
GIMPLE IR MANIPULATION

1. The files given to you (plugin.c, Makefile) describes a dynamic plugin

for an intraprocedural pass to iterate over the gimple statements, and
print the global and local variables. Run it on file test.c and inspect
the dump. You will observe that the same global variable list is

printed each time a function is analyzed. This is because the pass
is intraprocedural, and the varpool_node data structure (link list of

global variables) is independent of individual functions.

• Convert the pass into an Interprocedural pass, so that the global
variable list is printed only once.

• Convert the given dynamic plugin into the corresponding static
plugin. Use ‘make cc1’ to compile.

• Modify the interprocedural plugin code to count the number of

global pointers, and number of local pointers for each function.

2. Modify the dynamic plugin to implement an interprocedural pass
that identifes the conditional gimple statements where either LHS or

RHS is a pointer (for eg., statements like p == q where either p or
q is a pointer)

3. Try to find the caller and callee relationship between the cgraph

nodes. For each node, print the list of cgraph nodes that it calls.
For example, for the code

main ()

{

func_a ();

func_b ();

}

foo ()

{

func_x ();

}

The output should be

i



main --> fun_a func_b

foo --> func_x

NOTE

• The dump for intraprocedural tree passes can be generated by command-
line switch

<path_to_4.6.0-install> -fdump-tree-all -O2 filename.c

The dump for interprocedural ipa passes an be generated by command-

line switch
<path_to_4.6.0-install> -fdump-ipa-all -O2 filename.c

The dump file for the pass will have the extension

‘gimple_manipulation’.

• Parametrize the Makefile given to you according to the location of
install folder (for gcc-4.6.0 pristine install) on your directory structure

and the compliation flags that you would want your testcase to be
compiled with.

ii


