Workshop on Essential Abstractions in GCC

Parallelization and Vectorization in GCC

GCC Resource Center (www.cse.iitb.ac.in/grc)

Department of Computer Science and Engineering, Indian Institute of Technology, Bombay

3 July 2011

July 2011	gcc-par-vect: Outline	1/62	3 July 2011	gcc-par-vect: Outline	1/62
	Outline			Outline	
An Overview	w of Loop Transformations in GCC				
 Parallelizati 	on and Vectorization based on Lambda Framewo	ork	GS		
• Loop Trans	formations in Polytope Model		Ŭ,		

Conclusions

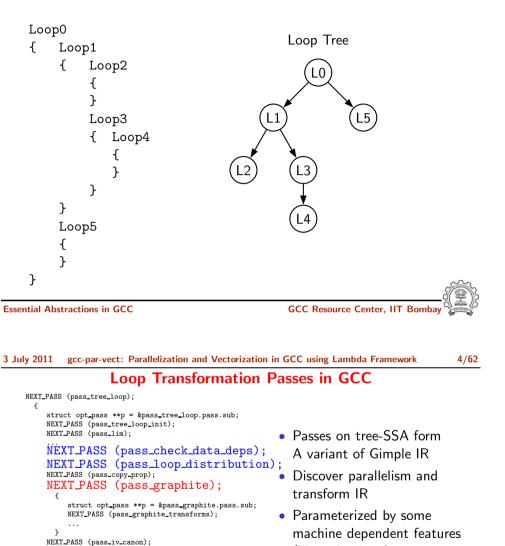
Ž

Part 1

Parallelization and Vectorization in GCC using Lambda Framework Notes

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 2/62
Loop Transforms in GCC

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 2/62
Loop Transforms in GCC


Implementation Issues

- Getting loop information (Loop discovery)
- Finding value spaces of induction variables, array subscript functions, and pointer accesses
- Analyzing data dependence
- Performing linear transformations

Loop Information

- (Vectorization factor, NEXT_PASS (pass_if_conversion); NEXT_PASS (pass_vectorize); alignment etc.) struct opt_pass **p = &pass_vectorize.pass.sub; • Mapping the transformed
- NEXT_PASS (pass_lower_vector_ssa); NEXT_PASS (pass_dce_loop); IR to machine instructions NEXT_PASS (pass_predcom); is achieved through NEXT_PASS (pass_complete_unroll); NEXT_PASS (pass_slp_vectorize); NEXT_PASS (pass_parallelize_loops); NEXT_PASS (pass_loop_prefetch); NEXT_PASS (pass_iv_optimize); NEXT_PASS (pass_tree_loop_done);
 - machine descriptions

gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 4/62 3 July 2011 Loop Transformation Passes in GCC

Notes

Essential Abstractions in GCC

Essential Abstractions in GCC

Essential Abstractions in GCC

GCC Resource Center, IIT Bomba

Loop Information

Loop Transformation Passes in GCC: Our Focus

	Pass variable name	pass_check_data_deps	
Data Dependence	Enabling switch	-fcheck-data-deps	
Data Dependence	Dump switch	-fdump-tree-ckdd	
	Dump file extension	.ckdd	
	Pass variable name	pass_loop_distribution	
Loop Distribution	Enabling switch	-ftree-loop-distribution	
Loop Distribution	Dump switch	-fdump-tree-ldist	
	Dump file extension	.ldist	
	Pass variable name	pass_vectorize	
Vectorization	Enabling switch	-ftree-vectorize	
vectorization	Dump switch	-fdump-tree-vect	
	Dump file extension	.vect	
	Pass variable name	pass_parallelize_loops	
Parallelization	Enabling switch	-ftree-parallelize-loops=n	
r aranenzation	Dump switch	-fdump-tree-parloops	
	Dump file extension	.parloops	

Essential Abstractions in GCC

GCC Resource Center, IIT Bomba

GCC Resource Center, IIT

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 6/62 **Compiling for Emitting Dumps**

