are performed on two
frameworks:

◮ Lambda Framework - performs transformations of loops using
non-singular matrix

◮ Polyhedral Model - performs transformations of loops by representing
them as a convex polyhedra

• The polyhedral model handles a wider class of programs and
transformations than the unimodular framework

• Polyhedral Models generalize the classical transforms to
imperfectly-nested loops with complex domains

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

Part 2

Parallelization and Vectorization

in GCC using Lambda

Framework

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 8/49

Representing Value Spaces of Variables and Expressions

Chain of Recurrences: 3-tuple 〈Starting Value, modification, stride〉

for (i=3; i<=15; i=i+3)

{

for (j=11; j>=1; j=j-2)

{

A[i+1][2*j-1] = ...

}

}

Entity CR

Induction variable i {3,+, 3}
Induction variable j {11,+,−2}
Index expression i+1 {4,+, 3}
Index expression 2*j-1 {21,+,−4}

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 9/49

Advantages of Chain of Recurrences

CR can represent any affine expression
⇒ Accesses through pointers can also be tracked

int A[32], B[32];

int i, *p;

p = &B

for(i = 2; i<N; i++)

{

*(p++) = A[i] + *p;

A[i] = *p;

}

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 9/49

Advantages of Chain of Recurrences

CR can represent any affine expression
⇒ Accesses through pointers can also be tracked

int A[32], B[32];

int i, *p;

p = &B

for(i = 2; i<N; i++)

{

*(p++) = A[i] + *p;

A[i] = *p;

}

{&B,+,4bytes}

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 9/49

Advantages of Chain of Recurrences

CR can represent any affine expression
⇒ Accesses through pointers can also be tracked

int A[32], B[32];

int i, *p;

p = &B

for(i = 2; i<N; i++)

{

*(p++) = A[i] + *p;

A[i] = *p;

}

{&B,+,4bytes}

{&B+4bytes,+,4bytes}

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 10/49

Loop Transformation Passes in GCC

NEXT PASS (pass tree loop);

{

struct opt pass **p = &pass tree loop.pass.sub;

NEXT PASS (pass tree loop init);

NEXT PASS (pass copy prop);

NEXT PASS (pass dce loop);

NEXT PASS (pass lim);

NEXT PASS (pass predcom);

NEXT PASS (pass tree unswitch);

NEXT PASS (pass scev cprop);

NEXT PASS (pass empty loop);

NEXT PASS (pass record bounds);

NEXT PASS (pass check data deps);

NEXT PASS (pass loop distribution);

NEXT PASS (pass linear transform);

NEXT PASS (pass graphite transforms);

NEXT PASS (pass iv canon);

NEXT PASS (pass if conversion);

NEXT PASS (pass vectorize);

{

struct opt pass **p = &pass vectorize.pass.sub;

NEXT PASS (pass lower vector ssa);

NEXT PASS (pass dce loop);

}

NEXT PASS (pass complete unroll);

NEXT PASS (pass parallelize loops);

NEXT PASS (pass loop prefetch);

NEXT PASS (pass iv optimize);

NEXT PASS (pass tree loop done);

}

• Passes on tree-SSA form
A variant of GIMPLE IR

• Discover parallelism and
transform IR

• Parameterized by some
machine dependent features
(Vectorization factor,
alignment etc.)

• Mapping the transformed
IR to machine instructions
is achieved through
machine descriptions

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 10/49

Loop Transformation Passes in GCC
NEXT PASS (pass tree loop);

{

struct opt pass **p = &pass tree loop.pass.sub;

NEXT PASS (pass tree loop init);

NEXT PASS (pass copy prop);

NEXT PASS (pass dce loop);

NEXT PASS (pass lim);

NEXT PASS (pass predcom);

NEXT PASS (pass tree unswitch);

NEXT PASS (pass scev cprop);

NEXT PASS (pass empty loop);

NEXT PASS (pass record bounds);

NEXT PASS (pass check data deps);
NEXT PASS (pass loop distribution);
NEXT PASS (pass linear transform);

NEXT PASS (pass graphite transforms);
NEXT PASS (pass iv canon);

NEXT PASS (pass if conversion);

NEXT PASS (pass vectorize);
{

struct opt pass **p = &pass vectorize.pass.sub;

NEXT PASS (pass lower vector ssa);

NEXT PASS (pass dce loop);

}

NEXT PASS (pass complete unroll);

NEXT PASS (pass parallelize loops);
NEXT PASS (pass loop prefetch);

NEXT PASS (pass iv optimize);

NEXT PASS (pass tree loop done);

}

• Passes on tree-SSA form
A variant of GIMPLE IR

• Discover parallelism and
transform IR

• Parameterized by some
machine dependent features
(Vectorization factor,
alignment etc.)

• Mapping the transformed
IR to machine instructions
is achieved through
machine descriptions

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 10/49

Loop Transformation Passes in GCC
NEXT PASS (pass tree loop);

{

struct opt pass **p = &pass tree loop.pass.sub;

NEXT PASS (pass tree loop init);

NEXT PASS (pass copy prop);

NEXT PASS (pass dce loop);

NEXT PASS (pass lim);

NEXT PASS (pass predcom);
NEXT PASS (pass tree unswitch);

NEXT PASS (pass scev cprop);

NEXT PASS (pass empty loop);

NEXT PASS (pass record bounds);

NEXT PASS (pass check data deps);
NEXT PASS (pass loop distribution);
NEXT PASS (pass linear transform);

NEXT PASS (pass graphite transforms);
NEXT PASS (pass iv canon);

NEXT PASS (pass if conversion);

NEXT PASS (pass vectorize);
{

struct opt pass **p = &pass vectorize.pass.sub;

NEXT PASS (pass lower vector ssa);

NEXT PASS (pass dce loop);

}

NEXT PASS (pass complete unroll);

NEXT PASS (pass parallelize loops);
NEXT PASS (pass loop prefetch);

NEXT PASS (pass iv optimize);

NEXT PASS (pass tree loop done);

}

• Passes on tree-SSA form
A variant of GIMPLE IR

• Discover parallelism and
transform IR

• Parameterized by some
machine dependent features
(Vectorization factor,
alignment etc.)

