Workshop on Essential Abstractions in GCC

Introduction to Parallelization and Vectorization

GCC Resource Center

(www.cse.iitb.ac.in/grc)

Department of Computer Science and Engineering,
Indian Institute of Technology, Bombay

3 July 2011

3 July 2011 intro-par-vect: Qutline 2/28

3 July 2011 intro-par-vect: Outline

1/28

Outline

e Transformation for parallel and vector execution

e Data dependence

The Scope of this Tutorial

e What this tutorial does not address

» Algorithms used for parallelization and vectorization

» Code or data structures of the parallelization and vectorization pass
of GCC

» Machine level issues related to parallelization and vectorization

e What this tutorial addresses

Basics of Discovering Parallelism using GCC

Essential Abstractions in GCC GCC Resource Center, |IT Bombay IH’ I

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

Part 1

Transformations for Parallel and
Vector Execution

3 July 2011

intro-par-vect: Introduction to Parallelization and Vectorization

3/28

A Taxonomy of Parallel Computation

Single Program

Multiple Programs

3 July 2011 intro-par-vect: Introduction to Parallelization and Vectorization 3/28
A Taxonomy of Parallel Computation
Single Program
)) Multiple Programs

Single Multiple

Instruction | Instructions
Single Data SISD MISD MPSD
Multiple Data SIMD MIMD MPMD

Single Data SPSD MPSD
Multiple Data SPMD MPMD
Essential Abstractions in GCC GCC Resource Center, |IT Bombay
3 July 2011 intro-par-vect: Introduction to Parallelization and Vectorization 3/28
A Taxonomy of Parallel Computation
Single Program
)) Multiple Programs
Single Multiple
Instruction | Instructions
Single Data SISD ? ?
Multiple Data SIMD MIMD MPMD

Redundant computation for validation of intermediate steps

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 intro-par-vect: Introduction to Parallelization and Vectorization 3/28
A Taxonomy of Parallel Computation
Single Program
) . Multiple Programs
Single Multiple
Instruction Instructions
Single Data SIﬁD MISD MPSD
Multiple Data SIMD MIMD MPMD

Transformations performed by a compiler

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 intro-par-vect: Introduction to Parallelization and Vectorization 4/28

Vectorization: SISD = SIMD

e Parallelism in executing operation on shorter operands
(8-bit, 16-bit, 32-bit operands)
e Existing 32 or 64-bit arithmetic units used to perform multiple

operations in parallel
A 64 bit word = a vector of 2x(32 bits), 4x(16 bits), or 8x(8 bits)

as

GCC Resource Center, |IT Bombay “==y

Essential Abstractions in GCC

3 July 2011 intro-par-vect: Introduction to Parallelization and Vectorization 5/28

Example 1

Vectorization ~ (SISD = SIMD) : Yes
Parallelization (SISD = MIMD) : Yes

Vectorization

Factor

Vectorized Code

Original Code

int A[N], B[N], i
for (i=1; i<N; i=i+(2))

Afi:i+3] = A[i:i+3] +
B[i-1:i+2];

e MMttt

Iteration # t 1 tot 2 bt 3 t
KE

Essential Abstractions in GCC GCC Resource Center, |IT Bombay “==y

3 July 2011 intro-par-vect: Introduction to Parallelization and Vectorization 5/28

Example 1

Vectorization ~ (SISD = SIMD) : Yes
Parallelization (SISD = MIMD) : Yes

Original Code

Observe reads and writes
into a given location

Q00000 0001)

oo Mol

lteration# 1 2 3 4 5 6 7 8 9 10 11 12

GCC Resource Center, |IT Bombay “==y

Essential Abstractions in GCC

3 July 2011 intro-par-vect: Introduction to Parallelization and Vectorization 6/28

Example 1

Vectorization ~ (SISD = SIMD) : Yes
Parallelization (SISD = MIMD) : Yes

Original Code

Observe reads and writes
into a given location

PIPROTPRPIPRPIPRPIOROND

o Ml

Iteration #

(T
- 3

GCC Resource Center, |IT Bombay “==y

Essential Abstractions in GCC

3 July 2011 intro-par-vect: Introduction to Parallelization and Vectorization 6/28

Example 1

Vectorization (SISD = SIMD) : Yes
Parallelization (SISD = MIMD) : Yes

Parallelized Code

Original Code

int A[N], B[N], i;
foreach (i=1; i<N;)
A[i] = A[i] + B[i-1];