- Other necessary command line switches
 - ▶ -03 -fdump-tree-all

-O3 enables -ftree-vectorize. Other flags must be enabled explicitly

- Processor related switches to enable transformations apart from analysis
 - ▶ -mtune=pentium -msse4
- Other useful options
 - Suffixing -all to all dump switches
 - ► -S to stop the compilation with assembly generation
 - --verbose-asm to see more detailed assembly dump

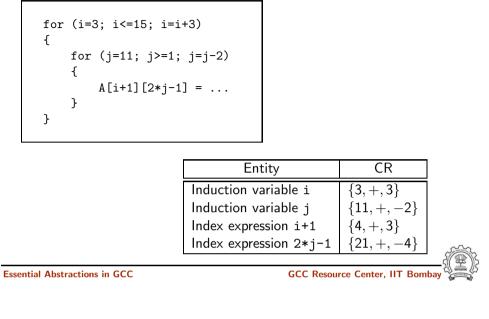
Loop Transformation Passes in GCC: Our Focus

Notes

Essential Abstractions in GCC

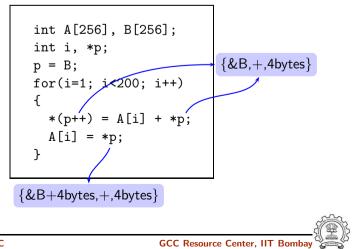
GCC Resource Center, IIT

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 6/62 **Compiling for Emitting Dumps**



3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 7/62

Representing Value Spaces of Variables and Expressions


Chain of Recurrences: 3-tuple (Starting Value, modification, stride)

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 8/62 **Advantages of Chain of Recurrences**

CR can represent any affine expression

 \Rightarrow Accesses through pointers can also be tracked

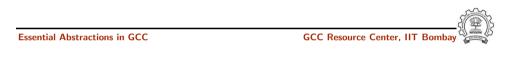
Notes

Representing Value Spaces of Variables and Expressions

Essential Abstractions in GCC

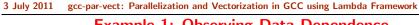
Notes

GCC Resource Center, IIT Boml


3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 8/62 **Advantages of Chain of Recurrences**

Step 0: Compiling

int a[200]; int main() { int i; for (i=0; i<150; i++) { a[i] = a[i+1] + 2; } return 0; }</pre>


gcc -fcheck-data-deps -fdump-tree-ckdd-all -O3 -S datadep.c

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 10/62 Example 1: Observing Data Dependence

Step 1: Examining the control flow graph

<pre>int a[200]; int main() { int i; for (i=0; i<150; i++) { a[i] = a[i+1] + 2; } } (bb 3>: # i_13 = PHI <i_3(4), 0(2)=""> i_3 = i_13 + 1; D.1955_4 = a[i_3]; D.1955_4 = a[i_3]; D.1956_5 = D.1955_4 + 2; a[i_13] = D.1956_5; if (i_3 != 150) goto <bb 4="">; else</bb></i_3(4),></pre>	Program	Control Flow Graph
return 0; goto <bb 5="">; } <bb 4="">: goto <bb 3="">;</bb></bb></bb>	<pre>int main() { int i; for (i=0; i<150; i++) { a[i] = a[i+1] + 2; } </pre>	<pre># i_13 = PHI <i_3(4), 0(2)=""> i_3 = i_13 + 1; D.1955_4 = a[i_3]; D.1956_5 = D.1955_4 + 2; a[i_13] = D.1956_5; if (i_3 != 150) goto <bb 4="">; else goto <bb 5="">; <bb 4="">:</bb></bb></bb></i_3(4),></pre>

Essential Abstractions in GCC

Notes

GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 10/62 Example 1: Observing Data Dependence

