Workshop on Essential Abstractions in GCC

Manipulating GIMPLE and RTL IRs

GCC Resource Center

(www.cse.iitb.ac.in/grc)

Department of Computer Science and Engineering,
Indian Institute of Technology, Bombay

1 July 2011

Part 1

An Overview of GIMPLE

1 July 2011 GIMPLE and RTL: Outline 1/45

Outline

An Overview of GIMPLE

Using GIMPLE APl in GCC-4.6.0
Adding a GIMPLE Pass to GCC
An Internal View of RTL
Manipulating RTL IR

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

1 July 2011 GIMPLE and RTL: An Overview of GIMPLE 2/45

GIMPLE: A Recap

e Language independent three address code representation
» Computation represented as a sequence of basic operations
» Temporaries introduced to hold intermediate values
e Control construct explicated into conditional and unconditional
jumps

Essential Abstractions in GCC GCC Resource Center, |IT Bombay I - I

1 July 2011 GIMPLE and RTL: An Overview of GIMPLE 3/45

1 July 2011 GIMPLE and RTL: An Overview of GIMPLE 4/45

Motivation Behind GIMPLE

e Previously, the only common IR was RTL (Register Transfer
Language)

e Drawbacks of RTL for performing high-level optimizations

» Low-level IR, more suitable for machine dependent optimizations
(e.g., peephole optimization)

» High level information is difficult to extract from RTL (e.g. array
references, data types etc.)

» Introduces stack too soon, even if later optimizations do not require it

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

1 July 2011 GIMPLE and RTL: An Overview of GIMPLE 5/45

Why Not Abstract Syntax Trees for Optimization?

e ASTs contain detailed function information but are not suitable for
optimization because

» Lack of a common representation across languages
> No single AST shared by all front-ends
> So each language would have to have a different implementation of
the same optimizations
» Difficult to maintain and upgrade so many optimization frameworks
» Structural Complexity
> Lots of complexity due to the syntactic constructs of each language
» Hierarchical structure and not linear structure
Control flow explication is required

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

1 July 2011 GIMPLE and RTL: An Overview of GIMPLE 6/45

Need for a New IR

e Earlier versions of GCC would build up trees for a single
statement,and then lower them to RTL before moving on to the
next statement

e For higher level optimizations, entire function needs to be
represented in trees in a language-independent way.

e Result of this effort - GENERIC and GIMPLE

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

What is GENERIC?

What?

e Language independent IR for a complete function in the form of
trees

e Obtained by removing language specific constructs from ASTs
o All tree codes defined in $ (SOURCE) /gcc/tree.def

Why?
e Each language frontend can have its own AST

e Once parsing is complete they must emit GENERIC

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

1 July 2011 GIMPLE and RTL: An Overview of GIMPLE 7/45

What is GIMPLE ?

e GIMPLE is influenced by SIMPLE IR of McCat compiler

e But GIMPLE is not same as SIMPLE (GIMPLE supports GOTO)
e It is a simplified subset of GENERIC

> 3 address representation
» Control flow lowering
» Cleanups and simplification, restricted grammar

e Benefit : Optimizations become easier

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

1 July 2011 GIMPLE and RTL: An Overview of GIMPLE 9/45

1 July 2011 GIMPLE and RTL: An Overview of GIMPLE 8/45

GIMPLE Goals

The Goals of GIMPLE are

e Lower control flow

Sequenced statements + conditional and unconditional jumps
e Simplify expressions

Typically one operator and at most two operands
e Simplify scope

Move local scope to block begin, including temporaries

Tuple Based GIMPLE Representation

e Earlier implementation of GIMPLE used trees as internal data
structure

e Tree data structure was much more general than was required for
three address statements
e Now a three address statement is implemented as a tuple

e These tuples contain the following information

» Type of the statement
> Result

» Operator

» Operands

The result and operands are still represented using trees

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

1 July 2011 GIMPLE and RTL: An Overview of GIMPLE 10/45

Observing Internal Form of GIMPLE

test.c.004t.gimple test.c.004t.gimple with compilation option
with compilation option ~fdump-tree-all-raw
-fdump-tree-all

L1957 = a.1 * x;

=y - D.19567;

gimple_assign
gimple_assign

<mult_expr, D.1957, a.1, x>
<minus_expr, y, y, D.1957>

x = 10; gimple_assign <integer_cst, x, 10, NULL>
y = 5; gimple_assign <integer_cst, y, 5, NULL>
D.1954 = x * y; gimple_assign <mult_expr, D.1954, x, y>
a.0 = a; gimple_assign <var_decl, a.0, a, NULL>

x = D.1954 + a.0; gimple_assign <plus_expr, x, D.1954, a.0>
a.l = a; gimple_assign <var_decl, a.l1, a, NULL>

D

y

Essential Abstractions in GCC

GCC Resource Center, |IT Bombay

1 July 2011 GIMPLE and RTL: An Overview of GIMPLE 11/45

Observing Internal Form of GIMPLE

test.c.004t.gimple test.c.004t.gimple with compilation option
with compilation option | ~fdump-tree-all-raw
-fdump-tree-all

if (a < ¢)
goto <D.1953>; gimple_cond <lt_expr, a,c,<D.1953>, <D.1954>>
else gimple_label <<D.1953>>
b 12220 <D.1954>; gimple_assign <plus_expr, a, b, c>
<D. >

gimple_goto <<D.1955>>
gimple_label <<D.1954>>
gimple_assign <minus_expr, a, b, c>
gimple_label <<D.1955>>

a=>b+ c;

goto <D.1955>;
<D.1954>:

a=>b-c;
<D.1955>:

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

1 July 2011 GIMPLE and RTL: Using GIMPLE API in GCC-4.6.0 12/45

Iterating Over GIMPLE Statements

e A basic block contains a doubly linked-list of GIMPLE statements

e The statements are represented as GIMPLE tuples, and the
operands are represented by tree data structure

e Processing of statements can be done through iterators

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

Part 2

Using GIMPLE API in GCC-4.6.0

1 July 2011 GIMPLE and RTL: Using GIMPLE API in GCC-4.6.0 12/45

Iterating Over GIMPLE Statements

e A basic block contains a doubly linked-list of GIMPLE statements

e The statements are represented as GIMPLE tuples, and the
operands are represented by tree data structure

e Processing of statements can be done through iterators

basic_block bb;
gimple_stmt_iterator gsi;

FOR_EACH_BB (bb)

{
for (gsi=gsi_start_bb (bb); !'gsi_end_p (gsi);
gsi_next (&gsi))
analyze_statement (gsi_stmt (gsi));
}

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

1 July 2011 GIMPLE and RTL: Using GIMPLE API in GCC-4.6.0 12/45

Iterating Over GIMPLE Statements

e A basic block contains a doubly linked-list of GIMPLE statements

e The statements are represented as GIMPLE tuples, and the
operands are represented by tree data structure

e Processing of statements can be done through iterators

basic_block bb;
gimple_stmt_iterator gsi;

FOR_EACH_BB (bb)

{
for (gsINgsi_start_bb (bb); !gsi_end_p (gsi);
gsi_next (&gsi))
analyze_stXement (gsi_stmt (gsi));
}

Basic block iterator

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

1 July 2011 GIMPLE and RTL: Using GIMPLE API in GCC-4.6.0 12/45

1 July 2011 GIMPLE and RTL: Using GIMPLE API in GCC-4.6.0 12/45

Iterating Over GIMPLE Statements

e A basic block contains a doubly linked-list of GIMPLE statements

e The statements are represented as GIMPLE tuples, and the
operands are represented by tree data structure

e Processing of statements can be done through iterators

basic_block bb;
gimple_stmt_iterator gsi;

FOR_EACH_BB (bb)

{
for (gsi=gsi_start_bb (bb); !gsi_end_p (gsi);
gsi_next (&gsi))
analyze>sgatement (gsi_stmt (gsi));
}

GIMPLE statement iterator

Iterating Over GIMPLE Statements

e A basic block contains a doubly linked-list of GIMPLE statements

e The statements are represented as GIMPLE tuples, and the
operands are represented by tree data structure

e Processing of statements can be done through iterators

basic_block bb;
gimple_stmt_iterator gsi;

FOR_EACH_BB (bb)

{
for (gsi=gsi_start_bb (bb); !gsi_end_p (gsi);
gsi_next (&gsi))
analyze_statqment (gsi_stmt (gsi));
}

Get the first statement of bb

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

1 July 2011 GIMPLE and RTL: Using GIMPLE API in GCC-4.6.0 12/45

Iterating Over GIMPLE Statements

e A basic block contains a doubly linked-list of GIMPLE statements

e The statements are represented as GIMPLE tuples, and the
operands are represented by tree data structure

e Processing of statements can be done through iterators

basic_block bb;
gimple_stmt_iterator gsi;

FOR_EACH_BB (bb)

{
for (gsi=gsi_start_bb (bb); !'gsi_end_p (gsi);
i_next (&gsi))
analyze_statement (gsi-stmt (gsi));
}

True if end reached

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

1 July 2011 GIMPLE and RTL: Using GIMPLE API in GCC-4.6.0 12/45

Iterating Over GIMPLE Statements

e A basic block contains a doubly linked-list of GIMPLE statements

e The statements are represented as GIMPLE tuples, and the
operands are represented by tree data structure

e Processing of statements can be done through iterators

basic_block bb;
gimple_stmt_iterator gsi;

FOR_EACH_BB (bb)

{
for (gsi=gsi_start_bb (bb); !gsi_end_p (gsi);
gsi_next (&gsi))
analyze_statement (gsi_stmt 7)) ;
}

Advance iterator to the next GIMPLE stmt

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

1 July 2011 GIMPLE and RTL: Using GIMPLE API in GCC-4.6.0 13/45

1 July 2011 GIMPLE and RTL: Using GIMPLE API in GCC-4.6.0 12/45

Iterating Over GIMPLE Statements

e A basic block contains a doubly linked-list of GIMPLE statements

e The statements are represented as GIMPLE tuples, and the
operands are represented by tree data structure

e Processing of statements can be done through iterators

basic_block bb;
gimple_stmt_iterator gsi;

FOR_EACH_BB (bb)

{
for (gsi=gsi_start_bb (bb); !gsi_end_p (gsi);
gsi_next (&gsi))
analyze_statement (gsi_stmt (gsi));
}

Return the current statement

Other Useful APls for Manipulating GIMPLE

Extracting parts of GIMPLE statements:
e gimple_assign_lhs: left hand side
e gimple assign rhsl: left operand of the right hand side
e gimple assign rhs2: right operand of the right hand side
e gimple assign rhs code: operator on the right hand side