Ao A0

o0 o ol

Iteration # t

as

GCC Resource Center, |IT Bombay “==y

Essential Abstractions in GCC

3 July 2011 intro-par-vect: Introduction to Parallelization and Vectorization 8/28

Example 2

Vectorization ~ (SISD = SIMD) : Yes
Parallelization (SISD = MIMD) : No

Original Code

Observe reads and writes
into a given location

o L OO
Bmmﬁﬁﬁﬁﬁﬁﬁ bbbl
lteration # 1 2 4 5 7 9 10 11 12

=

GCC Resource Center, |IT Bombay “==y

Essential Abstractions in GCC

3 July 2011 intro-par-vect: Introduction to Parallelization and Vectorization 7/28

Example 1: The Moral of the Story

Vectorization ~ (SISD = SIMD) : Yes

Parallelization (SISD = MIMD) : Yes
When the same location is accessed across different iter-
ations, the order of reads and writes must be preserved

Nature of accesses in our example
[teration i ‘ Iteration / + k ‘ Observation
Read Write No
Write Read No
Write Write No
Read Read Does not matter

Cd td vd vd vd vl vl vl 4 vl vl 4

o M

GCC Resource Center, IIT Bombay

Essential Abstractions in GCC

3 July 2011 intro-par-vect: Introduction to Parallelization and Vectorization 8/28

Example 2

Vectorization ~ (SISD = SIMD) : Yes
Parallelization (SISD = MIMD) : No

Original Code

e Vector instruction is synchronized: All
reads before writes in a given instruction

e Read-writes across multiple instructions ex-
ecuting in parallel may not be synchronized

AN ATATATATATATATATA
Bpmﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ
: g8

Iteration # { 1 t
GCC Resource Center, |IT Bombay “==y

Essential Abstractions in GCC

3 July 2011 intro-par-vect: Introduction to Parallelization and Vectorization 9/28 3 July 2011 intro-par-vect: Introduction to Parallelization and Vectorization 10/28

Example 2: The Moral of the Story Example 3
Vectorization ~ (SISD = SIMD) : Yes Vectorization ~ (SISD = SIMD) : No
Parallelization (SISD = MIMD) : No =—_ Parallelization (SISD = MIMD) : No

When the same location is accessed achgss different iter-
ations, the order of reads and writes must be preserved
Observe reads and writes

Nature of accesses in our example into a given location
Iteration i ‘ Iteration i + k ‘ Obserjvation
Read Write Yes
Write Read No
Write Write No
Read Read Does not matter A[0..N] [\ﬂ[\[\vﬂ[\vﬂ[\[\vﬂ[\vﬂ

WA WA NN B[OHN] .ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ

Wy

N .
:Z,,:i ﬁﬁﬁaﬁﬁﬁﬁﬁﬁﬁﬁﬁ . Iteration # 123 456 7 8 9 1011 12

Essential Abstractions in GCC GCC Resource Center, |IT Bombay Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 intro-par-vect: Introduction to Parallelization and Vectorization 10/28 3 July 2011 intro-par-vect: Introduction to Parallelization and Vectorization 11/28
Example 3 Example 4
Vectorization (SISD = SIMD) : No
Parallelization (SISD = MIMD) No\
Nature of accksses in our exam \I Vectorization - (SISD = SIMD) —: No
— —— P Parallelization (SISD = MIMD) : Yes
Iteration i ‘ IteratioN 7/ + k ‘ Observatjion
Read Write \ No
- \
Wr!te Rea}d Yes e This case is not possible
Write Write No
Read Read Does not matter e Vectorization is a limited granularity parallelization
e If parallelization is possible then vectorization is trivially possible
A[0..N] e Blank line to increase height
e Blank line to increase height
Blo.N] [
Iteration # 1 2 3 4 5 6 7 8 9 1011 12

