
Workshop on Essential Abstractions in GCC

More Details of Machine Descriptions

GCC Resource Center

(www.cse.iitb.ac.in/grc)

Department of Computer Science and Engineering,

Indian Institute of Technology, Bombay

2 July 2011

2 July 2011 MD Details: Outline 1/36

Outline

• Some details of MD constructs
◮ On names of patterns in .md files
◮ On the role of define expand
◮ On the role of predicates and constraints
◮ Mode and code iterators
◮ Defining attributes
◮ Other constructs

• Improving machine descriptions and instruction selection
◮ New constructs to factor out redundancy
◮ Cost based tree tiling for instruction selection

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

Part 1

More Features

2 July 2011 MD Details: More Features 2/36

Pattern Names in .md File

All Patterns

Named Patterns Unnamed Patterns

With ⋆ Without ⋆

Standard Non-Standard

No gen function

No gen function

gen name function
Called implicitly
Can be called explicitly

gen name function
Not called implicitly
Can be called explicitly

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

2 July 2011 MD Details: More Features 3/36

Role of define expand

Uses of define expand

generate RTL do not Generate RTL

setting global variablessetting operands

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

2 July 2011 MD Details: More Features 4/36

Using define expand for Generating RTL statements

Calling gen pattern function

implicit call explicit call

standard patternnon-standard pattern

during expansion some other passduring expansion

preparatory statement
of define expand

some function
in a .c file

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

2 July 2011 MD Details: More Features 5/36

Use of Predicates

(define insn "<name>"

[(set (match operand:SI 0 "general operand" "=r")

(plus:SI (match dup 0)

(match operand:SI 1 "general operand" "r")))]

""

"...")

Predicates

Predicates are using for matching operands

• For constructing an insn during expansion
<name> must be a standard pattern name

• For recognizing an instruction (in subsequent RTL passes including
pattern matching)

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

2 July 2011 MD Details: More Features 6/36

Understanding Constraints

(define insn "<name>"

[(set (match operand:SI 0 "general operand" "=r")

(plus:SI (match dup 0)

(match operand:SI 1 "general operand" "r")))]

""

"...")

Constraints

• Reloading operands in the most suitable register class

• Fine tuning within the set of operands allowed by the predicate

• If omitted, operands will depend only on the predicates

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

2 July 2011 MD Details: More Features 7/36

Role of Constraints

Consider the following two instruction patterns:

• (define_insn ""

[(set (match_operand:SI 0 "general_operand" "=r")

(plus:SI (match_dup 0)

(match_operand:SI 1 "general_operand" "r")))]

""

"...")

◮ During expansion, the destination and left operands must match the
same predicate

◮ During recognition, the destination and left operands must be
identical

• (define_insn ""

[(set (match_operand:SI 0 "general_operand" "=r")

(plus:SI (match_operand:SI 1 "general_operand" "z")

(match_operand:SI 2 "general_operand" "r")))]

""

"...")

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

2 July 2011 MD Details: More Features 8/36

Role of Constraints

• Consider an insn for recognition

(insn n prev next

(set (reg:SI 3)

(plus:SI (reg:SI 6) (reg:SI 109)))

...)}

• Predicates of the first pattern do not match (because they require
identical operands during recognition)

• Constraints do not match for operand 1 of the second pattern

• Reload pass generates additional insn to that the first pattern can be used

(insn n2 prev n

(set (reg:SI 3) (reg:SI 6))

...)

(insn n n2 next

(set (reg:SI 3)

(plus:SI (reg:SI 3)(reg:SI 109)))

...)

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

Part 2

Factoring Out Common Information

2 July 2011 MD Details: Factoring Out Common Information 9/36

Handling Mode Differences

(define insn “subsi3”
[(set (match operand:SI 0 “register operand” “=d”)

(minus:SI (match operand:SI 1 “register operand” “d”)
(match operand:SI 2 “register operand” “d”)))]

“ ”
“subu\t %0,%1,%2”
[(set attr “type” “arith”)
(set attr “mode” “SI”)])

(define insn “subdi3”
[(set (match operand:DI 0 “register operand” “=d”)

(minus:DI (match operand:DI 1 “register operand” “d”)
(match operand:DI 2 “register operand” “d”)))]

“ ”
“dsubu\t %0,%1,%2”
[(set attr “type” “arith”)
(set attr “mode” “DI”)])

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

2 July 2011 MD Details: Factoring Out Common Information 10/36

Mode Iterators: Abstracting Out Mode Differences

(define mode iterator GPR [SI (DI “TARGET 64BIT”)])
(define mode attr d [(SI “ ”) (DI “d”)])
(define insn “sub<mode>3”