Example 1: Observing Data Dependence

Example 1: Observing Data Dependence

Step 2: Understanding the chain of recurrences

```
<bb 3>:

# i_13 = PHI <i_3(4), 0(2)>

i_3 = i_13 + 1;

D.1955_4 = a[i_3];

D.1956_5 = D.1955_4 + 2;

a[i_13] = D.1956_5;

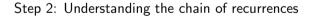
if (i_3 != 150)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:


goto <bb 3>;
```

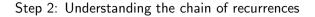
Notes

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 11/62 Example 1: Observing Data Dependence

GCC Resource Center, IIT Bomba

Essential Abstractions in GCC

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 11/62 Example 1: Observing Data Dependence


Essential Abstractions in GCC

GCC Resource Center, IIT

Example 1: Observing Data Dependence

<bb 3>: $# i_13 = PHI < i_3(4), 0(2) >$ $i_3 = i_13 + 1;$ Notes $D.1955_4 = a[i_3];$ $D.1956_5 = D.1955_4 + 2;$ a[i_13] = D.1956_5; (scalar_evolution = {1, +, 1}_1) if (i_3 != 150) goto <bb 4>; else goto <bb 5>; <bb 4>: goto <bb 3>; **Essential Abstractions in GCC Essential Abstractions in GCC** GCC Resource Center, IIT Bomb 3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 11/62 3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework **Example 1: Observing Data Dependence Example 1: Observing Data Dependence** Step 2: Understanding the chain of recurrences

1

base

Notes

GCC Resource Center, IIT

11/62

Example 1: Observing Data Dependence

Step 2: Understanding the chain of recurrences

<bb 3>: $# i_13 = PHI < i_3(4), 0(2) >$ $i_3 = i_{13} + 1;$ $D.1955_4 = a[i_3];$ $D.1956_5 = D.1955_4 + 2;$ base_address: &a a[i_13] = D.1956_5; offset from base address: 0 if (i_3 != 150) constant offset from base goto <bb 4>; address: 0 else aligned to: 128 base_object: a[0] goto <bb 5>; <bb 4>: $(chrec = \{0, +, 1\}_1)$ goto <bb 3>;

Notes

Essential Abstractions in GCC

GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 12/62 Example 1: Observing Data Dependence

Step 3: Understanding Banerjee's test

Source View	CFG View
 Relevant assignment is a[i] = a[i+1] + 2 Solve for 0 ≤ x, y < 150 	<pre>• i_3 = i_13 + 1; D.1955_4 = a[i_3]; D.1956_5 = D.1955_4 + 2; a[i_13] = D.1956_5;</pre>
y = x + 1 $\Rightarrow x - y + 1 = 0$ • Find min and max of LHS x - y + 1 Min: -148 Max: +150 RHS belongs to [-148, +150] and dependence may exist	 Chain of recurrences are For a[i_3]: {1, +, 1}_1 For a[i_13]: {0, +, 1}_1 Solve for 0 ≤ x_1 < 150 1 + 1*x_1 - 0 + 1*x_1 = 0 Min of LHS is -148, Max is +150 Dependence may exist

Essential Abstractions in GCC

GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 12/62 Example 1: Observing Data Dependence

Step 4: Observing the data dependence information

iterations_that_access_an_element_twice_in_A: [1 + 1 * x_1]
last_conflict: 149
iterations_that_access_an_element_twice_in_B: [0 + 1 * x_1]
last_conflict: 149
Subscript distance: 1

Notes

inner loop index: 0
loop nest: (1)
distance_vector: 1
direction_vector: +

Essential Abstractions in GCC

GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 14/62 Example 2: Observing Vectorization and Parallelization

Step 0: Compiling the code with -03

```
int a[256], b[256];
int main()
{
    int i;
    for (i=0; i<256; i++)
    {
        a[i] = b[i];
    }
    return 0;
}</pre>
```

- Additional options for parallelization
 - -ftree-parallelize-loops=2 -fdump-tree-parloops-all
- Additional options for vectorization

-fdump-tree-vect-all -msse4

Example 1: Observing Data Dependence

Essential Abstractions in GCC

GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 14/62 Example 2: Observing Vectorization and Parallelization