• Mapping the transformed
IR to machine instructions
is achieved through
machine descriptions

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 11/49

Loop Transformation Passes in GCC: Our Focus

Data Dependence

Pass variable name pass check data deps

Enabling switch -fcheck-data-deps

Dump switch -fdump-tree-ckdd

Dump file extension .ckdd

Loop Distribution

Pass variable name pass loop distribution

Enabling switch -ftree-loop-distribution

Dump switch -fdump-tree-ldist

Dump file extension .ldist

Vectorization

Pass variable name pass vectorize

Enabling switch -ftree-vectorize

Dump switch -fdump-tree-vect

Dump file extension .vect

Parallelization

Pass variable name pass parallelize loops

Enabling switch -ftree-parallelize-loops=n

Dump switch -fdump-tree-parloops

Dump file extension .parloops

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 12/49

Compiling for Emitting Dumps

• Other necessary command line switches

◮ -O3 -fdump-tree-all

-O3 enables -ftree-vectorize. Other flags must be enabled
explicitly

• Processor related switches to enable transformations apart from
analysis

◮ -mtune=pentium -msse4

• Other useful options

◮ Suffixing -all to all dump switches
◮ -S to stop the compilation with assembly generation
◮ --verbose-asm to see more detailed assembly dump
◮ -fno-predictive-commoning to disable predictive commoning

optimization

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 13/49

Example 1: Observing Data Dependence

Step 0: Compiling

#include <stdio.h>

int a[200];

int main()

{

int i, n;

for (i=0; i<150; i++)

{

a[i] = a[i+1] + 2;

}

return 0;

}

gcc -fcheck-data-deps -fdump-tree-ckdd-all -O3 -S datadep.c

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 14/49

Example 1: Observing Data Dependence

Step 1: Examining the control flow graph

Program Control Flow Graph

#include <stdio.h>

int a[200];

int main()

{

int i, n;

for (i=0; i<150; i++)

{

a[i] = a[i+1] + 2;

}

return 0;

}

<bb 3>:

i 13 = PHI <i 4(4), 0(2)>

i 4 = i 13 + 1;

D.1240 5 = a[i 4];

D.1241 6 = D.1240 5 + 2;

a[i 13] = D.1241 6;

if (i 4 <= 149)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 14/49

Example 1: Observing Data Dependence

Step 1: Examining the control flow graph

Program Control Flow Graph

#include <stdio.h>

int a[200];

int main()

{

int i, n;

for (i=0; i<150; i++)

{

a[i] = a[i+1] + 2;

}

return 0;

}

<bb 3>:

i 13 = PHI <i 4(4), 0(2)>

i 4 = i 13 + 1;

D.1240 5 = a[i 4];

D.1241 6 = D.1240 5 + 2;

a[i 13] = D.1241 6;

if (i 4 <= 149)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 14/49

Example 1: Observing Data Dependence

Step 1: Examining the control flow graph

Program Control Flow Graph

#include <stdio.h>

int a[200];

int main()

{

int i, n;

for (i=0; i<150; i++)

{

a[i] = a[i+1] + 2;

}

return 0;

}

<bb 3>:

i 13 = PHI <i 4(4), 0(2)>

i 4 = i 13 + 1;

D.1240 5 = a[i 4];

D.1241 6 = D.1240 5 + 2;

a[i 13] = D.1241 6;

if (i 4 <= 149)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 14/49

Example 1: Observing Data Dependence

Step 1: Examining the control flow graph

Program Control Flow Graph

#include <stdio.h>

int a[200];

int main()

{

int i, n;

for (i=0; i<150; i++)

{

a[i] = a[i+1] + 2;

}

return 0;

}

<bb 3>:

i 13 = PHI <i 4(4), 0(2)>

i 4 = i 13 + 1;

D.1240 5 = a[i 4];

D.1241 6 = D.1240 5 + 2;

a[i 13] = D.1241 6;

if (i 4 <= 149)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 15/49

Example 1: Observing Data Dependence

Step 2: Understanding the chain of recurrences

<bb 3>:

i 13 = PHI <i 4(4), 0(2)>

i 4 = i 13 + 1;

D.1240 5 = a[i 4];

D.1241 6 = D.1240 5 + 2;

a[i 13] = D.1241 6;

if (i 4 <= 149)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 15/49

Example 1: Observing Data Dependence

Step 2: Understanding the chain of recurrences

<bb 3>:

i 13 = PHI <i 4(4), 0(2)>

i 4 = i 13 + 1;

D.1240 5 = a[i 4];

D.1241 6 = D.1240 5 + 2;

a[i 13] = D.1241 6;

if (i 4 <= 149)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

(evolution function = {0, +, 1} 1)

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 15/49

Example 1: Observing Data Dependence

Step 2: Understanding the chain of recurrences

<bb 3>:

i 13 = PHI <i 4(4), 0(2)>

i 4 = i 13 + 1;

D.1240 5 = a[i 4];

D.1241 6 = D.1240 5 + 2;

a[i 13] = D.1241 6;

if (i 4 <= 149)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

(scalar evolution = {1, +, 1} 1)

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 15/49

Example 1: Observing Data Dependence

Step 2: Understanding the chain of recurrences

<bb 3>:

i 13 = PHI <i 4(4), 0(2)>

i 4 = i 13 + 1;

D.1240 5 = a[i 4];

D.1241 6 = D.1240 5 + 2;

a[i 13] = D.1241 6;

if (i 4 <= 149)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

base address: &a

offset from base address: 0

constant offset from base

address: 4

aligned to: 128

(chrec = {1, +, 1} 1)

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 15/49

Example 1: Observing Data Dependence

Step 2: Understanding the chain of recurrences

<bb 3>:

i 13 = PHI <i 4(4), 0(2)>

i 4 = i 13 + 1;

D.1240 5 = a[i 4];

D.1241 6 = D.1240 5 + 2;

a[i 13] = D.1241 6;

if (i 4 <= 149)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

base address: &a

offset from base address: 0

constant offset from base

address: 0

aligned to: 128

base object: a[0]

(chrec = {0, +, 1} 1)

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 16/49

Example 1: Observing Data Dependence

Step 3: Understanding Banerjee’s test

Source View CFG View

• Relevant assignment is

a[i] = a[i + 1] + 2

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 16/49

Example 1: Observing Data Dependence

Step 3: Understanding Banerjee’s test

Source View CFG View

• Relevant assignment is

a[i] = a[i + 1] + 2

• Solve for 0 ≤ x , y < 150

y = x + 1

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 16/49

Example 1: Observing Data Dependence

Step 3: Understanding Banerjee’s test

Source View CFG View

• Relevant assignment is

a[i] = a[i + 1] + 2

• Solve for 0 ≤ x , y < 150

y = x + 1
⇒ x − y + 1 = 0

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 16/49

Example 1: Observing Data Dependence

Step 3: Understanding Banerjee’s test

Source View CFG View

• Relevant assignment is

a[i] = a[i + 1] + 2

• Solve for 0 ≤ x , y < 150

y = x + 1
⇒ x − y + 1 = 0

• Find min and max of LHS

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 16/49

Example 1: Observing Data Dependence

Step 3: Understanding Banerjee’s test

Source View CFG View

• Relevant assignment is

a[i] = a[i + 1] + 2

• Solve for 0 ≤ x , y < 150

y = x + 1
⇒ x − y + 1 = 0

• Find min and max of LHS

x − y + 1

Min: -148 Max: +150

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 16/49

Example 1: Observing Data Dependence

Step 3: Understanding Banerjee’s test

Source View CFG View

• Relevant assignment is

a[i] = a[i + 1] + 2

• Solve for 0 ≤ x , y < 150

y = x + 1
⇒ x − y + 1 = 0

• Find min and max of LHS

x − y + 1

Min: -148 Max: +150

RHS belongs to [−148, +150]
and dependence may exist

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 16/49

Example 1: Observing Data Dependence

Step 3: Understanding Banerjee’s test

Source View CFG View

• Relevant assignment is

a[i] = a[i + 1] + 2

• Solve for 0 ≤ x , y < 150

y = x + 1
⇒ x − y + 1 = 0

• Find min and max of LHS

x − y + 1

Min: -148 Max: +150

RHS belongs to [−148, +150]
and dependence may exist

• i 4 = i 13 + 1;