A complete list can be found in the file gimple.h

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

Part 3

Adding a GIMPLE Pass to GCC

1 July 2011 GIMPLE and RTL: Adding a GIMPLE Pass to GCC 14/45

Adding a GIMPLE Intraprocedural Pass in GCC-4.6.0 (1)

Add the following gimple_opt_pass struct instance to the file

struct gimple_opt_pass pass_intra_gimple_manipulation =
{
{
GIMPLE_PASS, /* optimization pass type */
"gm", /* name of the pass*/
gate_gimple_manipulation, /* gate. */
intra_gimple_manipulation, /* execute (driver function) */

NULL, /* sub passes to be run */

NULL, /* next pass to run */

0, /* static pass number */

0, /* timevar_id */

0, /* properties required */

0, /* properties provided */

0, /* properties destroyed */

0, /* todo_flags start */

0 /* todo_flags end */

}

}, &

Essential Abstractions in GCC GCC Resource Center, |IT Bombay
1 July 2011 GIMPLE and RTL: Adding a GIMPLE Pass to GCC 15/45

1 July 2011 GIMPLE and RTL: Adding a GIMPLE Pass to GCC 15/45

Adding a GIMPLE Intraprocedural Pass as a Static Plugin

1. Write the driver function in file new-pass.c

2. Declare your pass in file tree-pass.h:
extern struct gimple_opt_pass
pass_intra_gimple manipulation;

3. Add your pass to the intraprocedural pass list in
init_optimization passes()

NEXT_PASS (pass_build_cfg);
NEXT_PASS (pass_intra_gimple_manipulation);

Adding a GIMPLE Intraprocedural Pass as a Static Plugin

4. In $SOURCE/gcc/Makefile.in, add new-pass.o to the list of
language independent object files. Also, make specific changes to
compile new-pass.o from new-pass.c

5. Configure and build gcc
(For simplicity, we will make cc1 only)

6. Debug cc1 using ddd/gdb if need arises
(For debuging cc1 from within gcc, see:
http://gcc.gnu.org/ml/gcc/2004-03/msg01195 . html)

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

1 July 2011 GIMPLE and RTL: Adding a GIMPLE Pass to GCC 16/45

Registering Our Pass as a Dynamic Plugin

struct register_pass_info dynamic_pass_info = {

& (pass_intra_gimple_manipulation.pass),

/* Address of new pass, here, the
struct opt_pass field of
simple_ipa_opt_pass defined above */

"cfg", /* Name of the reference pass (string
in the pass structure specification)
for hooking up the new pass. */

0, /* Insert the pass at the specified
instance number of the reference
pass. Do it for every instance if
it is 0. */

PASS_POS_INSERT_AFTER

+;

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

http://gcc.gnu.org/ml/gcc/2004-03/msg01195.html

1 July 2011 GIMPLE and RTL: Adding a GIMPLE Pass to GCC 17/45

Registering Callback for Our Pass for a Dynamic Plugins

int plugin_init(struct plugin_name_args *plugin_info,
struct plugin_gcc_version *version)
{ /* Plugins are activiated using this callback */

register_callback (
plugin_info->base_name, /* char *name: Plugin name,
could be any name.
plugin_info->base_name
gives this filename */
PLUGIN_PASS_MANAGER_SETUP, /* int event: The event code.
Here, setting up a new

pass */
NULL, /* The function that handles
the event */
&dynamic_pass_info); /* plugin specific data */

return O;

}

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

1 July 2011 GIMPLE and RTL: Adding a GIMPLE Pass to GCC 19/45

1 July 2011

GIMPLE and RTL: Adding a GIMPLE Pass to GCC 18/45

Makefile for Creating and Using a Dynamic Plugin

CC = $(INSTALL_D)/bin/gcc
PLUGIN_SOURCES = new-pass.c
PLUGIN_OBJECTS = $(patsubst %.c,
GCCPLUGINS_DIR = $(shell $(CC) -
CFLAGS+= —-fPIC -02

INCLUDE = -Iplugin/include

%.0o : %.c
$(CC) $(CFLAGS) $(INCLUDE) -c $<

new-pass.so: $(PLUGIN_OBJECTS)

test_plugin: test.c

$(CC) $(CFLAGS) $(INCLUDE) -shared $~ -o $@

$(CC) -fplugin=./new-pass.so $~ -o $@ -fdump-tree-all

%.0,$(PLUGIN_SOURCES))
print-file-name=plugin)

An Intraprocedural Analysis for Discovering Pointer Usage

Calculate the number of pointer statements in GIMPLE (i.e. result or an
operand is a pointer variable)

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

Essential Abstractions in GCC

78

GCC Resource Center, |IT Bombay

1 July 2011 GIMPLE and RTL: Adding a GIMPLE Pass to GCC 20/45
Discovering Pointer Usage

main ()
{ int D.1965;

int +p, *q; e a;

void callme (int); in ’

int main

1 in O b = &b;

int a. b: callme (a);

- kb D.1965 = 0;
Eallme,(a)' return D.1965;
return O; ¥ .