Step 1: Examining the control flow graph

Program	Control Flow Graph
<pre>int a[256], b[256]; int main() { int i; for (i=0; i<256; i++) { a[i] = b[i]; } return 0; }</pre>	<bb 3="">: <pre># i_11 = PHI <i_4(4), 0(2)=""></i_4(4),></pre> D.2836_3 = b[i_11]; a[i_11] = D.2836_3; i_4 = i_11 + 1; if (i_4 != 256) goto <bb 4="">; else goto <bb 5="">; <bb 4="">: goto <bb 5="">; </bb></bb></bb></bb></bb>

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework

Example 2: Observing Vectorization and Parallelization

GCC Resource Center, IIT

GCC Resource Center, IIT

Essential Abstractions in GCC

Notes

GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 16/62 Example 2: Observing Vectorization and Parallelization

Step 2: Observing the final decision about vectorization

parvec.c:5: note: LOOP VECTORIZED.
parvec.c:2: note: vectorized 1 loops in function.

Notes

16/62

Example 2: Observing Vectorization and Parallelization

Essential Abstractions in GCC

Example 2: Observing Vectorization and Parallelization

Step 3: Examining the vectorized control flow graph

Original control flow graph	Transformed control flow graph
<bbd> # i_11 = PHI <i_4(4), 0(2)=""> D.2836_3 = b[i_11]; a[i_11] = D.2836_3; i_4 = i_11 + 1; if (i_4 != 256) goto <bb 4="">; else goto <bb 5="">; <bb 4="">: goto <bb 3="">; </bb></bb></bb></bb></i_4(4),></bbd>	<bblock </bblock
Essential Abstractions in GCC	GCC Resource Center, IIT Bombay

3 July 2011	gcc-par-vect:	Parallelization and	Vectorization in GCC	using Lambda Framework	18/62
Ex	ample 2:	Observing	Vectorization	and Parallelization	

Step 4: Understanding the strategy of parallel execution

- Create threads t_i for $1 \le i \le MAX_THREADS$
- Assigning start and end iteration for each thread
 ⇒ Distribute iteration space across all threads
- Create the following code body for each thread *t_i*

```
for (j=start_for_thread_i; j<=end_for_thread_i; j++)
{
    /* execute the loop body to be parallelized */
}</pre>
```

• All threads are executed in parallel

Example 2: Observing Vectorization and Parallelization

Essential Abstractions in GCC

Notes

GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 18/62 Example 2: Observing Vectorization and Parallelization

Notes

Essential Abstractions in GCC

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 19/62 Example 2: Observing Vectorization and Parallelization

Step 5: Examining the thread creation in parallelized control flow graph

```
D.1996_6 = __builtin_omp_get_num_threads ();
D.1998_8 = __builtin_omp_get_thread_num ();
D.2000_10 = 255 / D.1997_6;
D.2001_11 = D.2000_10 * D.1997_6;
D.2002_12 = D.2001_11 != 255;
D.2003_13 = D.2002_12 + D.2000_10;
ivtmp.7_14 = D.2003_13 * D.1999_8;
D.2005_15 = ivtmp.7_14 + D.2003_13;
D.2006_16 = MIN_EXPR <D.2005_15, 255>;
if (ivtmp.7_14 >= D.2006_16)
goto <bb 3>;
```


Essential Abstractions in GCC

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 19/62 Example 2: Observing Vectorization and Parallelization

Step 5	Examining	the thread	creation	in	parallelized	control flow gi	ranh
Jiep J.	LAIIIIIIg	the thread	Cleation		paranenzeu	control now gi	apii

```
D.1996_6 = __builtin_omp_get_num_threads ();
D.1998_8 = __builtin_omp_get_thread_num ();
D.2000_10 = 255 / D.1997_6;
D.2001_11 = D.2000_10 * D.1997_6;
D.2002_12 = D.2001_11 != 255;
D.2003_13 = D.2002_12 + D.2000_10;
ivtmp.7_14 = D.2003_13 * D.1999_8;
D.2005_15 = ivtmp.7_14 + D.2003_13;
D.2006_16 = MIN_EXPR <D.2005_15, 255>;
if (ivtmp.7_14 >= D.2006_16)
goto <bb 3>;
```