D.1240 5 = a[i 4];

D.1241 6 = D.1240 5 + 2;

a[i 13] = D.1241 6;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 16/49

Example 1: Observing Data Dependence

Step 3: Understanding Banerjee’s test

Source View CFG View

• Relevant assignment is

a[i] = a[i + 1] + 2

• Solve for 0 ≤ x , y < 150

y = x + 1
⇒ x − y + 1 = 0

• Find min and max of LHS

x − y + 1

Min: -148 Max: +150

RHS belongs to [−148, +150]
and dependence may exist

• i 4 = i 13 + 1;

D.1240 5 = a[i 4];

D.1241 6 = D.1240 5 + 2;

a[i 13] = D.1241 6;

• Chain of recurrences are

For a[i 4]: {1, +, 1} 1

For a[i 13]: {0, +, 1} 1

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 16/49

Example 1: Observing Data Dependence

Step 3: Understanding Banerjee’s test

Source View CFG View

• Relevant assignment is

a[i] = a[i + 1] + 2

• Solve for 0 ≤ x , y < 150

y = x + 1
⇒ x − y + 1 = 0

• Find min and max of LHS

x − y + 1

Min: -148 Max: +150

RHS belongs to [−148, +150]
and dependence may exist

• i 4 = i 13 + 1;

D.1240 5 = a[i 4];

D.1241 6 = D.1240 5 + 2;

a[i 13] = D.1241 6;

• Chain of recurrences are

For a[i 4]: {1, +, 1} 1

For a[i 13]: {0, +, 1} 1

• Solve for 0 ≤ x 1 < 150

1 + 1*x 1 − 0 + 1*x 1 = 0

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 16/49

Example 1: Observing Data Dependence

Step 3: Understanding Banerjee’s test

Source View CFG View

• Relevant assignment is

a[i] = a[i + 1] + 2

• Solve for 0 ≤ x , y < 150

y = x + 1
⇒ x − y + 1 = 0

• Find min and max of LHS

x − y + 1

Min: -148 Max: +150

RHS belongs to [−148, +150]
and dependence may exist

• i 4 = i 13 + 1;

D.1240 5 = a[i 4];

D.1241 6 = D.1240 5 + 2;

a[i 13] = D.1241 6;

• Chain of recurrences are

For a[i 4]: {1, +, 1} 1

For a[i 13]: {0, +, 1} 1

• Solve for 0 ≤ x 1 < 150

1 + 1*x 1 − 0 + 1*x 1 = 0

• Min of LHS is -148, Max is +150

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 16/49

Example 1: Observing Data Dependence

Step 3: Understanding Banerjee’s test

Source View CFG View

• Relevant assignment is

a[i] = a[i + 1] + 2

• Solve for 0 ≤ x , y < 150

y = x + 1
⇒ x − y + 1 = 0

• Find min and max of LHS

x − y + 1

Min: -148 Max: +150

RHS belongs to [−148, +150]
and dependence may exist

• i 4 = i 13 + 1;

D.1240 5 = a[i 4];

D.1241 6 = D.1240 5 + 2;

a[i 13] = D.1241 6;

• Chain of recurrences are

For a[i 4]: {1, +, 1} 1

For a[i 13]: {0, +, 1} 1

• Solve for 0 ≤ x 1 < 150

1 + 1*x 1 − 0 + 1*x 1 = 0

• Min of LHS is -148, Max is +150

• Dependence may exist

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 17/49

Example 2: Observing Vectorization and Parallelization

Step 0: Compiling with -fno-predictive-commoning

int a[256], b[256];

int main()

{

int i;

for (i=0; i<256; i++)

{

a[i] = b[i];

}

return 0;

}

• Additional options for parallelization
-ftree-parallelize-loops=4 -fdump-tree-parloops-all

• Additional options for vectorization
-fdump-tree-vect-all -msse4

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 18/49

Example 2: Observing Vectorization and Parallelization

Step 1: Examining the control flow graph

Program Control Flow Graph

int a[256], b[256];

int main()

{

int i;

for (i=0; i<256; i++)

{

a[i] = b[i];

}

return 0;

}

<bb 3>:

i 14 = PHI <i 6(4), 0(2)>

D.1666 5 = b[i 14];

a[i 14] = D.1666 5;

i 6 = i 14 + 1;

if (i 6 <= 255)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 18/49

Example 2: Observing Vectorization and Parallelization

Step 1: Examining the control flow graph

Program Control Flow Graph

int a[256], b[256];

int main()

{

int i;

for (i=0; i<256; i++)

{

a[i] = b[i];

}

return 0;

}

<bb 3>:

i 14 = PHI <i 6(4), 0(2)>

D.1666 5 = b[i 14];

a[i 14] = D.1666 5;

i 6 = i 14 + 1;

if (i 6 <= 255)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 18/49

Example 2: Observing Vectorization and Parallelization

Step 1: Examining the control flow graph

Program Control Flow Graph

int a[256], b[256];

int main()

{

int i;

for (i=0; i<256; i++)

{

a[i] = b[i];

}

return 0;

}

<bb 3>:

i 14 = PHI <i 6(4), 0(2)>

D.1666 5 = b[i 14];

a[i 14] = D.1666 5;

i 6 = i 14 + 1;

if (i 6 <= 255)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 19/49

Example 2: Observing Vectorization and Parallelization

Step 2: Observing the final decision about vectorization

parvec.c:9: note: LOOP VECTORIZED.

parvec.c:6: note: vectorized 1 loops in function.

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 20/49

Example 2: Observing Vectorization and Parallelization

Step 3: Examining the vectorized control flow graph

Original control flow graph Transformed control flow graph

<bb 3>:

i 14 = PHI <i 6(4), 0(2)>

D.1666 5 = b[i 14];

a[i 14] = D.1666 5;

i 6 = i 14 + 1;

if (i 6 <= 255)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

...

vect var .31 18 = *vect pb.25 16;

*vect pa.32 21 = vect var .31 18;

vect pb.25 17 = vect pb.25 16 + 16;

vect pa.32 22 = vect pa.32 21 + 16;

ivtmp.38 24 = ivtmp.38 23 + 1;

if (ivtmp.38 24 < 64)

goto <bb 4>;

else

goto <bb 5>;

...

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 20/49

Example 2: Observing Vectorization and Parallelization

Step 3: Examining the vectorized control flow graph

Original control flow graph Transformed control flow graph

<bb 3>:

i 14 = PHI <i 6(4), 0(2)>

D.1666 5 = b[i 14];

a[i 14] = D.1666 5;

i 6 = i 14 + 1;

if (i 6 <= 255)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

...

vect var .31 18 = *vect pb.25 16;

*vect pa.32 21 = vect var .31 18;

vect pb.25 17 = vect pb.25 16 + 16;

vect pa.32 22 = vect pa.32 21 + 16;

ivtmp.38 24 = ivtmp.38 23 + 1;

if (ivtmp.38 24 < 64)

goto <bb 4>;

else

goto <bb 5>;

...