[(set (match operand:GPR 0 “register operand” “=d”)
(minus:GPR (match operand:GPR 1 “register operand” “d”)

(match operand:GPR 2 “register operand” “d”)))]
“ ”
“<d>subu\t %0,%1,%2”
[(set attr “type” “arith”)
(set attr “mode” “<MODE>”)])

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

2 July 2011 MD Details: Factoring Out Common Information 11/36

Handling Code Differences

(define expand “bunordered”
[(set (pc) (if then else (unordered:CC (cc0) (const int 0))

(label ref (match operand 0 “ ”))
(pc)))]

“ ”
{ mips expand conditional branch (operands, UNORDERED);

DONE;

})

(define expand “bordered”
[(set (pc) (if then else (ordered:CC (cc0) (const int 0))

(label ref (match operand 0 “ ”))
(pc)))]

“ ”
{ mips expand conditional branch (operands, ORDERED);

DONE;

})

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

2 July 2011 MD Details: Factoring Out Common Information 12/36

Code Iterators: Abstracting Out Code Differences

(define code iterator any cond [unordered ordered])

(define expand “b<code>”
[(set (pc)

(if then else (any cond:CC (cc0)

(const int 0))

(label ref (match operand 0 “ ”))
(pc)))]

“ ”
{ mips expand conditional branch (operands, <CODE>);

DONE;

})

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

Part 3

Miscellaneous Features

2 July 2011 MD Details: Miscellaneous Features 13/36

Defining Attributes

• Classifications are need based

• Useful to GCC phases – e.g. pipelining

Property: Pipelining
Need: To classify target instructions
Construct: define attr

;; Instruction type.

(define_attr "type"

"other,multi, alu,alu1,negnot, ... str ,cld, ..."

(const_string "other"))

Fields:
Attribute name, all possible values, one of the possible values, default.

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

2 July 2011 MD Details: Miscellaneous Features 14/36

Specifying Instruction Attributes

• Optional field of a define insn

• For an i386, we choose to mark string instructions with the
attribute value str

(define_insn "*strmovdi_rex_1"

[(set (mem:DI (match_operand:DI 2 ...)]

"TARGET_64BIT && (TARGET_SINGLE_ ...)"

"movsq"

[(set_attr "type" "str")

...

(set_attr "memory" "both")])

NOTE
An instruction may have more than one attribute!

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

2 July 2011 MD Details: Miscellaneous Features 15/36

Using Attributes

(define_insn_reservation "pent_str" 12

(and (eq_attr "cpu" "pentium")

(eq_attr "type" "str"))

"pentium-np*12")

Pipeline specification requires the CPU type to be “pentium”
and the instruction type to be “str”

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

2 July 2011 MD Details: Miscellaneous Features 16/36

Some Other RTL Constructs

• define split: Split complex insn into simpler ones
e.g. for better use of delay slots

• define insn and split: A combination of define insn and
define split

Used when the split pattern matches and insn exactly.

• define peephole2: Peephole optimization over insns that
substitutes insns. Run after register allocation, and before
scheduling.

• define constants: Use literal constants in rest of the MD.

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

Part 4

Improving Machine Descriptions

2 July 2011 MD Details: Improving Machine Descriptions 17/36

The Need for Improving Machine Descriptions

The Problems:

• The specification mechanism for Machine descriptions is quite adhoc

◮ Only syntax borrowed from LISP, neither semantics not spirit!
◮ Non-composable rules
◮ Mode and code iterator mechanisms are insufficient

• Adhoc design decisions

◮ Honouring operand constraints delayed to global register allocation
During GIMPLE to RTL translation, a lot of C code is required

◮ Choice of insertion of NOPs

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

2 July 2011 MD Details: Improving Machine Descriptions 18/36

Handing Constraints

• define insns patterns have operand predicates and constraints

• While generating an RTL insn from GIMPLE, only the predicates
are checked. The constraints are completely ignored

• An insn which is generated in the expander is modified in the reload
pass to satisfy the constraints

• It may be possible to generate this final form of RTL during
expansion by honouring constraints

◮ Honouring contraints earlier than the current place
⇒ May get rid of some C code in define expand

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

2 July 2011 MD Details: Improving Machine Descriptions 19/36

Design Flaws in Machine Descriptions

Multiple patterns with same structure

• Repetition of almost similar RTL expressions across multiple
define insn an define expand patterns

◮ Some Modes, Predicates, Constraints, Boolean Condition, or RTL
Expression may differ everything else may be identical

◮ One RTL expression may appears as a sub-expression of some other
RTL expression

• Repetition of C code along with RTL expressions in these patterns.