(T (T
a= a=

Essential Abstractions in GCC GCC Resource Center, |IT Bombay “==y Essential Abstractions in GCC GCC Resource Center, |IT Bombay “==y

3 July 2011 intro-par-vect: Introduction to Parallelization and Vectorization 12/28

Data Dependence

Let statements S; and S; access memory location m at time instants t
and t+ k

Access in S; | Access in §; ‘ Dependence ‘ Notation
Read m Write m Anti (or Pseudo) SiéS;

Write m Read m Flow (or True) S$id5;

Write m Write m Output (or Pseudo) | S; 69 S;
Read m Read m Does not matter

e Pseudo dependences may be eliminated by some transformations

e True dependence prohibits parallel execution of S; and S;

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 intro-par-vect: Introduction to Parallelization and Vectorization 14/28

3 July 2011 intro-par-vect: Introduction to Parallelization and Vectorization 13/28

Consider dependence between statements S; and S; in a loop

e Loop independent dependence. t and t 4 k occur in the same
iteration of a loop

» S; and S; must be executed sequentially
» Different iterations of the loop can be parallelized

e Loop carried dependence. t and t + k occur in the different
iterations of a loop

» Within an iteration, S; and S5; can be executed in parallel
» Different iterations of the loop must be executed sequentially

e S;and S; may have both loop carried and loop independent
dependences

Dependence in Example 1

e Program

int A[N], BI[N], i;
for (i=1; i<N; i++)
A[i] = A[i] + B[i-1]; /% S1 */

Dependence in the
same iteration

G)i—

¢ No loop carried dependence
Both vectorization and parallelization are possible

e Dependence graph

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 intro-par-vect: Introduction to Parallelization and Vectorization 15/28

Dependence in Example 2

e Program

int A[N], BIN], i;
for (i=0; i<N; i++)
A[i] = A[i+1] + B[i]; /* S1 =/

|

e Dependence graph

@O i

e Loop carried anti-dependence
Parallelization is not possible
Vectorization is possible since all reads are done before all writes

Dependence due to
the outermost loop

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 intro-par-vect: Introduction to Parallelization and Vectorization

16/28

Dependence in Example 3

e Program

int A[N], B[N], i;
for (i=0; i<N; i++)
A[i+1] = A[i] + B[i+1]; /* S1 =/

N

e Dependence graph

G

e Loop carried flow-dependence
Neither parallelization not vectorization is possible

Essential Abstractions in GCC

3 July 2011 intro-par-vect: Introduction to Parallelization and Vectorization

GCC Resource Center, |IT Bombay

18/28

3 July 2011

intro-par-vect: Introduction to Parallelization and Vectorization 17/28

Iteration Vectors and Index Vectors: Example 1

for (i=0, i<4; i++)
for (j=0; j<4; j++)
{

ali+11[j] = alil[j] + 2;

Loop carried dependence exists if

e there are two distinct iteration
vectors such that

e the index vectors of LHS and RHS

are identical

Conclusion: Dependence exists

Iteration | Index Vector

Vector | LHS | RHS
0,0 1,0 | 0,0
0,1 1,1 0,1
0,2 1,2 | 0,2
0,3 1,3] 0,3
1,0 2,0 1,0
1,1 2,1 1,1
1,2 2,2 1,2
1,3 2,3 1,3
2,0 3,0 2,0
2,1 3,1 2,1
2,2 3,2 2,2
2,3 3,3 2,3
3,0 4,0 3,0
3,1 41 3,1
3,2 42 3,2
3,3 4,3 3,3

Iteration Vectors and Index Vectors: Example 2

Iteration | Index Vector

Vector | LHS |

RHS

for (i=0, i<4; i++)
for (j=0; j<4; j++)
{

=
o

0,0

WWwWwwwhdhhdNhdNNFEFERFE-OOO
WNNFRFOWNRFOWNRFEFOWNHK

WWWWMNNNMNNHERFRRFRERFRHOOO
W NN OWNRFOWNEFEOWNR

alil[j]1 = alil[j] + 2;