Get the number of threads

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 19/62

Example 2: Observing Vectorization and Parallelization

Essential Abstractions in GCC

Notes

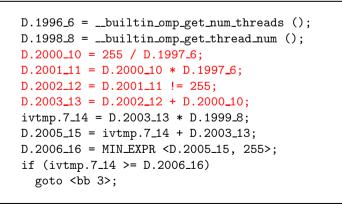
GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 19/62 Example 2: Observing Vectorization and Parallelization

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 19/62 **Example 2: Observing Vectorization and Parallelization**

Step 5: Examining the thread creation in parallelized control flow graph

\mathbf{D} 1000 C \mathbf{b}
D.1996_6 =builtin_omp_get_num_threads ();
D.1998_8 =builtin_omp_get_thread_num ();
D.2000_10 = 255 / D.1997_6;
D.2001_11 = D.2000_10 * D.1997_6;
D.2002_12 = D.2001_11 != 255;
D.2003_13 = D.2002_12 + D.2000_10;
ivtmp.7_14 = D.2003_13 * D.1999_8;
D.2005_15 = ivtmp.7_14 + D.2003_13;
D.2006_16 = MIN_EXPR <d.2005_15, 255="">;</d.2005_15,>
if (ivtmp.7_14 >= D.2006_16)
goto <bb 3="">;</bb>


Get thread identity

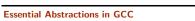
Essential Abstractions in GCC

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 19/62 **Example 2: Observing Vectorization and Parallelization**

Step 5: Examining the thread creation in parallelized control flow graph

Perform load calculations

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 19/62


Example 2: Observing Vectorization and Parallelization

Essential Abstractions in GCC

Notes

GCC Resource Center, IIT

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 19/62 **Example 2: Observing Vectorization and Parallelization**

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 19/62 **Example 2: Observing Vectorization and Parallelization**

Step 5: Examining the thread creation in parallelized control flow graph

<pre>D.1996_6 =builtin_omp_get_num_threads (); D.1998_8 =builtin_omp_get_thread_num ();</pre>
D.2000_10 = 255 / D.1997_6;
D.2001_11 = D.2000_10 * D.1997_6;
D.2002_12 = D.2001_11 != 255;
D.2003_13 = D.2002_12 + D.2000_10;
ivtmp.7_14 = D.2003_13 * D.1999_8;
D.2005_15 = ivtmp.7_14 + D.2003_13;
D.2006_16 = MIN_EXPR <d.2005_15, 255="">;</d.2005_15,>
if (ivtmp.7_14 >= D.2006_16)
goto <bb 3="">;</bb>

Assign start iteration to the chosen thread

Essential Abstractions in GCC

GCC Resource Center, IIT Bomb

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 19/62 **Example 2: Observing Vectorization and Parallelization**

Step 5: Examining the thread creation in parallelized control flow graph

```
D.1996_6 = __builtin_omp_get_num_threads ();
D.1998_8 = __builtin_omp_get_thread_num ();
D.2000_{10} = 255 / D.1997_6;
D.2001_{11} = D.2000_{10} * D.1997_6;
D.2002_12 = D.2001_11 != 255;
D.2003_{13} = D.2002_{12} + D.2000_{10};
ivtmp.7_14 = D.2003_13 * D.1999_8;
D.2005_15 = ivtmp.7_14 + D.2003_13;
D.2006_16 = MIN_EXPR <D.2005_15, 255>;
if (ivtmp.7_14 >= D.2006_16)
  goto <bb 3>;
```