} callme (int a)
. *]
void callme (int a) { }nt p.0;
{ int a.1;
a=x*x(p + 3);
q = &a; P-0 =P
} ’ a.1 = MEM[(int *)p.0 + 12B];
a=a.l;
q = &a;

Essential Abstractions in GCC

}

GCC Resource Center, |IT Bombay

1 July 2011 GIMPLE and RTL: Adding a GIMPLE Pass to GCC 21/45

An Intraprocedural Analysis Application

static unsigned int
intra_gimple_manipulation (void)
{
basic_block bb;
gimple_stmt_iterator gsi;

initialize_var_count ();
FOR_EACH_BB_FN (bb, cfun)
{
for (gsi=gsi_start_bb (bb); !'gsi_end_p (gsi);
gsi_next (&gsi))
analyze_gimple_stmt (gsi_stmt (gsi));
}
print_var_count ();
return O;

GCC Resource Center, |IT Bombay I I

Essential Abstractions in GCC

1 July 2011 GIMPLE and RTL: Adding a GIMPLE Pass to GCC 21/45

1 July 2011 GIMPLE and RTL: Adding a GIMPLE Pass to GCC 21/45

An Intraprocedural Analysis Application

static unsigned int
intra_gimple_manipulation (void)
{
basic_block bb;
gimple_stmt_iterator gsi;

initialize_var_count ();
FOR_EACH_BB_FN (bb, cfun)

for (gsi=gs_start_bb (bb); !gsi_end_p (gsi);

gsi_next (&gsi))
analyze_g\imple_stmt (gsi_stmt (gsi));
}

print_var_count ();
return O;

An Intraprocedural Analysis Application

static unsigned int
intra_gimple_manipulation (void)
{
basic_block bb;
gimple_stmt_iterator gsi;

initialize_var_count ();
FOR_EACH_BB_FN (bb, cfun)
{
for (gsi=gsi_stary_bb (bb); !gsi_end_p (gsi);
gsi_next (&gsi))
analyze_gimple_stmt (gsi_stmt (gsi));
}
print_var_count Q); k

return O;

Current function (i.e. function being compiled)

GCC Resource Center, |IT Bombay I%I

Essential Abstractions in GCC

Basic block iterator parameterized with function n

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

1 July 2011 GIMPLE and RTL: Adding a GIMPLE Pass to GCC 21/45

An Intraprocedural Analysis Application

static unsigned int
intra_gimple_manipulation (void)
{
basic_block bb;
gimple_stmt_iterator gsi;

initialize_var_count ();
FOR_EACH_BB_FN (bb, cfun)
{

for (gsi=gsi_start_bb (bb); !gsi_end_p (gsi);
gsi_next (&gsi))
analyge_gimple_stmt (gsi_stmt (gsi));

print_var_count ()
return O;

GIMPLE statement iterator
Essential Abstractions in GCC %

GCC Resource Center, |IT Bombay

1 July 2011 GIMPLE and RTL: Adding a GIMPLE Pass to GCC 22/45

Analysing GIMPLE Statement

static void
analyze_gimple_stmt (gimple stmt)

{
if (is_gimple_assign (stmt))
{
tree lhsop = gimple_assign_lhs (stmt);
tree rhsopl = gimple_assign_rhsl (stmt);
tree rhsop2 = gimple_assign_rhs2 (stmt);
/* Check if either LHS, RHS1 or RHS2 operands
can be pointers. */
if ((lhsop && is_pointer_var (lhsop)) ||
(rhsopl && is_pointer_var (rhsopl)) ||
(rhsop2 && is_pointer_var (rhsop2)))
{ if (dump_file)
fprintf (dump_file, "Pointer Statement :");
print_gimple_stmt (dump_file, stmt, 0, 0);
num_ptr_stmts++;
}
}
}

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

1 July 2011 GIMPLE and RTL: Adding a GIMPLE Pass to GCC 22/45

1 July 2011 GIMPLE and RTL: Adding a GIMPLE Pass to GCC 22/45

Analysing GIMPLE Statement

static void
analyze_gimple_stmt (gimple stmt)

Analysing GIMPLE Statement

static void
analyze_gimple_stmt (gimple stmt)

{
if (is_gimple_assign (stmt))
{
tree lhsop = gimple_assign_lhs (stmt);
tree rhsopl = gimple_assign_rhsl (stmt);
tree rhsop2 = gimple_apsign_rhs2 (stmt);
/* Check if either LHS| RHS1 or RHS2 operands
can be pointers. */
if ((lhsop && is_pointeY_var (lhsop)) ||
(rhsopl && is_pointey_var (rhsopl)) ||
(rhsop2 && is_pointen var (rhsop2)))
{ if (dump_file)
fprintf (dump_filk{, "Pointer Statement :");
print_gimple_stmt (dump\file, stmt, 0, 0);
num_ptr_stmts++;
}
} Returns first operand of RHS
}

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

{
if (is_gimple_assign (stmt))
{
tree lhsop = gimple_assign_lhs (stmt);
tree rhsopl = gimple_lassign_rhsl (stmt);
tree rhsop2 = gimple_assign_rhs2 (stmt);
/* Check if either LHS) RHS1 or RHS2 operands
can be pointers. */
if ((lhsop &% is_pointer_var (lhsop)) ||
(rhsopl && is_pointer_var (rhsopl)) ||
(rhsop2 && is_pointer_var \(rhsop2)))
{ if (dump_file)
fprintf (dump_file, "Poihter Statement :");
print_gimple_stmt (dump_file, stmt, 0, 0);
num_ptr_stmts++;
}
} Returns LHS of assignment statement
}
Essential Abstractions in GCC GCC Resource Center, IIT Bombay
1 July 2011 GIMPLE and RTL: Adding a GIMPLE Pass to GCC 22/45

