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Aho Ullman: Instruction selection

• over optimized IR using

• cost based tree pattern matching

Davidson Fraser: Instruction selection

• over AST using

• structural tree pattern matching

• naive code which is

◮ target dependent, and is
◮ optimized subsequently
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The GNU Tool Chain
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The Architecture of GCC
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Configuring GCC

configure

config.guess

configure.in config/*

config.sub

config.log config.cache config.status

config.h.in Makefile.in

Makefile config.h

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 Essential Abstrations: Summary 5/15

Bootstrapping: The Conventional View
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A Native Build on i386

Requirement: BS = HS = TS = i386

• Stage 1 build compiled using cc

• Stage 2 build compiled using gcc

• Stage 3 build compiled using gcc

• Stage 2 and Stage 3 Builds must be
identical for a successful native build
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Build for a Given Machine

This is what actually happens!

• Generation
◮ Generator sources

($(SOURCE D)/gcc/gen*.c) are read and
generator executables are created in
$(BUILD)/gcc/build

◮ MD files are read by the generator
executables and back end source code is
generated in $(BUILD)/gcc

• Compilation
Other source files are read from
$(SOURCE D) and executables created in
corresponding subdirectories of $(BUILD)

• Installation
Created executables and libraries are copied
in $(INSTALL)

genattr
gencheck
genconditions
genconstants
genflags
genopinit
genpreds
genattrtab
genchecksum
gencondmd
genemit
gengenrtl
genmddeps
genoutput
genrecog
genautomata
gencodes
genconfig
genextract
gengtype
genmodes
genpeep
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More Details of an Actual Stage 1 Build for C

native
cc +
native
binutils

GCC
sources

libraries

libiberty

fixincl

gen*

cc1

cpp

xgcc libgcc

target
binutils

cc + binutils
for stage 2

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 Essential Abstrations: Summary 9/15

Basic Transformations in GCC

Tranformation from a language to a different language
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Instruction Specification and Translation: A Recap

Target Independent Target Dependent

Parse Gimplify
Tree SSA
Optimize

Generate
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Optimize RTL
Generate
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GIMPLE → RTL RTL → ASM
• GIMPLE: target independent
• RTL: target dependent
• Need: associate the semantics

⇒GCC Solution: Standard Pattern Names

GIMPLE ASSIGN

RTL Template ASM

(define_insn "movsi"
[(set (match_operand 0 "register_operand" "r")

(match_operand 1 "const_int_operand" "k"))]
"" /* C boolean expression, if required */

"li %0, %1"

)
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Translation Sequence in GCC

(define_insn

"movsi"
[(set

(match_operand 0 "register_operand" "r")

(match_operand 1 "const_int_operand" "k")

)]

"" /* C boolean expression, if required */

"li %0, %1"

)

D.1283 = 10;

(set
(reg:SI 58 [D.1283])
(const int 10: [0xa])

)

li $t0, 10
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Retargetability Mechanism of GCC
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Plugin Structure in cc1
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The GNU Tool Chain for LTO Support
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The GNU Tool Chain for LTO Support
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Common Code (executed twice for each function in the input program)

cgraph optimize

ipa passes

execute ipa pass list(all small ipa passes)/*!in lto*/

execute ipa summary passes(all regular ipa passes)

execute ipa summary passes(all lto gen passes)

ipa write summaries

cgraph expand all functions

cgraph expand function

/* Intraprocedural passes on GIMPLE, */

/* expansion pass, and passes on RTL. */
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Hooking up Back End Details

optab table

. . . . . .

OTI mov

mov optab

handler

SI
insn code

CODE FOR movsi

SF
insn code

CODE FOR nothing

$(SOURCE)/gcc/optabs.h
$(SOURCE)/gcc/optabs.c $(BUILD)/gcc/insn-output.c

insn data

. . . . . .

1280

"movsi"

. . .
gen movsi

. . .

$BUILD/gcc/insn-codes.h

CODE FOR movsi=1280
CODE FOR movsf=CODE FOR nothing

$BUILD/gcc/insn-opinit.c

...

Runtime initialization
of data structure
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