Assign end iteration to the chosen thread

Example 2: Observing Vectorization and Parallelization

Essential Abstractions in GCC

Notes

GCC Resource Center, IIT

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 19/62 **Example 2: Observing Vectorization and Parallelization**

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 19/62 Example 2: Observing Vectorization and Parallelization

Step 5: Examining the thread creation in parallelized control flow graph

<pre>D.1996_6 =builtin_omp_get_num_threads (); D.1998_8 =builtin_omp_get_thread_num ();</pre>
$D.2000_10 = 255 / D.1997_6;$
D.2001_11 = D.2000_10 * D.1997_6;
D.2002_12 = D.2001_11 != 255;
D.2003_13 = D.2002_12 + D.2000_10;
ivtmp.7_14 = D.2003_13 * D.1999_8;
D.2005_15 = ivtmp.7_14 + D.2003_13;
D.2006_16 = MIN_EXPR <d.2005_15, 255="">;</d.2005_15,>
if (ivtmp.7_14 >= D.2006_16)
goto <bb 3="">;</bb>

Start execution of iterations of the chosen thread

Essential Abstractions in GCC

GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 20/62 Example 2: Observing Vectorization and Parallelization

Step 6: Examining the loop body to be executed by a thread

	Parallel loop body
<pre>a[i_11] = D.1956_3; D.201 i_4 = i_11 + 1; *a.11 if (i_4 != 256) ivtmp goto <bb 4="">; if (D else goto <bb 5="">; else</bb></bb></pre>	

Example 2: Observing Vectorization and Parallelization

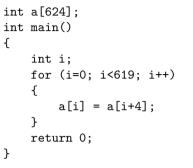
Essential Abstractions in GCC

Notes

GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 20/62 Example 2: Observing Vectorization and Parallelization

Notes



Essential Abstractions in GCC

Example 3: Vectorization but No Parallelization

Step 0: Compiling with -03 -fdump-tree-vect-all -msse4

Essential Abstractions in GCC

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 22/62 **Example 3: Vectorization but No Parallelization**

Essential Abstractions in GCC

Notes

GCC Resource Center, IIT

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 22/62 **Example 3: Vectorization but No Parallelization**

Step 1: Observing the final decision about vectorization

vecnopar.c:5: note: LOOP VECTORIZED. vecnopar.c:2: note: vectorized 1 loops in function. Notes

Example 3: Vectorization but No Parallelization

GCC Resource Center, IIT

GCC Resource Center, IIT

Example 3: Vectorization but No Parallelization

Step 2: Examining vectorization

Control Flow Graph	Vectorized Control Flow Graph
<bbd> # i_12 = PHI <i_5(4), 0(2)=""> D.2834_3 = i_12 + 4; D.2835_4 = a[D.2834_3]; a[i_12] = D.2835_4; i_5 = i_12 + 1; if (i_5 != 619) goto <bb 4="">; else goto <bb 5="">; <bb 4="">: goto <bb 3="">; </bb></bb></bb></bb></i_5(4),></bbd>	 <bb 2="">: vect_pa.10_26 = &a[4]; vect_pa.15_30 = &a <bb 3="">: # vect_pa.7_27 = PHI <vect_pa.7_28, <br=""></vect_pa.7_28,> vect_pa.10_26> # vect_pa.12_31 = PHI <vect_pa.12_32, <br=""></vect_pa.12_32,> vect_pa.15_30> vect_var11_29 = MEM[vect_pa.7_27]; MEM[vect_pa.12_31] = vect_var11_29; vect_pa.12_32 = vect_pa.7_27 + 16; vect_pa.12_32 = vect_pa.12_31 + 16; ivtmp.16_34 = ivtmp.16_33 + 1; if (ivtmp.16_34 < 154) goto <bbr></bbr> goto <bbr></bbr> goto <bbr></bbr> vect_pa.12_20 vect_pa.12_32 = vect_pa.12_31 + 16; vect_pa.12_32 = vect_pa.12_31 + 16; vect_pa.12_34 < 154) goto yet = vect_pa.12_34 < 154) yet = vect_pa.12_34 <</bb></bb>
Essential Abstractions in GCC	GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 24/62 Example 3: Vectorization but No Parallelization