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 20/49

Example 2: Observing Vectorization and Parallelization

Step 3: Examining the vectorized control flow graph

Original control flow graph Transformed control flow graph

<bb 3>:

i 14 = PHI <i 6(4), 0(2)>

D.1666 5 = b[i 14];

a[i 14] = D.1666 5;

i 6 = i 14 + 1;

if (i 6 <= 255)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

...

vect var .31 18 = *vect pb.25 16;

*vect pa.32 21 = vect var .31 18;

vect pb.25 17 = vect pb.25 16 + 16;

vect pa.32 22 = vect pa.32 21 + 16;

ivtmp.38 24 = ivtmp.38 23 + 1;

if (ivtmp.38 24 < 64)

goto <bb 4>;

else

goto <bb 5>;

...

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 20/49

Example 2: Observing Vectorization and Parallelization

Step 3: Examining the vectorized control flow graph

Original control flow graph Transformed control flow graph

<bb 3>:

i 14 = PHI <i 6(4), 0(2)>

D.1666 5 = b[i 14];

a[i 14] = D.1666 5;

i 6 = i 14 + 1;

if (i 6 <= 255)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

...

vect var .31 18 = *vect pb.25 16;

*vect pa.32 21 = vect var .31 18;

vect pb.25 17 = vect pb.25 16 + 16;

vect pa.32 22 = vect pa.32 21 + 16;

ivtmp.38 24 = ivtmp.38 23 + 1;

if (ivtmp.38 24 < 64)

goto <bb 4>;

else

goto <bb 5>;

...

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 20/49

Example 2: Observing Vectorization and Parallelization

Step 3: Examining the vectorized control flow graph

Original control flow graph Transformed control flow graph

<bb 3>:

i 14 = PHI <i 6(4), 0(2)>

D.1666 5 = b[i 14];

a[i 14] = D.1666 5;

i 6 = i 14 + 1;

if (i 6 <= 255)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

...

vect var .31 18 = *vect pb.25 16;

*vect pa.32 21 = vect var .31 18;

vect pb.25 17 = vect pb.25 16 + 16;

vect pa.32 22 = vect pa.32 21 + 16;

ivtmp.38 24 = ivtmp.38 23 + 1;

if (ivtmp.38 24 < 64)

goto <bb 4>;

else

goto <bb 5>;

...

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 21/49

Example 2: Observing Vectorization and Parallelization

Step 4: Understanding the strategy of parallel execution

• Create threads ti for 1 ≤ i ≤ MAX THREADS

• Assigning start and end iteration for each thread
⇒ Distribute iteration space across all threads

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 21/49

Example 2: Observing Vectorization and Parallelization

Step 4: Understanding the strategy of parallel execution

• Create threads ti for 1 ≤ i ≤ MAX THREADS

• Assigning start and end iteration for each thread
⇒ Distribute iteration space across all threads

• Create the following code body for each thread ti

for (j=start_for_thread_i; j<=end_for_thread_i; j++)

{

/* execute the loop body to be parallelized */

}

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 21/49

Example 2: Observing Vectorization and Parallelization

Step 4: Understanding the strategy of parallel execution

• Create threads ti for 1 ≤ i ≤ MAX THREADS

• Assigning start and end iteration for each thread
⇒ Distribute iteration space across all threads

• Create the following code body for each thread ti

for (j=start_for_thread_i; j<=end_for_thread_i; j++)

{

/* execute the loop body to be parallelized */

}

• All threads are executed in parallel

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 22/49

Example 2: Observing Vectorization and Parallelization

Step 5: Examining the thread creation in parallelized control flow graph

D.1299 7 = builtin omp get num threads ();

D.1300 9 = builtin omp get thread num ();

D.1302 10 = 255 / D.1299 7;

D.1303 11 = D.1302 10 * D.1299 7;

D.1304 12 = D.1303 11 != 255;

D.1305 13 = D.1304 12 + D.1302 10;

ivtmp.28 14 = D.1305 13 * D.1300 9;

D.1307 15 = ivtmp.28 14 + D.1305 13;

D.1308 16 = MIN EXPR <D.1307 15, 255>;

if (ivtmp.28 14 >= D.1308 16)

goto <bb 3>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 22/49

Example 2: Observing Vectorization and Parallelization

Step 5: Examining the thread creation in parallelized control flow graph

D.1299 7 = builtin omp get num threads ();

D.1300 9 = builtin omp get thread num ();

D.1302 10 = 255 / D.1299 7;

D.1303 11 = D.1302 10 * D.1299 7;

D.1304 12 = D.1303 11 != 255;

D.1305 13 = D.1304 12 + D.1302 10;

ivtmp.28 14 = D.1305 13 * D.1300 9;

D.1307 15 = ivtmp.28 14 + D.1305 13;

D.1308 16 = MIN EXPR <D.1307 15, 255>;

if (ivtmp.28 14 >= D.1308 16)

goto <bb 3>;

Get the number of threads

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 22/49

Example 2: Observing Vectorization and Parallelization

Step 5: Examining the thread creation in parallelized control flow graph

D.1299 7 = builtin omp get num threads ();

D.1300 9 = builtin omp get thread num ();

D.1302 10 = 255 / D.1299 7;

D.1303 11 = D.1302 10 * D.1299 7;

D.1304 12 = D.1303 11 != 255;

D.1305 13 = D.1304 12 + D.1302 10;

ivtmp.28 14 = D.1305 13 * D.1300 9;

D.1307 15 = ivtmp.28 14 + D.1305 13;

D.1308 16 = MIN EXPR <D.1307 15, 255>;

if (ivtmp.28 14 >= D.1308 16)

goto <bb 3>;

Get thread identity

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 22/49

Example 2: Observing Vectorization and Parallelization

Step 5: Examining the thread creation in parallelized control flow graph

D.1299 7 = builtin omp get num threads ();

D.1300 9 = builtin omp get thread num ();

D.1302 10 = 255 / D.1299 7;

D.1303 11 = D.1302 10 * D.1299 7;

D.1304 12 = D.1303 11 != 255;

D.1305 13 = D.1304 12 + D.1302 10;

ivtmp.28 14 = D.1305 13 * D.1300 9;

D.1307 15 = ivtmp.28 14 + D.1305 13;

D.1308 16 = MIN EXPR <D.1307 15, 255>;

if (ivtmp.28 14 >= D.1308 16)

goto <bb 3>;

Perform load calculations

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 22/49

Example 2: Observing Vectorization and Parallelization

Step 5: Examining the thread creation in parallelized control flow graph

D.1299 7 = builtin omp get num threads ();

D.1300 9 = builtin omp get thread num ();

D.1302 10 = 255 / D.1299 7;

D.1303 11 = D.1302 10 * D.1299 7;

D.1304 12 = D.1303 11 != 255;

D.1305 13 = D.1304 12 + D.1302 10;

ivtmp.28 14 = D.1305 13 * D.1300 9;

D.1307 15 = ivtmp.28 14 + D.1305 13;

D.1308 16 = MIN EXPR <D.1307 15, 255>;

if (ivtmp.28 14 >= D.1308 16)

goto <bb 3>;

Assign start iteration to the chosen thread

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 22/49

Example 2: Observing Vectorization and Parallelization

Step 5: Examining the thread creation in parallelized control flow graph

D.1299 7 = builtin omp get num threads ();

D.1300 9 = builtin omp get thread num ();