Analysing GIMPLE Statement

static void
analyze_gimple_stmt (gimple stmt)

{
if (is_gimple_assign (stmt))
{
tree lhsop = gimple_assign_lhs (stmt);
tree rhsopl = gimple_assign_rhsl (stmt);
tree rhsop2 = gimple_assign_rhs2 (stmt);
/* Check if either LHS| RHS1 or RHS2 operands
can be pointers. */
if ((lhsop && is_pointdr_var (lhsop)) ||
(rhsopl && is_pointkr_var (rhsopl)) ||
(rhsop2 && is_pointqr_var (rhsop2)))
{ if (dump_file)
fprintf (dump_file, "Pointer Statement :");
print_gimple_stmt (dutjyp_file, stmt, 0, 0);
num_ptr_stmts++;
}
} Returns second operand of RHS
}

GCC Resource Center, |IT Bombay I%I

Essential Abstractions in GCC

1 July 2011 GIMPLE and RTL: Adding a GIMPLE Pass to GCC 22/45

Analysing GIMPLE Statement

static void
analyze_gimple_stmt (gimple stmt)
{
if (is_gimple_assign (stmt))
{
tree lhsop = gimple_assign_lhs (stmt);
tree rhsopl = gimple_assign_rhsl (stmt);
tree rhsop2 = gimple_assign_rhs2 (stmt);
/* Check if either LHS, RHS1 or RHS2 operands
can be pointers. */
if ((lhsop && is_pointer_var (lhsop)) ||
(rhsopl && is_pointer_var (rhsopl)) ||
(rhsop2 && is_pointer_var (rhsop2)))
{ if (dump_file)
fprintf (dump_file, "Pointer Statement :");
print_gimple_stmt (dump_file, stmt, 0, 0);
num SR N

} Pretty print the GIMPLE statement

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

1 July 2011 GIMPLE and RTL: Adding a GIMPLE Pass to GCC 23/45

1 July 2011 GIMPLE and RTL: Adding a GIMPLE Pass to GCC

23/45

Discovering Pointers

static bool
is_pointer_var (tree var)
{
return is_pointer_type (TREE_TYPE (var));

static bool
is_pointer_type (tree type)

Discovering Pointers

static bool
is_pointer_var (tree var)
{
return is_pointer_type (TREE_TYPE (var));

static bool
is_pointer_type (tree type)
{
if (POINTER_TYPE_P (type))
return true;
if (TREE_CODE (type) == ARRAY_TYPE)
return is_pointer_var (TREE_TYPE (t
/* Return true if it is an aggregate type
return AGGREGATE_TYPE_P (type);

}
Data type of the expression
Essential Abstractions in GCC GCC Resource Center, |IT Bombay I

{
if (POINTER_TYPE_P (type))
return true;
if (TREE_CODE (type) == ARRAY_TYPE)
return is_pointer_var (TREE_TYPE (type));
/* Return true if it is an aggregate type. */
return AGGREGATE_TYPE_P (type);
}
Essential Abstractions in GCC GCC Resource Center, |IT Bombay
1 July 2011 GIMPLE and RTL: Adding a GIMPLE Pass to GCC

R

23/45

Discovering Pointers

static bool
is_pointer_var (tree var)
{
return is_pointer_type (TREE_TYPE (var));

static bool
is_pointer_type (tree type)

{
if (POINTER_TYPE_P (type))
return true;
if (TREE_CODE (type) == ARRAY_TYPE)
return is_pointer_var (TREE_TYPE (type));
/* Return true il it is an aggregate type. */
return AGGREGATE_TYPE_P (type);
}
Defines what kind of node it is
Essential Abstractions in GCC GCC Resource Center, |IT Bombay

1 July 2011 GIMPLE and RTL: Adding a GIMPLE Pass to GCC 24/45 1 July 2011 GIMPLE and RTL: Adding a GIMPLE Pass to GCC 25/45

Intraprocedural Analysis Results Discovering Local Variables

static void gather_local_variables ()

main () {
{ . tree list = cfun->local_decls;
p = &b; . .
callme (a); Information collected by intrapro- if (!dump_file)
D.1965 = 0; cedural Analysis pass return;
return D.1965;
} e Formain: 1 fprintf (dump_file,"\nLocal variables : ");
callme (int a) e For callme: 2 ?hile (list)
{ ...
pP- 0 = P; Why is the pointer in the red state- if (lDECL_ARTIFICIAL (1lSt) && dump_file)
a.1 = MEM[(int *)p.0 + 12B]; | ment being missed? {
a=a.l; fprintf (dump_file, get_name(list));
q = &a; fprintf (dump_file,"\n");
} b
list = TREE_CHAIN (list);
}
=} : {2}
Essential Abstractions in GCC GCC Resource Center, |IT Bombay Essential Abstractions in GCC GCC Resource Center, |IT Bombay
1 July 2011 GIMPLE and RTL: Adding a GIMPLE Pass to GCC 26/45 1 July 2011 GIMPLE and RTL: Adding a GIMPLE Pass to GCC 27/45
Discovering Global Variables Adding Interprocedural Pass as a Static Plugin
static void gather_global_variables () 1. Add the following gimple opt_pass struct instance to the file
{ - h struct simple_ipa_opt_pass pass_inter_gimple_manipulation =
struct varpool_node *node; { c
if ('dump_file) SIMPLE_IPA_PASS, /* optimization pass type */
return; "gm", /* name of the passx*/
gate_gimple_manipulation, /* gate. x/
fprintf (dump_file,"\nGlobal variables : "); inter_gimple_manipulation, /* execute (driver function) */
for (node = varpool_nodes; node; node = node->next) NULL, /* sub passes to be run */
{ NULL, /* next pass to run */

