Workshop on Essential Abstractions in GCC

The Retargetability Model of GCC

GCC Resource Center

(www.cse.iitb.ac.in/grc)

Department of Computer Science and Engineering,
Indian Institute of Technology, Bombay

2 July 2011

Part 1

A Recap

2 July 2011 Retargetability Model: Outline 1/16

Outline

e A Recap
e Generating the code generators

e Using the generator code generators

Essential Abstrations in GCC GCC Resource Center, |IT Bombay I% I

=

2 July 2011 Retargetability Model: A Recap 2/16

Retargetability Mechanism of GCC

Input Language Target Name

Compiler Ger.cration Framework / _[GIMPLE —s PN

Language and
Machine
Independent
Generic Code
) I\\#

Selected Copied Generated

Copied
/ I Generated

Generated Compiler

Language

Specific
Code

(D
-3

Essential Abstrations in GCC GCC Resource Center, |IT Bombay “==y

2 July 2011 Retargetability Model: A Recap

2 July 2011 Retargetability Model: A Recap

3/16

Plugin Structure in cci

double arrow represents control

toplev front pass .
. flow whereas single arrow
main end manager . .
represents pointer or index
/ J}l code for
1
langhook pass 1 . pass
= { code for
pass 2 pass 2
code for
language 1 A
l expander
code
code fo pass —
Ianguagre 2 expand optab_table
code for l code for
language n pass n pass n

Plugin Structure in cc1

toplev front pass MD n
main end manager
JJ, MD 2
T code for
langhook pass 1 4 pass 1
! MD 1
< code for
pass 2 pass 2
code for
language 1 L
l expander insn data
o pass . code L —generated
code for expand optab_table de f
language 2 |P+| code for
machine 1
code for l code for
language n pass n pass n

Essential Abstrations in GCC

2 July 2011 Retargetability Model: A Recap

GCC Resource Center, |IT Bombay g

Essential Abstrations in GCC

2 July 2011 Retargetability Model: A Recap

GCC Resource Center, |IT Bombay

5/16

What is “Generated”?

e Info about instructions supported by chosen target, e.g.

» Listing data structures (e.g. instruction pattern lists)

» Indexing data structures, since diff. targets give diff. lists.
e C functions that generate RTL internal representation
e Any useful “attributes”, e.g.

» Semantic groupings: arithmetic, logical, I/O etc.
» Processor unit usage groups for pipeline utilisation

Essential Abstrations in GCC

GCC Resource Center, |IT Bombay %

Information supplied by the MD

e The target instructions — as ASM strings

e A description of the semantics of each

e A description of the features of each like
» Data size limits
» One of the operands must be a register
» Implicit operands
> Register restrictions

Information supplied

in define_insn as

The target instruction ASM string
A description of it's semantics RTL Template
Operand data size limits predicates
Register restrictions constraints

Essential Abstrations in GCC

GCC Resource Center, |IT Bombay

Part 2

Generating the Code Generators

2 July 2011 Retargetability Model: Generating the Code Generators 7/16

2 July 2011 Retargetability Model: Generating the Code Generators 6/16

How GCC uses target specific RTL as IR

GIMPLE_ASSIGN "movsi"
Standard Pattern Name

J Separate CGF code and MD —l

(set (<dest>) (<src>))

GIMPLE_ASSIGN "movsi" "movsi" (set (<dest>) (<src>))
J Implement l
GIMPLE_ASSIGN "movsi" "movsi" (set (<dest>) (<src>))

Unnecessary in CGF; _
hard code

Retargetability = Multiple MD vs. One CGF!

CGF MD 1
"movsi", (set (<dest>) (<src>))

4//

GIMPLE_ASSIGN "movsi" How 7

] MD n
"movsi", (set (<dest>) (<src>))

Basic Approach: Tabulate
GIMPLE - RTL

struct optab [] struct insn_data []

CGF needs:

An interface immune to MD authoring variations

GCC Resource Center, |IT Bombay I%I

Essential Abstrations in GCC

Essential Abstrations in GCC GCC Resource Center, |IT Bombay

2 July 2011 Retargetability Model: Generating the Code Generators 8/16

MD Information Data Structures

Two principal data structures

e struct optab — Interface to CGF
e struct insn_data — All information about a pattern

» Array of each pattern read
» Some patterns are SPNs
» Each pattern is accessed using the generated index

Supporting data structures
e enum insn_code: Index of patterns available in the given MD
Note

Data structures are named in the CGF, but populated at build time.
Generating target specific code = populating these data structures.