D.1302 10 = 255 / D.1299 7;

D.1303 11 = D.1302 10 * D.1299 7;

D.1304 12 = D.1303 11 != 255;

D.1305 13 = D.1304 12 + D.1302 10;

ivtmp.28 14 = D.1305 13 * D.1300 9;

D.1307 15 = ivtmp.28 14 + D.1305 13;

D.1308 16 = MIN EXPR <D.1307 15, 255>;

if (ivtmp.28 14 >= D.1308 16)

goto <bb 3>;

Assign end iteration to the chosen thread

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 22/49

Example 2: Observing Vectorization and Parallelization

Step 5: Examining the thread creation in parallelized control flow graph

D.1299 7 = builtin omp get num threads ();

D.1300 9 = builtin omp get thread num ();

D.1302 10 = 255 / D.1299 7;

D.1303 11 = D.1302 10 * D.1299 7;

D.1304 12 = D.1303 11 != 255;

D.1305 13 = D.1304 12 + D.1302 10;

ivtmp.28 14 = D.1305 13 * D.1300 9;

D.1307 15 = ivtmp.28 14 + D.1305 13;

D.1308 16 = MIN EXPR <D.1307 15, 255>;

if (ivtmp.28 14 >= D.1308 16)

goto <bb 3>;

Start execution of iterations of the chosen thread

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 23/49

Example 2: Observing Vectorization and Parallelization

Step 6: Examining the loop body to be executed by a thread

Control Flow Graph Parallel loop body

<bb 3>:

i 14 = PHI <i 6(4), 0(2)>

D.1666 5 = b[i 14];

a[i 14] = D.1666 5;

i 6 = i 14 + 1;

if (i 6 <= 255)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

<bb 4>:

i.29 21 = (int) ivtmp.28 18;

D.1312 23 = (*b.31 4)[i.29 21];

(*a.32 5)[i.29 21] = D.1312 23;

ivtmp.28 19 = ivtmp.28 18 + 1;

if (D.1308 16 > ivtmp.28 19)

goto <bb 4>;

else

goto <bb 3>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 23/49

Example 2: Observing Vectorization and Parallelization

Step 6: Examining the loop body to be executed by a thread

Control Flow Graph Parallel loop body

<bb 3>:

i 14 = PHI <i 6(4), 0(2)>

D.1666 5 = b[i 14];

a[i 14] = D.1666 5;

i 6 = i 14 + 1;

if (i 6 <= 255)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

<bb 4>:

i.29 21 = (int) ivtmp.28 18;

D.1312 23 = (*b.31 4)[i.29 21];

(*a.32 5)[i.29 21] = D.1312 23;

ivtmp.28 19 = ivtmp.28 18 + 1;

if (D.1308 16 > ivtmp.28 19)

goto <bb 4>;

else

goto <bb 3>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 23/49

Example 2: Observing Vectorization and Parallelization

Step 6: Examining the loop body to be executed by a thread

Control Flow Graph Parallel loop body

<bb 3>:

i 14 = PHI <i 6(4), 0(2)>

D.1666 5 = b[i 14];

a[i 14] = D.1666 5;

i 6 = i 14 + 1;

if (i 6 <= 255)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

<bb 4>:

i.29 21 = (int) ivtmp.28 18;

D.1312 23 = (*b.31 4)[i.29 21];

(*a.32 5)[i.29 21] = D.1312 23;

ivtmp.28 19 = ivtmp.28 18 + 1;

if (D.1308 16 > ivtmp.28 19)

goto <bb 4>;

else

goto <bb 3>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 23/49

Example 2: Observing Vectorization and Parallelization

Step 6: Examining the loop body to be executed by a thread

Control Flow Graph Parallel loop body

<bb 3>:

i 14 = PHI <i 6(4), 0(2)>

D.1666 5 = b[i 14];

a[i 14] = D.1666 5;

i 6 = i 14 + 1;

if (i 6 <= 255)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

<bb 4>:

i.29 21 = (int) ivtmp.28 18;

D.1312 23 = (*b.31 4)[i.29 21];

(*a.32 5)[i.29 21] = D.1312 23;

ivtmp.28 19 = ivtmp.28 18 + 1;

if (D.1308 16 > ivtmp.28 19)

goto <bb 4>;

else

goto <bb 3>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 23/49

Example 2: Observing Vectorization and Parallelization

Step 6: Examining the loop body to be executed by a thread

Control Flow Graph Parallel loop body

<bb 3>:

i 14 = PHI <i 6(4), 0(2)>

D.1666 5 = b[i 14];

a[i 14] = D.1666 5;

i 6 = i 14 + 1;

if (i 6 <= 255)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

<bb 4>:

i.29 21 = (int) ivtmp.28 18;

D.1312 23 = (*b.31 4)[i.29 21];

(*a.32 5)[i.29 21] = D.1312 23;

ivtmp.28 19 = ivtmp.28 18 + 1;

if (D.1308 16 > ivtmp.28 19)

goto <bb 4>;

else

goto <bb 3>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 24/49

Example 3: Vectorization but No Parallelization

Step 0: Compiling with
-fno-predictive-commoning -fdump-tree-vect-all -msse4

int a[256];

int main()

{

int i;

for (i=0; i<256; i++)

{

a[i] = a[i+4];

}

return 0;

}

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 25/49

Example 3: Vectorization but No Parallelization

Step 1: Observing the final decision about vectorization

vecnopar.c:8: note: LOOP VECTORIZED.

vecnopar.c:5: note: vectorized 1 loops in function.

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 26/49

Example 3: Vectorization but No Parallelization

Step 2: Examining vectorization

Control Flow Graph Vectorized Control Flow Graph

<bb 3>:

i 13 = PHI <i 6(4), 0(2)>

D.1665 4 = i 13 + 4;

D.1666 5 = a[D.1665 4];

a[i 13] = D.1666 5;

i 6 = i 13 + 1;

if (i 6 <= 255)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

a.31 11 = (vector int *) &a;

vect pa.30 15 = a.31 11 + 16;

vect pa.25 16 = vect pa.30 15;

vect pa.38 20 = (vector int *) &a;

vect pa.33 21 = vect pa.38 20;

<bb 3>:

vect var .32 19 = *vect pa.25 17;

*vect pa.33 22 = vect var .32 19;

vect pa.25 18 = vect pa.25 17 + 16;

vect pa.33 23 = vect pa.33 22 + 16;

ivtmp.39 25 = ivtmp.39 24 + 1;

if (ivtmp.39 25 < 64)

goto <bb 4>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 26/49

Example 3: Vectorization but No Parallelization

Step 2: Examining vectorization

Control Flow Graph Vectorized Control Flow Graph

<bb 3>:

i 13 = PHI <i 6(4), 0(2)>

D.1665 4 = i 13 + 4;

D.1666 5 = a[D.1665 4];

a[i 13] = D.1666 5;

i 6 = i 13 + 1;

if (i 6 <= 255)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

a.31 11 = (vector int *) &a;

vect pa.30 15 = a.31 11 + 16;

vect pa.25 16 = vect pa.30 15;

vect pa.38 20 = (vector int *) &a;

vect pa.33 21 = vect pa.38 20;

<bb 3>:

vect var .32 19 = *vect pa.25 17;