tree var = node->decl; 0, /* static pass number */

if (!'DECL_ARTIFICIAL(var)) 0, /* timevar_id */

{ 0, /* properties required */
fprintf (dump_file, get_name(var)); 0, /* properties provided */
fprintf (dump_file,"\n"); 0, /* properties destroyed */

¥ 0, /* todo_flags start */

¥ 0 /* todo_flags end */

Essential Abstractions in GCC GCC Resource Center, |IT Bombay Essential Abstractions in GCC GCC Resource Center, |IT Bombay

1 July 2011 GIMPLE and RTL: Adding a GIMPLE Pass to GCC 27/45

Adding Interprocedural Pass as a Static Plugin

2. Write the driver function in file new-pass.c
Declare your pass in file tree-pass.h:
extern struct simple_ipa_opt_pass

pass_inter_gimple manipulation;

4. Add your pass to the interprocedural pass list in
init_optimization passes()

p = &all_regular_ipa_passes;

NEXT_PASS (pass_ipa_whole_program_visibility);
NEXT_PASS (pass_inter_gimple_manipulation);
NEXT_PASS (pass_ipa_cp);

GCC Resource Center, |IT Bombay I I

Essential Abstractions in GCC

1 July 2011 GIMPLE and RTL: Adding a GIMPLE Pass to GCC 28/45

1 July 2011 GIMPLE and RTL: Adding a GIMPLE Pass to GCC 27/45

Adding Interprocedural Pass as a Static Plugin

5. In $SOURCE/gcc/Makefile.in, add new-pass.o to the list of
language independent object files. Also, make specific changes to
compile new-pass.o from new-pass.c

6. Configure and build gcc for ccl

Debug using ddd/gdb if a need arises
(For debuging cc1 from within gcc, see:
http://gcc.gnu.org/ml/gcc/2004-03/msg01195 . html)

Discovering Pointer Usage Interprocedurally

static unsigned int
inter_gimple_manipulation (void)

{
struct cgraph_node *node;
basic_block bb;
gimple_stmt_iterator gsi;
initialize_var_count ();
for (node = cgraph_nodes; node; node=node->next) {
/* Nodes without a body, and clone nodes are not interesting. */
if (!gimple_has_body_p (node->decl) || node->clone_of)
continue;
push_cfun (DECL_STRUCT_FUNCTION (node->decl));
FOR_EACH_BB (bb) {
for (gsi=gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
analyze_gimple_stmt (gsi_stmt (gsi));
}
pop_cfun Q) ;
}
print_var_count ();
return O;
}
Essential Abstractions in GCC GCC Resource Center, |IT Bombay

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

1 July 2011 GIMPLE and RTL: Adding a GIMPLE Pass to GCC 28/45

Discovering Pointer Usage Interprocedurally

static unsigned int
inter_gimple_manipulation (void)
{
struct cgraph_node *node;
basic_block bb;
gimple_stmt_iterator gsi;
initialize_var_count ();
for (ngde = cgraph_nodes; node; node=node->next) {
odes without a body, and clone nodes are not interesting. */
imple_has_body_p (node->decl) || node->clone_of)

push_cfun (DECL
FOR_EACH_BB (bb) {

for (gsi=gsi_start_bb (bb); Tpsi end_p (gsi); gsi_next (&gsi))
analyze_gimple_stmt (gsi_stmt i));

CT_FUNCTION (node->decl));

}

pop_cfun O ;
} Iterating over all the callgraph nodes
print_var_count ();
return O;

'
Essential Abstractions in GCC -

GCC Resource Center, |IT Bombay

http://gcc.gnu.org/ml/gcc/2004-03/msg01195.html

1 July 2011 GIMPLE and RTL: Adding a GIMPLE Pass to GCC 28/45

Discovering Pointer Usage Interprocedurally

static unsigned int
inter_gimple_manipulation (void)
{
struct cgraph_node *node;
basic_block bb;
gimple_stmt_iterator gsi;
initialize_var_count ();
for (node = cgraph_nodes; node; node=node->next) {
/* Nodes without a body, and clone nodes are not interesting. */
if (!gimple_has_body_p (node->decl) || node->clone_of)

continue;
push_cfun (DECL_STRUCT_FUNCTION (node->decl));
FOR_!
si_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
tmt (gsi_stmt (gsi));

}

pop_cfun ();
}
print_var_count (); Setting the current function in context
return O;

:

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

1 July 2011 GIMPLE and RTL: Adding a GIMPLE Pass to GCC 28/45

1 July 2011 GIMPLE and RTL: Adding a GIMPLE Pass to GCC 28/45

Discovering Pointer Usage Interprocedurally

static unsigned int
inter_gimple_manipulation (void)

