
Workshop on Essential Abstractions in GCC

A Summary of Essential Abstrations

GCC Resource Center

(www.cse.iitb.ac.in/grc)

Department of Computer Science and Engineering,

Indian Institute of Technology, Bombay

3 July 2011

3 July 2011 Essential Abstrations: Summary 1/15

Compilation Models
Aho Ullman

Model

Davidson Fraser

Model

Front End

AST

Optimizer

Target Indep. IR

Code
Generator

Target Program

Front End

AST

Expander

Register Transfers

Optimizer

Register Transfers

Recognizer

Target Program

Aho Ullman: Instruction selection

• over optimized IR using

• cost based tree pattern matching

Davidson Fraser: Instruction selection

• over AST using

• structural tree pattern matching

• naive code which is

◮ target dependent, and is
◮ optimized subsequently

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 Essential Abstrations: Summary 2/15

The GNU Tool Chain

gcc

Source Program

Target Program

cc1 cppcc1 cpp

as

ld

glibc/newlib

GCC

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 Essential Abstrations: Summary 3/15

The Architecture of GCC

Language
Specific
Code

Language and
Machine

Independent
Generic Code

Machine
Dependent
Generator
Code

Machine
Descriptions

Compiler Generation Framework

Parser Gimplifier
Tree SSA
Optimizer

RTL
Generator

Optimizer
Code

Generator

Generated Compiler (cc1)

Source Program Assembly Program

Input Language Target Name

Selected Copied
Copied

Generated

Generated

Development
Time

Build
Time

Use
Time

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 Essential Abstrations: Summary 4/15

Configuring GCC

configure

config.guess

configure.in config/*

config.sub

config.log config.cache config.status

config.h.in Makefile.in

Makefile config.h

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 Essential Abstrations: Summary 5/15

Bootstrapping: The Conventional View

Cn−1

Cn−2

m/c

Cn

Cn−1

m/c

input language output language

implementation language

Level n C

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 Essential Abstrations: Summary 6/15

A Native Build on i386

Requirement: BS = HS = TS = i386

• Stage 1 build compiled using cc

• Stage 2 build compiled using gcc

• Stage 3 build compiled using gcc

• Stage 2 and Stage 3 Builds must be
identical for a successful native build

GCC
Source

C

i386

i386

cc

C i386

C

i386

i386

gcc

Stage 1 Build

C

i386

i386

gcc

Stage 2 Build

C

i386

i386

gcc

Stage 3 Build

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 Essential Abstrations: Summary 7/15

Build for a Given Machine

This is what actually happens!

• Generation
◮ Generator sources

($(SOURCE D)/gcc/gen*.c) are read and
generator executables are created in
$(BUILD)/gcc/build

◮ MD files are read by the generator
executables and back end source code is
generated in $(BUILD)/gcc

• Compilation
Other source files are read from
$(SOURCE D) and executables created in
corresponding subdirectories of $(BUILD)

• Installation
Created executables and libraries are copied
in $(INSTALL)

genattr
gencheck
genconditions
genconstants
genflags
genopinit
genpreds
genattrtab
genchecksum
gencondmd
genemit
gengenrtl
genmddeps
genoutput
genrecog
genautomata
gencodes
genconfig
genextract
gengtype
genmodes
genpeep

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 Essential Abstrations: Summary 8/15

More Details of an Actual Stage 1 Build for C

native
cc +
native
binutils

GCC
sources

libraries

libiberty

fixincl

gen*

cc1

cpp

xgcc libgcc

target
binutils

cc + binutils
for stage 2

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 Essential Abstrations: Summary 9/15

Basic Transformations in GCC

Tranformation from a language to a different language

Target Independent Target Dependent

Parse Gimplify
Tree SSA
Optimize

Generate
RTL

Optimize RTL
Generate
ASM

GIMPLE → RTL RTL → ASM

RTL PassesGIMPLE Passes

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 Essential Abstrations: Summary 10/15