Essential Abstrations in GCC GCC Resource Center, |IT Bombay

2 July 2011 Retargetability Model: Generating the Code Generators 9/16

2 July 2011 Retargetability Model: Generating the Code Generators 9/16

Assume movsi is supported but movsf is not supported. ..
%gSDURCE_Dg /gcc/optabs.h

SOURCE D) /gcc/optabs. ¢ $ (BUILD) /gcc/insn-output.c
optab_table insn_data
... "movsi"
mov_optab 1980 . .
gen_movsi
handler
OTI_mov .
g| |insn-code $BUILD/gcc/insn-codes.h
CODE_FOR_movsi=1280
insn_code CODE_FOR_movsf=CODE_FOR nothing
SF -
$BUILD/gcc/insn-opinit.c

Essential Abstrations in GCC GCC Resource Center, |IT Bombay

Assume movsi is supported but movsf is not supported. ..
$§SDURCE_D; /gcc/optabs.h

SOURCE D) /gcc/optabs . ¢ $ (BUILD) /gcc/insn-output.c
optab_table insn_data
. "movsi"
Runtime initialization of '
data structure using func- gen-movsi
tion set_optab_handler
0TI _mov .
g| |insncode . $BUILD/gcc/insn-codes.h
CODEFORgovsi CODE_FOR_movsi=1280

CODE_FORnothing

oF | insn-code L\ CODE_FOR_movs
CODE_FOR_nothing| T o
» nsj/-opinit.c

A
=

Essential Abstrations in GCC GCC Resource Center, |IT Bombay

2 July 2011 Retargetability Model: Generating the Code Generators 11/16

2 July 2011 Retargetability Model: Generating the Code Generators 10/16
GCC Generation Phase — Revisited
Generator Generated Information Description
from MD
void
o . . init_all_optabs Operations Table
genopinit insn-opinit.c . .
(void); Initialiser

enum insn_code

={...
gencodes insn-codes.h CODE FOR movsi = Index of patterns

1280,

-}
struct insn_data
. = Alli

genooutput insn-output.c [CODE] genfun insn data .

/* fn ptr */ e.g. gen function

rtx

gen_rtx movsi L.
genemit insn-emit.c (/* args */) RTL emission

{/* body */} functions

Essential Abstrations in GCC GCC Resource Center, |IT Bombay

Explicit Calls to gen<SPN> functions

e In some cases, an entry is not made in insn_data table for some
SPNs.

e gen functions for such SPNs are explicitly called.
e These are mostly related to

» Function calls

» Setting up of activation records

» Non-local jumps

» etc. (i.e. deeper study is required on this aspect)

Essential Abstrations in GCC GCC Resource Center, |IT Bombay

2 July 2011 Retargetability Model: Generating the Code Generators 12/16

Handling C Code in define_expand

(define_expand "movsi"
[(set (op0) (op1))]

nn

il /* C CODE OF DEFINE EXPAND */ IBEP)

rtx
gen_movsi (rtx operand0O, rtx operandl)
{
{
/* C CODE OF DEFINE EXPAND */
}

emit_insn (gen_rtx_ SET (VOIDmode, operandO, operandl)

GCC Resource Center, |IT Bombay I I

Essential Abstrations in GCC

2 July 2011 Retargetability Model: Using the Code Generators 13/16

ccl Control Flow: GIMPLE to RTL Expansion (pass_expand)

gimple_expand_cfg
expand_gimple_basic_block(bb)
expand_gimple_cond(stmt)
expand_gimple_stmt (stmt)
expand_gimple_stmt_1 (stmt)
expand_expr_real_2
expand_expr /* Operands */
expand_expr_real
optab_for_tree_code
expand_binop /* Now we have rtx for operands */
expand_binop_directly
/* The plugin for a machine */
code=optab_handler (binoptab,mode)
GEN_FCN
emit_insn

GCC Resource Center, IIT Bombay@

Essential Abstrations in GCC

Part 3

Using the Code Generators

2 July 2011 Retargetability Model: Using the Code Generators 14/16

RTL Generation

expand_binop_directly
... /* Various cases of expansion */
/* One case: integer mode move */
icode = mov_optab->handler[SImode].insn_code
if (icode !'= CODE_FOR_nothing) {
... /* preparatory code */
emit_insn (GEN_FCN(icode) (dest,src));

Essential Abstrations in GCC

GCC Resource Center, |IT Bombay I%I

2 July 2011 Retargetability Model: Using the Code Generators 15/16

RTL to ASM Conversion

e Simple pattern matching of IR RTLs and the patterns present in all
named, un-named, standard, non-standard patterns defined using
define_insn.

e A DFA (deterministic finite automaton) is constructed and the first
match is used.

Essential Abstrations in GCC GCC Resource Center, |IT Bombay

2 July 2011 Retargetability Model: Conclusions 16/16

A Comparison with Davidson Fraser Model

e Retargetability in Davidson Fraser Model

» Manually rewriting Expander and patter matcher
» Expected to be simple for machines of 1984 Era

e Retargetability in GCC
Automatic construction possible by separating machine specific
details in carefully designed data structures
» List insns as they appear in the chosen MD
> Index them
» Supply index to the CGF

Essential Abstrations in GCC GCC Resource Center, |IT Bombay

Part 4

Conclusions

	Outline
	A Recap
	Generating the Code Generators
	Using the Code Generators
	Conclusions