Discovering Pointer Usage Interprocedurally

static unsigned int
inter_gimple_manipulation (void)
{
struct cgraph_node *node;
basic_block bb;
gimple_stmt_iterator gsi;
initialize_var_count ();
for (node = cgraph_nodes; node; node=node->next) {
/* Nodes without a body, and clone nodes are not interesting. */
if (!gimple_has_body_p (node->decl) || node->clone_of)
continue;
push_cfun (DECL_STRUCT_FUNCTION (node->decl));
FOR_EACH_BB (bb) {
for (gsi=gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
lyze_gimple_stmt (gsi_stmt (gsi));
}
pop_cfun Q) ;
}

print_var_count (); GIMPLE Statement lterator
return O;

:

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

{
struct cgraph_node *node;
basic_block bb;
gimple_stmt_iterator gsi;
initialize_var_count ();
for (node = cgraph_nodes; node; node=node->next) {
/* Nodes without a body, and clone nodes are not interesting. */
if (!gimple_has_body_p (node->decl) || node->clone_of)
continue;
push_cfun (DECL_STRUCT_FUNCTION (node->decl));
FOR_EACH_BB (bb) {
for \(gsi=gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
ana imple_stmt (gsi_stmt (gsi));
}
pop_cfun Q) ;
}
print_var_count O; Basic Block lterator
return O;
}
Essential Abstractions in GCC GCC Resource Center, |IT Bombay
1 July 2011 GIMPLE and RTL: Adding a GIMPLE Pass to GCC 28/45

Discovering Pointer Usage Interprocedurally

static unsigned int
inter_gimple_manipulation (void)
{
struct cgraph_node *node;
basic_block bb;
gimple_stmt_iterator gsi;
initialize_var_count ();
for (node = cgraph_nodes; node; node=node->next) {
/* Nodes without a body, and clone nodes are not interesting. */
if (!gimple_has_body_p (node->decl) || node->clone_of)
continue;
push_cfun (DECL_STRUCT_FUNCTION (node->decl));
FOR_EACH_BB (bb) {
for (gsi=gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
analyze_gimple_stmt (gsi_stmt (gsi));
}
pop_cfun QO ;
} - ™~
print_var_count ();
return O;

Resetting the function context

}
Essential Abstractions in GCC GCC Resource Center, |IT Bombay -

1 July 2011 GIMPLE and RTL: Adding a GIMPLE Pass to GCC 29/45

Interprocedural Results

Number of Pointer Statements = 3

Observation:

e Information can be collected for all the functions in a single pass

e Better scope for optimizations

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

1 July 2011 GIMPLE and RTL: An Overview of RTL 30/45

What is RTL ?

RTL = Register Transfer Language

Assembly language for an abstract machine with infinite registers

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

Part 4

An Overview of RTL

1 July 2011 GIMPLE and RTL: An Overview of RTL 31/45

Why RTL?

A lot of work in the back-end depends on RTL. Like,

e Low level optimizations like loop optimization, loop dependence,
common subexpression elimination, etc

e Instruction scheduling
e Register Allocation

e Register Movement

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

1 July 2011 GIMPLE and RTL: An Overview of RTL 32/45

Why RTL?

For tasks such as those, RTL supports many low level features, like,

e Register classes

Memory addressing modes

Word sizes and types

e Compare and branch instructions

Calling Conventions

Bitfield operations

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

Part 5

An Internal View of RTL

1 July 2011 GIMPLE and RTL: An Overview of RTL 33/45

The Dual Role of RTL

e For specifying machine descriptions
Machine description constructs:

» define_insn, define_expand, match_operand

e For representing program during compilation
IR constructs

» insn, jump_insn, code_label, note, barrier

This lecture focusses on RTL as an IR

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

1 July 2011 GIMPLE and RTL: An Internal View of RTL 34/45

RTL Objects

e Types of RTL Objects

» Expressions
> Integers
» Wide Integers
» Strings
» Vectors

e Internal representation of RTL Expressions

» Expressions in RTX are represented as trees
» A pointer to the C data structure for RTL is called rtx

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

1 July 2011 GIMPLE and RTL: An Internal View of RTL 35/45

RTX Codes

RTL Expressions are classified into RTX codes :

e Expression codes are names defined in rtl.def

e RTX codes are C enumeration constants

e Expression codes and their meanings are machine-independent
e Extract the code of a RTX with the macro GET_CODE (x)

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

1 July 2011 GIMPLE and RTL: An Internal View of RTL 37/45

1 July 2011

GIMPLE and RTL: An Internal View of RTL 36/45

RTL Classes

RTL expressions are divided into few classes, like:

RTX_UNARY : NEG, NOT, ABS
RTX_BIN_ARITH : MINUS, DIV
RTX_COMM_ARITH : PLUS, MULT
RTX_0BJ : REG, MEM, SYMBOL_REF
RTX_COMPARE : GE, LT
RTX_TERNARY : IF_THEN_ELSE

RTX Codes

The RTX codes are defined in rtl.def using cpp macro call
DEF_RTL_EXPR, like :

e DEF_RTL_EXPR(INSN, "insn", "iuuBieie", RTX_INSN)
DEF RTL EXPR(SET, "set", "ee", RTX_EXTRA)
DEF RTL_EXPR(PLUS, "plus", "ee", RTX_COMM_ARITH)

DEF RTL_EXPR(IF_THEN ELSE, "if _then_else", "eee",
RTX_TERNARY)

