
PARALLELIZATION AND VECTORIZATION IN GCC

1. What sort of dependence exists in the code given in file 1.c? Analyze

the data dependence dump file generated by gcc (*.ckdd) to under-
stand the computed dependence. Also figure out the distance and
direction vector.

2. In the code given in file 2.c, categorize each subscript as SIV, ZIV, or
MIV. Perform data dependence analysis on the code and analyze the

gcc dump generated. Try to change the positions of each subscript
and observe the effect in the dependence analysis.

3. What sort of dependence exists in the code given in file 3.c? Can it

be vectorized? Co-relate your observation to the dependence distance
given in gcc dump file.

4. In the code given in file 4.c, the statement in the loop exhibits what

type of dependence? Can this loop be vectorized? Why? Without
changing the statement, can you do something to change the vector-

ization result?

5. What is the result of vectorization on the code in file 5.c before and
after the application of loop interchange? In the graphite dump file,

analyze the CLAST to identify the loop structure after loop inter-
change.

6. For the code given in file 6.c, try to increase the number of threads

starting with 2. Till what load (number of iterations per thread) does
parallelization happen?

7. Try to parallelize the code given in file 7.c with and without Graphite’s

data dependence analysis. Why is the result different? Replace N by
a number. Now observe the result. Why is the result different when

N is a parameter?

8. In the code given in file 8.c, consider statements S1 and S2. Can
they be parallelized? Try parallelizing the code with and without

GRAPHITE. Why is the result different? How is the loop parallelized
with GRAPHITE enabled?

i



COMMANDS TO GENERATE DUMP

• For Data Dependence :

gcc -fdump-tree-all -fcheck-data-deps -fdump-tree-ckdd-all

-O3 filename.c

• For Vectorization :

gcc -fdump-tree-all -fdump-tree-vect-all -msse4 -O3 filename.c

• For Parallelization :
gcc -fdump-tree-all -ftree-parallelize-loops=x

-fdump-tree-parloops-all -O3 filename.c

• Graphite Parallelization :
gcc -fdump-tree-all -ftree-parallelize-loops=x

-fdump-tree-parloops-all -floop-parallelize-all -O2 filename.c

• For Loop Interchange :
gcc -fdump-tree-all -floop-interchange -fdump-tree-graphite-all

-O3 filename.c

Note : In parallelization dumps, in place of ‘x’, pass the number of threads
you wish to create.

Note : If you wish to just look at the transformed code with minimum
verbosity, remove ‘-all’ from the tree dump option.

ii