Instruction Specification and Translation: A Recap

Target Independent Target Dependent

Parse Gimplify
Tree SSA
Optimize

Generate
RTL

Optimize RTL
Generate
ASM

GIMPLE → RTL RTL → ASM
• GIMPLE: target independent
• RTL: target dependent
• Need: associate the semantics

⇒GCC Solution: Standard Pattern Names

GIMPLE ASSIGN

RTL Template ASM

(define_insn "movsi"
[(set (match_operand 0 "register_operand" "r")

(match_operand 1 "const_int_operand" "k"))]
"" /* C boolean expression, if required */

"li %0, %1"

)

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 Essential Abstrations: Summary 11/15

Translation Sequence in GCC

(define_insn

"movsi"
[(set

(match_operand 0 "register_operand" "r")

(match_operand 1 "const_int_operand" "k")

)]

"" /* C boolean expression, if required */

"li %0, %1"

)

D.1283 = 10;

(set
(reg:SI 58 [D.1283])
(const int 10: [0xa])

)

li $t0, 10

D
e
ve

lo
p
m
e
n
t

U
se

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 Essential Abstrations: Summary 12/15

Retargetability Mechanism of GCC

Language
Specific
Code

Language and
Machine

Independent
Generic Code

Machine
Dependent
Generator
Code

Machine
Descriptions

Compiler Generation Framework

Input Language Target Name

Parser Gimplifier
Tree SSA
Optimizer

RTL
Generator

Optimizer
Code

Generator

Selected Copied
Copied

Generated

Generated

Generated Compiler

Development
Time

Build
Time

Use
Time

GIMPLE → PN
+

PN → IR-RTL
+

IR-RTL → ASM

GIMPLE → IR-RTL
+

IR-RTL → ASM

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 Essential Abstrations: Summary 13/15

Plugin Structure in cc1

toplev
main

front
end

pass
manager

pass 1

pass 2

. . .

pass
expand

. . .

pass n

code for
pass 2

code for
pass 1

code for
pass n

expander
code

optab table

langhook
. . .

code for
language 1

code for
language 2

code for
language n

insn data

generated
code for
machine 1

MD 1

MD 2

MD n

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 Essential Abstrations: Summary 14/15

The GNU Tool Chain for LTO Support

gcc

cc1′ lto1′

common
cc1

“Fat” .s files

as as

“Fat” .o files

collect2
cc1′ lto1′

common
lto1

Single .s file

as as

Single .o file

collect2

+ glibc/newlib

ld ld

a.out file

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 Essential Abstrations: Summary 14/15

The GNU Tool Chain for LTO Support

gcc

cc1′ lto1′

common
cc1

“Fat” .s files

as as

“Fat” .o files

collect2
cc1′ lto1′

common
lto1

Single .s file

as as

Single .o file

collect2

+ glibc/newlib

ld ld

a.out file

Common Code (executed twice for each function in the input program)

cgraph optimize

ipa passes

execute ipa pass list(all small ipa passes)/*!in lto*/

execute ipa summary passes(all regular ipa passes)

execute ipa summary passes(all lto gen passes)

ipa write summaries

cgraph expand all functions

cgraph expand function

/* Intraprocedural passes on GIMPLE, */

/* expansion pass, and passes on RTL. */

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 Essential Abstrations: Summary 15/15

Hooking up Back End Details

optab table

.

OTI mov

mov optab

handler

SI
insn code

CODE FOR movsi

SF
insn code

CODE FOR nothing

$(SOURCE)/gcc/optabs.h
$(SOURCE)/gcc/optabs.c $(BUILD)/gcc/insn-output.c

insn data

.

1280

"movsi"

. . .
gen movsi

. . .

$BUILD/gcc/insn-codes.h

CODE FOR movsi=1280
CODE FOR movsf=CODE FOR nothing

$BUILD/gcc/insn-opinit.c

...

Runtime initialization
of data structure

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

	Summary