The operands of the macro are :
e Internal name of the rtx used in C source. It's a tag in
enumeration enum rtx_code
e name of the rtx in the external ASCII format
e Format string of the rtx, defined in rtx_format []

e Class of the rtx

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

e RTX_INSN : INSN, JUMP_INSN, CALL_INSN

e RTX EXTRA : SET, USE
Essential Abstractions in GCC GCC Resource Center, |IT Bombay
1 July 2011 GIMPLE and RTL: An Internal View of RTL 38/45

RTX Formats

DEF RTL_EXPR(INSN, "insn", "iuuBieie", RTX_INSN)

i : Integer

u : Integer representing a pointer
B : Pointer to basic block

e : Expression

Essential Abstractions in GCC

GCC Resource Center, |IT Bombay

1 July 2011 GIMPLE and RTL: An Internal View of RTL 39/45 1 July 2011 GIMPLE and RTL: An Internal View of RTL 40/45

RTL statements Basic RTL APIs

e XEXP,XINT,XWINT,XSTR
» Example: XINT(x,2) accesses the 2nd operand of rtx x as an

e RTL statements are instances of type rtx integer
e RTL insns contain embedded links » Example: XEXP(x,2) accesses the same operand as z?n expression
e Any operand can be accessed as any type of RTX object

* Types of RTL insns : » So operand accessor to be chosen based on the format string of the

INSN : Normal non-jumping instruction containing expression

JUMP_INSN : Conditional and unconditional jumps e Special macros are available for Vector operands
CALL_INSN : Function calls

CODE_LABEL: Target label for JUMP_INSN
BARRIER : End of control Flow

NOTE : Debugging information

» XVEC(exp,idx) : Access the vector-pointer which is operand
number idx in exp

» XVECLEN (exp, idx) : Access the length (number of elements) in
the vector which is in operand number idx in exp. This value is an int

» XVECEXP (exp, idx, eltnum) : Access element number
“eltnum” in the vector which is in operand number idx in exp. This

value is an RTX

Essential Abstractions in GCC GCC Resource Center, |IT Bombay Essential Abstractions in GCC GCC Resource Center, |IT Bombay

vV vy VY VY VY

1 July 2011 GIMPLE and RTL: An Internal View of RTL 41/45

RTL Insns

A function's code is a doubly linked chain of INSN objects

e Insns are rtxs with special code

e Each insn contains atleast 3 extra fields : Part 6
» Unique id of the insn , accessed by INSN_UID (i)
» PREV_INSN(i) accesses the chain pointer to the INSN . .
preceeding i ManIPUIatlng RTL IR

» NEXT_INSN(i) accesses the chain pointer to the INSN
succeeding i

The first insn is accessed by using get_insns ()

The last insn is accessed by using get last_insn()

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

1 July 2011 GIMPLE and RTL: Manipulating RTL IR 42/45

Adding an RTL Pass

Similar to adding GIMPLE intraporcedural pass except for the following
e Use the data structure struct rtl_opt_pass
e Replace the first field GIMPLE_PASS by RTL_PASS

GCC Resource Center, |IT Bombay I I

Essential Abstractions in GCC

1 July 2011 GIMPLE and RTL: Manipulating RTL IR 44/45

1 July 2011 GIMPLE and RTL: Manipulating RTL IR 43/45

Sample Demo Program

Problem statement : Counting the number of SET objects in a basic
block by adding a new RTL pass
e Add your new pass after pass_expand
e new_rtl_passmain is the main function of the pass
e [terate through different instructions in the doubly linked list of
instructions and for each expression, call eval _rtx(insn) for that

expression which recurse in the expression tree to find the set
statements

Sample Demo Program

int new_rtl_pass_main(void){
basic_block bb;
rtx last,insn,opdl,opd?2;
int bbno,code,type;
count = O;
for (insn=get_insns(), last=get_last_insn(),
last=NEXT_INSN(last); insn'!=last; insn=NEXT_INSN(insn))
{ int is_insn;
is_insn = INSN_P (insn);
if (flag_dump_new_rtl_pass)
print_rtl_single(dump_file,insn);
code = GET_CODE(insn);
if (code==NOTE){ ... }
if (is_insn)
{ rtx subexp = XEXP(insn,5);
eval_rtx(subexp) ;

:
Essential Abstractions in GCC GCC Resource Center, |IT Bombay -

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

1 July 2011 GIMPLE and RTL: Manipulating RTL IR 45/45

Sample Demo Program

void eval_rtx(rtx exp)
{ rtx temp;
int veclen,i,
int rt_code = GET_CODE(exp);
switch(rt_code)
{ case SET:
if (flag_dump new_rtl_pass){
fprintf (dump_file,"\nSet statement %d : \t",count+1);
print_rtl_single(dump_file,exp);}
count++; break;
case PARALLEL:
veclen = XVECLEN(exp, 0);
for(i = 0; i < veclen; i++)
{ temp = XVECEXP(exp, 0, i);
eval _rtx(temp) ;
}
break;
default: break;
}

:
Essential Abstractions in GCC -

GCC Resource Center, |IT Bombay

	Outline
	An Overview of GIMPLE
	Using GIMPLE API in GCC-4.6.0
	Adding a GIMPLE Pass to GCC
	An Overview of RTL
	An Internal View of RTL
	Manipulating RTL IR

