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Outline

e A Recap
e Generating the code generators

e Using the generator code generators
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Retargetability Mechanism of GCC
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Plugin Structure in cci
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What is “Generated”?

e Info about instructions supported by chosen target, e.g.

» Listing data structures (e.g. instruction pattern lists)

» Indexing data structures, since diff. targets give diff. lists.
e C functions that generate RTL internal representation
e Any useful “attributes”, e.g.

» Semantic groupings: arithmetic, logical, I/O etc.
» Processor unit usage groups for pipeline utilisation
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Information supplied by the MD

e The target instructions — as ASM strings

e A description of the semantics of each

e A description of the features of each like
» Data size limits
» One of the operands must be a register
» Implicit operands
> Register restrictions

Information supplied

in define_insn as

The target instruction ASM string
A description of it's semantics RTL Template
Operand data size limits predicates
Register restrictions constraints
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Generating the Code Generators
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How GCC uses target specific RTL as IR

GIMPLE_ASSIGN "movsi"
Standard Pattern Name

J Separate CGF code and MD —l

(set (<dest>) (<src>))

GIMPLE_ASSIGN "movsi" "movsi" (set (<dest>) (<src>))
J Implement l
GIMPLE_ASSIGN "movsi" "movsi" (set (<dest>) (<src>))

Unnecessary in CGF; \_
hard code

Retargetability = Multiple MD vs. One CGF!

CGF MD 1
"movsi", (set (<dest>) (<src>))

4//

GIMPLE_ASSIGN "movsi" How 7

] MD n
"movsi", (set (<dest>) (<src>))

Basic Approach: Tabulate
GIMPLE - RTL

struct optab [] struct insn_data []

CGF needs:

An interface immune to MD authoring variations
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MD Information Data Structures

Two principal data structures

e struct optab — Interface to CGF
e struct insn_data — All information about a pattern

» Array of each pattern read
» Some patterns are SPNs
» Each pattern is accessed using the generated index

Supporting data structures
e enum insn_code: Index of patterns available in the given MD
Note

Data structures are named in the CGF, but populated at build time.
Generating target specific code = populating these data structures.
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Assume movsi is supported but movsf is not supported. ..
%gSDURCE_Dg /gcc/optabs.h

SOURCE D) /gcc/optabs. ¢ $ (BUILD) /gcc/insn-output.c
optab_table insn_data
... "movsi"
mov_optab 1980 . .
gen_movsi
handler
OTI_mov .
g| |insn-code $BUILD/gcc/insn-codes.h
CODE_FOR_movsi=1280
insn_code CODE_FOR_movsf=CODE_FOR nothing
SF -
$BUILD/gcc/insn-opinit.c
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Assume movsi is supported but movsf is not supported. ..
$§SDURCE_D; /gcc/optabs.h

SOURCE D) /gcc/optabs . ¢ $ (BUILD) /gcc/insn-output.c
optab_table insn_data
. "movsi"
Runtime initialization of '
data structure using func- gen-movsi
tion set_optab_handler
0TI _mov .
g| |insncode . $BUILD/gcc/insn-codes.h
CODEFORgovsi CODE_FOR_movsi=1280

CODE_FORnothing

oF | insn-code L\ CODE_FOR_movs
CODE_FOR_nothing| T o
» nsj/-opinit.c

A
=
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GCC Generation Phase — Revisited
Generator Generated Information Description
from MD
void
o . . init_all_optabs Operations Table
genopinit insn-opinit.c . .
(void); Initialiser

enum insn_code

={...
gencodes insn-codes.h CODE FOR movsi = Index of patterns

1280,

-}
struct insn_data
. = Alli

genooutput insn-output.c [CODE] genfun insn data .

/* fn ptr */ e.g. gen function

rtx

gen_rtx movsi L.
genemit insn-emit.c (/* args */) RTL emission

{/* body */} functions
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Explicit Calls to gen<SPN> functions

e In some cases, an entry is not made in insn_data table for some
SPNs.

e gen functions for such SPNs are explicitly called.
e These are mostly related to

» Function calls

» Setting up of activation records

» Non-local jumps

» etc. (i.e. deeper study is required on this aspect)
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Handling C Code in define_expand

(define_expand "movsi"
[(set (op0) (op1))]

nn

il /* C CODE OF DEFINE EXPAND */ IBEP)

rtx
gen_movsi (rtx operand0O, rtx operandl)
{
{
/* C CODE OF DEFINE EXPAND */
}

emit_insn (gen_rtx_ SET (VOIDmode, operandO, operandl)

GCC Resource Center, |IT Bombay I I

Essential Abstrations in GCC

2 July 2011 Retargetability Model: Using the Code Generators 13/16

ccl Control Flow: GIMPLE to RTL Expansion (pass_expand)

gimple_expand_cfg
expand_gimple_basic_block(bb)
expand_gimple_cond(stmt)
expand_gimple_stmt (stmt)
expand_gimple_stmt_1 (stmt)
expand_expr_real_2
expand_expr /* Operands */
expand_expr_real
optab_for_tree_code
expand_binop /* Now we have rtx for operands */
expand_binop_directly
/* The plugin for a machine */
code=optab_handler (binoptab,mode)
GEN_FCN
emit_insn
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Using the Code Generators
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RTL Generation

expand_binop_directly
... /* Various cases of expansion */
/* One case: integer mode move */
icode = mov_optab->handler[SImode].insn_code
if (icode !'= CODE_FOR_nothing) {
... /* preparatory code */
emit_insn (GEN_FCN(icode) (dest,src));

Essential Abstrations in GCC

GCC Resource Center, |IT Bombay I%I



2 July 2011 Retargetability Model: Using the Code Generators 15/16

RTL to ASM Conversion

e Simple pattern matching of IR RTLs and the patterns present in all
named, un-named, standard, non-standard patterns defined using
define_insn.

e A DFA (deterministic finite automaton) is constructed and the first
match is used.
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A Comparison with Davidson Fraser Model

e Retargetability in Davidson Fraser Model

» Manually rewriting Expander and patter matcher
» Expected to be simple for machines of 1984 Era

e Retargetability in GCC
Automatic construction possible by separating machine specific
details in carefully designed data structures
» List insns as they appear in the chosen MD
> Index them
» Supply index to the CGF
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Part 4

Conclusions
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