Loop carried dependence exists if

e there are two distinct iteration
vectors such that

e the index vectors of LHS and RHS
are identical

Conclusion: No dependence

o
o

WWWWwWwNhDNMNNNNREHERFREFEOOO
W NN OWNRFOWNEFOWNHH

Essential Abstractions in GCC

GCC Resource Center, |IT Bombay

Essential Abstractions in GCC

3 July 2011

GCC Resource Center, |IT Bombay IQ’ |

intro-par-vect: Introduction to Parallelization and Vectorization 19/28

Example 4: Dependence

Program to swap arrays

Dependence Graph

for (i=0; i<N; i++)

{
T = A[i]; /* 81 */
A[i] = B[il; /* 82 x/
B[i] = T; /* 83 %/
}

o7

Essential Abstractions in GCC

GCC Resource Center, |IT Bombay

3 July 2011 intro-par-vect: Introduction to Parallelization and Vectorization 19/28

Example 4: Dependence

Program to swap arrays Dependence Graph

op

for (i=0; i<N; i++)

{
T = A[i]; /* S1 */
A[i] = B[il; /¥ 82 x/
B[i] = T; /* 83 */
}

Loop independent anti dependence due to A[i]

GCC Resource Center, |IT Bombay I I

Essential Abstractions in GCC

3 July 2011 intro-par-vect: Introduction to Parallelization and Vectorization 19/28

Example 4: Dependence

Program to swap arrays Dependence Graph

o7

for (i=0; i<N; i++)

{
T = A[i]; /* 81 %/
A[i] = B[il; /* 82 x/
B[i] = T; /* 83 x/
}

Loop independent flow dependence due to T

GCC Resource Center, |IT Bombay I%I

Essential Abstractions in GCC

3 July 2011 intro-par-vect: Introduction to Parallelization and Vectorization 19/28

Example 4: Dependence

Program to swap arrays

Dependence Graph

op

for (i=0; i<N; i++)

{
T = A[i]; /* S1 */
A[i] = B[il; /¥ 82 x/
B[i] = T; /* 83 */
}

Loop independent anti dependence due to B[i]

GCC Resource Center, |IT Bombay I I

Essential Abstractions in GCC

3 July 2011 intro-par-vect: Introduction to Parallelization and Vectorization 19/28

Example 4: Dependence

Program to swap arrays Dependence Graph

o7

for (i=0; i<N; i++)

{
T = A[i]; /* 81 */
A[i] = B[il; /* 82 x/
B[i] = T; /* 83 %/
}

Loop carried anti dependence due to T

GCC Resource Center, |IT Bombay I%I

Essential Abstractions in GCC

3 July 2011 intro-par-vect: Introduction to Parallelization and Vectorization 19/28

Example 4: Dependence

Program to swap arrays Dependence Graph

iy
for (i=0; i<N; i++)
{
T = A[i]; /* S1 %/
A[i] = B[il; /* 82 x/
B[i] = T; /* 83 %/
}

Loop carried output dependence due to T

GCC Resource Center, |IT Bombay

Essential Abstractions in GCC

3 July 2011 intro-par-vect: Introduction to Parallelization and Vectorization 20/28

Tutorial Problem for Discovering Dependence

Draw the dependence graph for the following program
(Earlier program modified to swap 2-dimensional arrays)

for (i=0; i<N; i++)
{
for (j=0; j<N; j++)
{ T = A[i1[j]; /* 81 %/
A[i1[j1 = B[i1[j1; /* S2 %/
B[il1[j] = T; /* 83 *x/
}
+

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 intro-par-vect: Introduction to Parallelization and Vectorization 19/28

Example 4: Dependence

Program to swap arrays Dependence Graph

P
for (i=0; i<N; i++)
{
T = A[i]; /* S1 x/
Ali] = B[i]; /* 82 x/
B[i] = T; /* S3 *x/
+

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 intro-par-vect: Introduction to Parallelization and Vectorization 21/28

Data Dependence Theorem

There exists a dependence from statement S; to statement S, in
common nest of loops if and only if there exist two iteration vectors i
and j for the nest, such that
1. i < jori =] and there exists a path from S; to S, in the body of
the loop,
2. statement S; accesses memory location M on iteration i and
statement S, accesses location M on iteration j, and

3. one of these accesses is a write access.