*vect pa.33 22 = vect var .32 19;

vect pa.25 18 = vect pa.25 17 + 16;

vect pa.33 23 = vect pa.33 22 + 16;

ivtmp.39 25 = ivtmp.39 24 + 1;

if (ivtmp.39 25 < 64)

goto <bb 4>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 26/49

Example 3: Vectorization but No Parallelization

Step 2: Examining vectorization

Control Flow Graph Vectorized Control Flow Graph

<bb 3>:

i 13 = PHI <i 6(4), 0(2)>

D.1665 4 = i 13 + 4;

D.1666 5 = a[D.1665 4];

a[i 13] = D.1666 5;

i 6 = i 13 + 1;

if (i 6 <= 255)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

a.31 11 = (vector int *) &a;

vect pa.30 15 = a.31 11 + 16;

vect pa.25 16 = vect pa.30 15;

vect pa.38 20 = (vector int *) &a;

vect pa.33 21 = vect pa.38 20;

<bb 3>:

vect var .32 19 = *vect pa.25 17;

*vect pa.33 22 = vect var .32 19;

vect pa.25 18 = vect pa.25 17 + 16;

vect pa.33 23 = vect pa.33 22 + 16;

ivtmp.39 25 = ivtmp.39 24 + 1;

if (ivtmp.39 25 < 64)

goto <bb 4>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 26/49

Example 3: Vectorization but No Parallelization

Step 2: Examining vectorization

Control Flow Graph Vectorized Control Flow Graph

<bb 3>:

i 13 = PHI <i 6(4), 0(2)>

D.1665 4 = i 13 + 4;

D.1666 5 = a[D.1665 4];

a[i 13] = D.1666 5;

i 6 = i 13 + 1;

if (i 6 <= 255)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

a.31 11 = (vector int *) &a;

vect pa.30 15 = a.31 11 + 16;

vect pa.25 16 = vect pa.30 15;

vect pa.38 20 = (vector int *) &a;

vect pa.33 21 = vect pa.38 20;

<bb 3>:

vect var .32 19 = *vect pa.25 17;

*vect pa.33 22 = vect var .32 19;

vect pa.25 18 = vect pa.25 17 + 16;

vect pa.33 23 = vect pa.33 22 + 16;

ivtmp.39 25 = ivtmp.39 24 + 1;

if (ivtmp.39 25 < 64)

goto <bb 4>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 26/49

Example 3: Vectorization but No Parallelization

Step 2: Examining vectorization

Control Flow Graph Vectorized Control Flow Graph

<bb 3>:

i 13 = PHI <i 6(4), 0(2)>

D.1665 4 = i 13 + 4;

D.1666 5 = a[D.1665 4];

a[i 13] = D.1666 5;

i 6 = i 13 + 1;

if (i 6 <= 255)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

a.31 11 = (vector int *) &a;

vect pa.30 15 = a.31 11 + 16;

vect pa.25 16 = vect pa.30 15;

vect pa.38 20 = (vector int *) &a;

vect pa.33 21 = vect pa.38 20;

<bb 3>:

vect var .32 19 = *vect pa.25 17;

*vect pa.33 22 = vect var .32 19;

vect pa.25 18 = vect pa.25 17 + 16;

vect pa.33 23 = vect pa.33 22 + 16;

ivtmp.39 25 = ivtmp.39 24 + 1;

if (ivtmp.39 25 < 64)

goto <bb 4>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 26/49

Example 3: Vectorization but No Parallelization

Step 2: Examining vectorization

Control Flow Graph Vectorized Control Flow Graph

<bb 3>:

i 13 = PHI <i 6(4), 0(2)>

D.1665 4 = i 13 + 4;

D.1666 5 = a[D.1665 4];

a[i 13] = D.1666 5;

i 6 = i 13 + 1;

if (i 6 <= 255)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

a.31 11 = (vector int *) &a;

vect pa.30 15 = a.31 11 + 16;

vect pa.25 16 = vect pa.30 15;

vect pa.38 20 = (vector int *) &a;

vect pa.33 21 = vect pa.38 20;

<bb 3>:

vect var .32 19 = *vect pa.25 17;

*vect pa.33 22 = vect var .32 19;

vect pa.25 18 = vect pa.25 17 + 16;

vect pa.33 23 = vect pa.33 22 + 16;

ivtmp.39 25 = ivtmp.39 24 + 1;

if (ivtmp.39 25 < 64)

goto <bb 4>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 27/49

Example 3: Vectorization but No Parallelization

• Step 3: Observing the conclusion about dependence information

inner loop index: 0

loop nest: (1)

distance_vector: 4

direction_vector: +

• Step 4: Observing the final decision about parallelization

FAILED: data dependencies exist across iterations

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 28/49

Example 4: No Vectorization and No Parallelization

Step 0: Compiling with -fno-predictive-commoning

int a[256], b[256];

int main ()

{

int i;

for (i=0; i<256; i++)

{

a[i+2] = b[i] + 5;

b[i+3] = a[i] + 10;

}

return 0;

}

• Additional options for parallelization
-ftree-parallelize-loops=4 -fdump-tree-parloops-all

• Additional options for vectorization
-fdump-tree-vect-all -msse4

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 29/49

Example 4: No Vectorization and No Parallelization

• Step 1: Observing the final decision about vectorization

noparvec.c:5: note: vectorized 0 loops in function.

• Step 2: Observing the final decision about parallelization

FAILED: data dependencies exist across iterations

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization and Vectorization in GCC using Lambda Framework 30/49

Example 4: No Vectorization and No Parallelization

Step 3: Understanding the dependencies that prohibit vectorization and
parallelization

a[i+2] = b[i] + 5

b[i+3] = a[i] + 10

δ1 δ1

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

Part 3

Parallelization in GCC using

Polytope Model

July 2010 GCC-Par-Vect: Parallelization in GCC using Polytope Model 31/49

Polyhedral Representation

• Polytope Model is a mathematical framework for loop nest
optimizations

• The loop bounds parametrized as inequalities form a convex
polyhedron

• An affine scheduling function specifies the scanning order of integral
points

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization in GCC using Polytope Model 31/49

Polyhedral Representation

• Polytope Model is a mathematical framework for loop nest
optimizations

• The loop bounds parametrized as inequalities form a convex
polyhedron

• An affine scheduling function specifies the scanning order of integral
points

GCC requires a rich algebraic representation that enables:

• Composition of polyhedral generalizations of classical loop
transformations

• Decoupling them from the syntatic form of program

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization in GCC using Polytope Model 32/49

GRAPHITE

GRAPHITE is the interface for polyhedra representation of GIMPLE

goal: more high level loop optimizations

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization in GCC using Polytope Model 32/49

GRAPHITE

GRAPHITE is the interface for polyhedra representation of GIMPLE

goal: more high level loop optimizations

Tasks of GRAPHITE Pass:

• Extract the polyhedral model representation out of GIMPLE

• Perform the various optimizations and analyses on this polyhedral
model representation

• Regenerate the GIMPLE three-address code that corresponds to
transformations on the polyhedral model

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization in GCC using Polytope Model 33/49

Compilation Workflow

GIMPLE, SSA, CFG

SCoP detection

SCoPs

GPOLY construction

GRAPHITE pass

GPOLY

Legality Check
Transformations

Transformed GPOLY

GLOOG (CLOOG based)

GIMPLE, SSA, CFG

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization in GCC using Polytope Model 34/49

What Code Can be Represented?