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

2 July 2011 MD Details: Improving Machine Descriptions 20/36

Redundancy in MIPS Machine Descriptions: Example 1

[(set (match_operand:m 0 "register_operand" "c0")

(plus:m (match_operand:m 1 "register_operand" "c1")

(match_operand:m 2 "p" "c2")))]

RTL Template
=

+

Structure

Details

Pattern name m p c0 c1 c2

define insn
add<mode>3 ANYF register operand =f f f

define expand
add<mode>3 GPR arith operand

define insn
*add<mode>3 GPR arith operand =d,d d,d d,Q

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

2 July 2011 MD Details: Improving Machine Descriptions 21/36

Redundancy in MIPS Machine Descriptions: Example 2

[(set (match_operand:m 0 "register_operand" "c0")

(mult:m (match_operand:m 1 "register_operand" "c1")

(match_operand:m 2 "register_operand" "c2")))]

RTL Template =

∗
Structure

Details

Pattern name m c0 c1 c2

define insn *mul<mode>3 SCALARF =f f f

define insn *mul<mode>3 r4300 SCALARF =f f f

define insn mulv2sf3 V2SF =f f f

define expand mul<mode>3 GPR

define insn mul<mode>3 mul3 loongson GPR =d d d

define insn mul<mode>3 mul3 GPR d,1 d,d d,d

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

2 July 2011 MD Details: Improving Machine Descriptions 22/36

Redundancy in MIPS Machine Descriptions: Example 3

[(set (match_operand:m 0 "register_operand" "c0") (plus:m

(mult:m (match_operand:m 1 "register_operand" "c1")

(match_operand:m 2 "register_operand" "c2")))]

(match_operand:m 3 "register_operand" "c3")))]

RTL Template =

+

∗
Structure

Details

Pattern name m c0 c1 c2 c3

mul acc si SI =l?*?,d? d,d d,d 0,d

mul acc si r3900 SI =l?*?,d*?,d? d,d,d d,d,d 0,1,d

*macc SI =l,d d,d d,d 0,1

*madd4<mode> ANYF =f f f f

*madd3<mode> ANYF =f f f 0

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

2 July 2011 MD Details: Improving Machine Descriptions 23/36

Insufficient Iterator Mechanism

• Iterators cannot be used across define insn, define expand,
define peephole2 and other patterns

• Defining iterator attribute for each varying parameter becomes
tedious

• For same set of modes and rtx codes, change in other fields of
pattern makes use of iterators impossible

• Mode and code attributes cannot be defined for operator or operand
number, name of the pattern etc.

• Patterns with different RTL template share attribute value vector
for which iterators can not be used

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

2 July 2011 MD Details: Improving Machine Descriptions 24/36

Many Similar Patterns Cannot be Combined

(define expand “iordi3”
[(set (match operand:DI 0 “nonimmediate operand” “ ”)

(ior:DI (match operand:DI 1 “nonimmediate operand” “ ”)
(match operand:DI 2 “x86 64 general operand” “ ”)))

(clobber (reg:CC FLAGS REG))]

“TARGET 64BIT”
“ix86 expand binary operator (IOR, DImode, operands); DONE;”)

(define insn “*iordi 1 rex64”
[(set (match operand:DI 0 “nonimmediate operand” “=rm,r”)

(ior:DI (match operand:DI 1 “nonimmediate operand” “%0,0”)
(match operand:DI 2 “x86 64 general operand” “re,rme”)))

(clobber (reg:CC FLAGS REG))]

“TARGET 64BIT

&& ix86 binary operator ok (IOR, DImode, operands)”
“or{q}\t{%2, %0|%0, %2}”
[(set attr “type” “alu”)
(set attr “mode” “DI”)])

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

2 July 2011 MD Details: Improving Machine Descriptions 25/36

Measuring Redundancy in RTL Templates

MD File
Total number
of patterns

Number of
primitive trees

Number of times
primitive trees
are used to create
composite trees

i386.md 1303 349 4308

arm.md 534 232 1369

mips.md 337 147 921

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

2 July 2011 MD Details: Improving Machine Descriptions 26/36

specRTL: Key Observations

• Davidson Fraser insight

Register transfers are target specific but their form is

target independent

• GCC’s approach

◮ Use Target independent RTL for machine specification
◮ Generate expander and recognizer by reading machine descriptions

Main problems with GCC’s Approach

Although the shapes of RTL statements are target

independent, they have to be provided in RTL templates

• Our key idea:

Separate shapes of RTL statements from the target
specific details

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

2 July 2011 MD Details: Improving Machine Descriptions 27/36

Specification Goals of specRTL

Support all of the following

• Separation of shapes from target specific details

• Creation of new shapes by composing shapes

• Associtiating concrete details with shapes

• Overriding concrete details

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

2 July 2011 MD Details: Improving Machine Descriptions 28/36

Software Engineering Goals of specRTL

• Allow non-disruptive migration for existing machine descriptions

◮ Incremental changes
◮ No need to change GCC source until we are sure of the new

specification

GCC must remain usable after each small change made in the
machine descriptions

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

2 July 2011 MD Details: Improving Machine Descriptions 29/36

Meeting the Specification Goals: Key Idea

• Separation of shapes from target specific details:

◮ Shape ≡ tree structure of RTL templates
◮ Details ≡ attributes of tree nodes

(eg. modes, predicates, constraints etc.)

• Abstract patterns and Concrete patterns

◮ Abstract patterns are shapes with “holes” in them that represent
missing information

◮ Concrete patterns are shapes in which all holes are plugged in using
target specific information

• Abstract patterns capture shapes which can be concretized by
providing details

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

2 July 2011 MD Details: Improving Machine Descriptions 30/36

Meeting the Specification Goals: Operations

• Creating new shapes by composing shapes: extends

• Associtiating concrete details with shapes: instantiates

• Overriding concrete details: overrides

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

2 July 2011 MD Details: Improving Machine Descriptions 31/36

Creating Abstract Patterns

abstract set_plus extends set

{
root.2 = plus;

}

= root

root.1 + root.2

root.2.1 root.2.2

abstract set_macc extends

set_plus

{
root.2.2 = mult;

}

= root

root.1
+ root.2

root.2.1
∗ root.2.2

root.2.2.1 root.2.2.2

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

2 July 2011 MD Details: Improving Machine Descriptions 32/36

Creating Concrete Patterns

abstract set_plus extends set

{
root.2 = plus;

}

= root

root.1 + root.2

root.2.1 root.2.2

concrete add<mode>3.insn instantiates set_plus

{ set_plus(register_operand:ANYF:"=f",

register_operand:ANYF:"f",

register_operand:ANYF:"f");

root.2.mode = ANYF;

}
concrete add<mode>3.expand instantiates set_plus

{ set_plus(register_operand:GPR:"",

register_operand:GPR:"",

arith_operand:GPR:"");

root.2.mode = GPR;

}

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

2 July 2011 MD Details: Improving Machine Descriptions 33/36

Generating Conventional Machine Descriptions

abstract set_plus extends set

{
root.2 = plus;

}

= root

root.1 + root.2

root.2.1 root.2.2

concrete add<mode>3.insn instantiates set_plus

{ set_plus(register_operand:ANYF:"=f", register_operand:ANYF:"f",

register_operand:ANYF:"f");

root.2.mode = ANYF;

}
{: /* Conventional Machine Description Fragments */ :}

Resulting MD Specification
(define_insn "add<mode>3"

[(set (match_operand:ANYF 0 "register_operand" "=f")

(plus:ANYF (match_operand:ANYF 1 "register_operand" "f")

(match_operand:ANYF 2 "register_operand" "f")))]

/* Conventional Machine Description Fragments */

)

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

2 July 2011 MD Details: Improving Machine Descriptions 34/36

Overriding Details

abstract set_plus extends set

{
root.2 = plus;

}

= root

root.1 + root.2

root.2.1 root.2.2

concrete add<mode>3.expand instantiates set_plus

{ set_plus(register_operand:GPR:"",

register_operand:GPR:"",

arith_operand:GPR:"");

root.2.mode = GPR;

}

concrete *add<mode>3.insn overrides add<mode>3.expand

{ allconstraints = ("=d,d", "d,d", "d,Q"); }

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

2 July 2011 MD Details: Improving Machine Descriptions 35/36

Current Status and Plans for Future Work

• specRTL parser has been augmented with semantic checks
Emitting conventional machine descriptions is pending

• i386 move instructions and spim add instructions have been
rewritten
Other instructions are being rewritten

• Suggestions have been received to improve the syntax

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

2 July 2011 MD Details: Improving Machine Descriptions 36/36

Conclusions

• Separating shapes from concrete details is very helpful

• It may be possible to identify a large number of common shapes

• Machine descriptions may become much smaller
Only the concrete details need to be specified

• Non-disruptive and incremental migration to new machine
descriptions

• GCC source need not change until these machine descriptions have
been found useful

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

	Outline
	More Features
	Factoring Out Common Information
	Miscellaneous Features
	Improving Machine Descriptions