GCC Resource Center, |IT Bombay

Essential Abstractions in GCC

3 July 2011 intro-par-vect: Introduction to Parallelization and Vectorization 22/28

Anti Dependence and Vectorization

Read lexicographically precedes Write

int A[N], BIN], CIN], i;
for (i=0; i<N; i++) {
C[i] = A[i+2];

int A[N], B[N], CIN], i;
for (i=0; i<N; i=i+4) {
C[i:i+3] = A[i+2:1i+45];

3 July 2011 intro-par-vect: Introduction to Parallelization and Vectorization

23/28

Anti Dependence and Vectorization

Write lexicographically precedes Read

int A[N], BIN], CIN], ij;
for (i=0; i<N; i++) {
A[il = BI[il;
C[i] = A[i+2];

int A[N], BIN], CIN], ij;
for (i=0; i<N; i++) {
C[i] = A[i+2];
A[i] = BI[il;

int A[N], B[N], C[N], i;
for (i=0; i<N; i=i+4) {
C[i:i+3] = A[i+2:i+5];

A[i] = B[il; A[i:i+3] = B[i:i+3];
} }
Essential Abstractions in GCC GCC Resource Center, |IT Bombay I
3 July 2011 intro-par-vect: Introduction to Parallelization and Vectorization 24/28

True Dependence and Vectorization

Write lexicographically precedes Read

A[i:i+3] = B[i:1i+3];
}
Essential Abstractions in GCC GCC Resource Center, |IT Bombay I
3 July 2011 intro-par-vect: Introduction to Parallelization and Vectorization 25/28

Conjunction of Dependences and Vectorization

Anti Dependence and True Dependence

int A[N], B[N], C[N], ij;
for (i=0; i<N; i++) {
Ali+2] = C[i];
B[i] = A[il;

int A[N], B[N], C[N], ij;

for (i=0; i<N; i=i+4) {
A[i+2:1+5] = C[i:i+3];
B[i:i+3] = A[i:i+3];

Essential Abstractions in GCC

GCC Resource Center, |IT Bombay I%I

int A[N], i;

for (i=0; i<N; i++) {
A[i] = A[i+2];

+

int A[N], TIN], i;

for (i=0; i<N; i=i+4) {
T[i:i+3] = A[i+2:i+5];
Ali:i+3] = T[i:i+3];

int A[N], i, temp;
for (i=0; i<N; i++) {

temp = A[i+2];
A[i] = temp;

int A[N], TIN], i;
for (i=0; i<N; i++) {
T[i] = A[i+2];

A[i] = T[i];

Essential Abstractions in GCC

GCC Resource Center, |IT Bombay

3 July 2011 intro-par-vect: Introduction to Parallelization and Vectorization 26/28

Conjunction of Dependences and Vectorization

True Dependence and Anti Dependence

int A[N], BIN], i;

for (i=0; i<N; i++) {
A[i]l = B[il;
B[i+2] = A[i+1];

int A[N], BIN], i;
for (i=0; i<N; i++) {
B[i+2] = A[i+1];

A[i] = B[i];

int A[N], BIN], i;

for (i=0; i<N; i=i+4) {
B[i+2:i+5] = A[i+1:i+4];
A[i:i+3] = B[i:i+3];

}
Essential Abstractions in GCC GCC Resource Center, |IT Bombay I
3 July 2011 intro-par-vect: Introduction to Parallelization and Vectorization 28/28

Last but not the least ...

Thank You!

GCC Resource Center, IIT Bombay@

Essential Abstractions in GCC

3 July 2011 intro-par-vect: Introduction to Parallelization and Vectorization 27/28
Cyclic Dependency and Vectorization

Cyclic True Dependence Cyclic Anti Dependence

int A[N], BIN], i; int A[N], BIN], i;

for (i=0; i<N; i++) { for (i=0; i<N; i++) {
B[i+2] = A[il; B[il = A[i+1];
A[i+1] = B[i]; A[i] = B[i+2];

} }

Rescheduling of statements will not break the cyclic dependency - cannot

vectorize

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

	Outline
	3.75inTransformations for Parallel and Vector Execution
	Introduction to Parallelization and Vectorization