• Structured code

• Affine loop bounds (e.g. i < 4∗n+4∗j-1)

• Constant loop strides (e.g. i += 2)

• Conditions containing comparisons (<,<=,>,>=,==,!=) between
affine functions

• Affine array accesses (e.g. A[3i+1])

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization in GCC using Polytope Model 35/49

GPOLY

GPOLY : the polytope representation in GRAPHITE, currently
implemented by the Parma Polyhedra Library (PPL)

• SCoP - The optimization unit (e.g. a loop with some statements)
scop := ([black box])

• Black Box - An operation (e.g. statement) where only the memory
accesses are known
black box := (iteration domain, scattering matrix,
[data reference])

• Iteration Domain - The set of loop iterations for the black box

• Data Reference - The memory cells accessed by the black box

• Scattering Matrix - Defines the execution order of statement
iterations (e.g. schedule)

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization in GCC using Polytope Model 36/49

Building SCoPs

• SCoPs built on top of the CFG

• Basic blocks with side-effect statements are split

• All basic blocks belonging to a SCoP are dominated by entry, and
postdominated by exit of the SCoP

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization in GCC using Polytope Model 36/49

Building SCoPs

• SCoPs built on top of the CFG

• Basic blocks with side-effect statements are split

• All basic blocks belonging to a SCoP are dominated by entry, and
postdominated by exit of the SCoP

Basic blocks split for:

• smaller code chunks

• reducing number of dependences

• moving parts of code around

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization in GCC using Polytope Model 37/49

Example : Building SCoPs

bb1

bb2

bb3

bb4

bb5

bb6

bb7

bb8

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization in GCC using Polytope Model 37/49

Example : Building SCoPs

bb1

bb2

bb3

bb4

bb5

bb6

bb7

bb8

SCoP 1

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization in GCC using Polytope Model 37/49

Example : Building SCoPs

bb1

bb2

bb3

bb4

bb5

bb6

bb7

bb8

SCoP 1

bb1

bb2

bb3

bb4

bb5

bb6

bb7

bb8

SCoP1

SCoP2

SCoP3

SCoP4

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization in GCC using Polytope Model 38/49

Example : Building SCoPs

Splitting basic blocks:

a = b + 2
callme ()
c = d - 1

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization in GCC using Polytope Model 38/49

Example : Building SCoPs

Splitting basic blocks:

a = b + 2
callme ()
c = d - 1

a = b + 2

callme ()
c = d - 1

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization in GCC using Polytope Model 38/49

Example : Building SCoPs

Splitting basic blocks:

a = b + 2
callme ()
c = d - 1

a = b + 2

callme ()
c = d - 1

a = b + 2

callme ()

c = d - 1

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization in GCC using Polytope Model 39/49

Polyhedral Representation of a SCoP

The statements and parametric affine inequalities can be expressed by:

• Iteration Domain (bounds of enclosing loops)

DS = {(i,j) | 0≤i≤m-1, 5≤j≤n-1}

for (i=0; i<m; i++)

for (j=5; j<n; j++)

A[2∗i][j+1] = . . . ;













i j m n cst












≥ 0

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization in GCC using Polytope Model 39/49

Polyhedral Representation of a SCoP

The statements and parametric affine inequalities can be expressed by:

• Iteration Domain (bounds of enclosing loops)

DS = {(i,j) | 0≤i≤m-1, 5≤j≤n-1}

for (i=0; i<m; i++)

for (j=5; j<n; j++)

A[2∗i][j+1] = . . . ;













i j m n cst
1 0 0 0 0













≥ 0

i ≥ 0

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization in GCC using Polytope Model 39/49

Polyhedral Representation of a SCoP

The statements and parametric affine inequalities can be expressed by:

• Iteration Domain (bounds of enclosing loops)

DS = {(i,j) | 0≤i≤m-1, 5≤j≤n-1}

for (i=0; i<m; i++)

for (j=5; j<n; j++)

A[2∗i][j+1] = . . . ;













i j m n cst
1 0 0 0 0
−1 0 1 0 −1













≥ 0

i ≤ m - 1

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization in GCC using Polytope Model 39/49

Polyhedral Representation of a SCoP

The statements and parametric affine inequalities can be expressed by:

• Iteration Domain (bounds of enclosing loops)

DS = {(i,j) | 0≤i≤m-1, 5≤j≤n-1}

for (i=0; i<m; i++)

for (j=5; j<n; j++)

A[2∗i][j+1] = . . . ;













i j m n cst
1 0 0 0 0
−1 0 1 0 −1
0 1 0 0 −5













≥ 0

j ≥ 5

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization in GCC using Polytope Model 39/49

Polyhedral Representation of a SCoP

The statements and parametric affine inequalities can be expressed by:

• Iteration Domain (bounds of enclosing loops)

DS = {(i,j) | 0≤i≤m-1, 5≤j≤n-1}

for (i=0; i<m; i++)

for (j=5; j<n; j++)

A[2∗i][j+1] = . . . ;













i j m n cst
1 0 0 0 0
−1 0 1 0 −1
0 1 0 0 −5
0 −1 0 1 −1













≥ 0

j ≤ n - 1

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization in GCC using Polytope Model 40/49

Polyhedral Representation of a SCoP

The statements and parametric affine inequalities can be expressed by:

• Iteration Domain (bounds of enclosing loops)

• Data Reference (a list of access functions)

F = {(i,a,s) | F × (i,a,s,g,1)T ≥ 0}

for (i=1; i<m; i++)

for (j=5; j<n; j++)

A[2∗i][j+1] = . . .;





i j m n cst




Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization in GCC using Polytope Model 40/49

Polyhedral Representation of a SCoP

The statements and parametric affine inequalities can be expressed by:

• Iteration Domain (bounds of enclosing loops)

• Data Reference (a list of access functions)

F = {(i,a,s) | F × (i,a,s,g,1)T ≥ 0}

for (i=1; i<m; i++)

for (j=5; j<n; j++)

A[2∗i][j+1] = . . .;





i j m n cst
2 0 0 0 0





2 ∗ i

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization in GCC using Polytope Model 40/49

Polyhedral Representation of a SCoP

The statements and parametric affine inequalities can be expressed by:

• Iteration Domain (bounds of enclosing loops)

• Data Reference (a list of access functions)

F = {(i,a,s) | F × (i,a,s,g,1)T ≥ 0}

for (i=1; i<m; i++)

for (j=5; j<n; j++)

A[2∗i][j+1] = . . .;





i j m n cst
2 0 0 0 0
0 1 0 0 1





j + 1

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization in GCC using Polytope Model 41/49

Polyhedral Representation of a SCoP

The statements and parametric affine inequalities can be expressed by:

• Iteration Domain (bounds of enclosing loops)

• Data Reference (a list of access functions)

• Scattering Function (scheduling order)

sequence [s1, s2]:
S[s1] = t, S[s2] = t + 1

loop [loop1 s end1] : i1 indexes loop1 iterations
S[loop1] = t, S[s] = (t, i1, 0)

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization in GCC using Polytope Model 42/49

Polyhedral Representation of a SCoP

The statements and parametric affine inequalities can be expressed by:

• Iteration Domain (bounds of enclosing loops)

• Data Reference (a list of access functions)

• Scattering Function (scheduling order)

for (i=1;i<=N;i++) {

for (j=1;j<=i-1;j++) {

a[i][i] -= a[i][j];

a[j][i] += a[i][j];

}

a[i][i] = sqrt(a[i][i]);

}

Scattering Function

θS1(i,j)
T = (0,i,0,j,0)T

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization in GCC using Polytope Model 42/49

Polyhedral Representation of a SCoP

The statements and parametric affine inequalities can be expressed by:

• Iteration Domain (bounds of enclosing loops)

• Data Reference (a list of access functions)

• Scattering Function (scheduling order)

for (i=1;i<=N;i++) {

for (j=1;j<=i-1;j++) {

a[i][i] -= a[i][j];

a[j][i] += a[i][j];

}

a[i][i] = sqrt(a[i][i]);

}

Scattering Function

θS2(i,j)
T = (0,i,0,j,1)T

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization in GCC using Polytope Model 42/49

Polyhedral Representation of a SCoP

The statements and parametric affine inequalities can be expressed by:

• Iteration Domain (bounds of enclosing loops)

• Data Reference (a list of access functions)

• Scattering Function (scheduling order)

for (i=1;i<=N;i++) {

for (j=1;j<=i-1;j++) {

a[i][i] -= a[i][j];

a[j][i] += a[i][j];

}

a[i][i] = sqrt(a[i][i]);

}

Scattering Function

θS3(i,j)
T = (0,i,1)T

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization in GCC using Polytope Model 43/49

Analyses : Scalars, Arrays, Dependences

GRAPHITE built on top of:

• Scalar evolutions : number of iterations, access functions

• Array and pointer analysis

• Data dependence analysis (requires alias information)

• Scalar range estimations : undefined signed overflow, undefined
access over statically allocated data, etc.

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization in GCC using Polytope Model 44/49

Dependence analysis in GRAPHITE

• Based on Violated Dependence Analysis

• Reuses the scalar evolution part to obtain the subscript bounds

• Depends heavily on may alias information

• Scalar dependences handled by converting them to zero-dimensional
arrays

• Can take care of conditional and triangular loops, as the information
can be safely integrated with the iteration domain

• High cost, and therefore dependence is computed only to validate a
transformation

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization in GCC using Polytope Model 45/49

Integration of Parallelizer with GRAPHITE

Automatic parallelization integrated to GRAPHITE in GCC4.5.0

The initial analysis used for parallelizer was based on the Lambda
Framework. It has been replaced with GRAPHITE based dependence
analysis.

Benefits:

• More accurate dependence analysis, can detect more parallel loops

• Composition of program transformation can extract more parallelism

• Ease of incorporating a cost model

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization in GCC using Polytope Model 45/49

Integration of Parallelizer with GRAPHITE

Automatic parallelization integrated to GRAPHITE in GCC4.5.0

The initial analysis used for parallelizer was based on the Lambda
Framework. It has been replaced with GRAPHITE based dependence
analysis.

Benefits:

• More accurate dependence analysis, can detect more parallel loops

• Composition of program transformation can extract more parallelism

• Ease of incorporating a cost model

flags : -ftree-parallelize-loops=x, -floop-parallelize-all

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization in GCC using Polytope Model 46/49

Loop Transformations in GRAPHITE

Loop transforms implemented in GRAPHITE:

• loop interchange

• loop blocking and loop stripmining

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization in GCC using Polytope Model 46/49

Loop Transformations in GRAPHITE

Loop transforms implemented in GRAPHITE:

• loop interchange

• loop blocking and loop stripmining

Loop Interchange mostly used to improve scope of parallelization.

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization in GCC using Polytope Model 46/49

Loop Transformations in GRAPHITE

Loop transforms implemented in GRAPHITE:

• loop interchange

• loop blocking and loop stripmining

Loop Interchange mostly used to improve scope of parallelization.

Original Code

for (i=0; i<n; i++){

for (j=0; j<n; j++){

A[i][j] = A[i-1][j]

}

}

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization in GCC using Polytope Model 46/49

Loop Transformations in GRAPHITE

Loop transforms implemented in GRAPHITE:

• loop interchange

• loop blocking and loop stripmining

Loop Interchange mostly used to improve scope of parallelization.

Original Code

for (i=0; i<n; i++){

for (j=0; j<n; j++){

A[i][j] = A[i-1][j]

}

}

Outer Loop - dependence on i, can not be parallelized
Inner Loop - parallelizable, but synchronization barrier required
Total number of times synchronization executed = n

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization in GCC using Polytope Model 47/49

Loop Transformations in GRAPHITE

Loop transforms implemented in GRAPHITE:

• loop interchange

• loop blocking and loop stripmining

Loop Interchange mostly used to improve scope of parallelization.

Original Code

for (i=0; i<n; i++){

for (j=0; j<n; j++){

A[i][j] = A[i-1][j]

}

}

After Interchange

for (j=0; j<n; j++){

for (i=0; i<n; i++){

A[i][j] = A[i-1][j]

}

}

Outer Loop - parallelizable
Total number of times synchronization executed = 1

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization in GCC using Polytope Model 48/49

Loop Generation

• Chunky Loop Generator (CLooG) is used to regenerate the loop

• It scans the integral points of the polyhedra to recreate loop bounds

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization in GCC using Polytope Model 48/49

Loop Generation

• Chunky Loop Generator (CLooG) is used to regenerate the loop

• It scans the integral points of the polyhedra to recreate loop bounds

Set of constraints :

2 <= i <= n

2 <= j <= m

j <= n+2-i

m >= 2

n >= 2

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

July 2010 GCC-Par-Vect: Parallelization in GCC using Polytope Model 48/49

Loop Generation

• Chunky Loop Generator (CLooG) is used to regenerate the loop

• It scans the integral points of the polyhedra to recreate loop bounds

Set of constraints :

2 <= i <= n

2 <= j <= m

j <= n+2-i

m >= 2

n >= 2

Loop generated by CLooG:

for (i=2; i<=n; i++)

for (j=2; j<min(m,

-i+n+2); j++) {

S1(i,j);

}

}

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

Part 4

Conclusions

July 2010 GCC-Par-Vect: Conclusions 49/49

Parallelization and Vectorization in GCC : Conclusions

• Chain of recurrences seems to be a useful generalization

• Interaction between different passes is not clear Predictive
commoning and SSA seem to probihit many opportunities

• GRAPHITE dependence test is much more precise than Lambda
Framework’s dependence test. However, it has high complexity

• Auto-parallelization can be improved by enhancing the dependence
analysis framework

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

	Outline
	Loop Transformations
	3.75inParallelization and Vectorization in GCC using Lambda Framework
	Parallelization and Vectorization in GCC using Lambda Framework
	3.75inParallelization in GCC using Polytope Model
	Parallelization in GCC using Polytope Model
	Conclusions