• Step 3: Observing the conclusion about dependence information

```
inner loop index: 0
loop nest: (1 )
distance_vector: 4
direction_vector: +
```

• Step 4: Observing the final decision about parallelization

FAILED: data dependencies exist across iterations

Example 3: Vectorization but No Parallelization

Essential Abstractions in GCC

Notes

GCC Resource Center, IIT Bomba

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 24/62 Example 3: Vectorization but No Parallelization

Example 4: No Vectorization and No Parallelization

Step 0: Compiling the code with -03

int	a[256], b[256];
int	main ()
{	
	int i;
	for (i=0; i<216; i++)
	{
	a[i+2] = b[i] + 5;
	b[i+3] = a[i] + 10;
	}
	return 0;
ι	

- Additional options for parallelization
 - -ftree-parallelize-loops=2 -fdump-tree-parloops-all
- Additional options for vectorization
 - -fdump-tree-vect-all -msse4

Essential Abstractions in GCC

GCC Resource Center, IIT Bomba

- 3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 26/62 **Example 4: No Vectorization and No Parallelization**
 - Step 1: Observing the final decision about vectorization

noparvec.c:5: note: vectorized 0 loops in function.

• Step 2: Observing the final decision about parallelization

FAILED: data dependencies exist across iterations

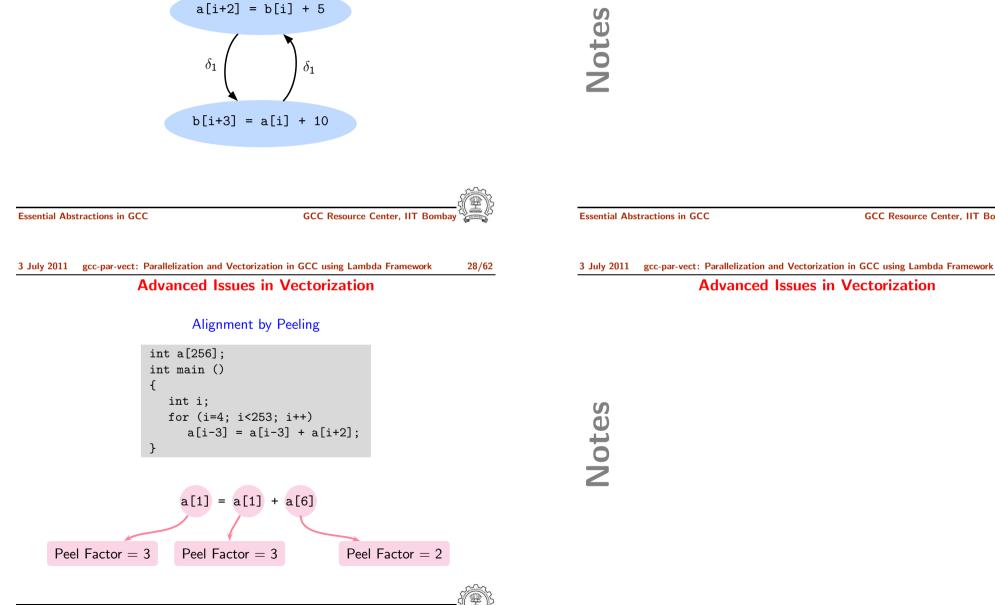
Example 4: No Vectorization and No Parallelization

Essential Abstractions in GCC

Notes

GCC Resource Center, IIT

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 26/62 **Example 4: No Vectorization and No Parallelization**



3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 27/62 **Example 4: No Vectorization and No Parallelization**

Step 3: Understanding the dependencies that prohibit vectorization and parallelization

Example 4: No Vectorization and No Parallelization

GCC Resource Center, IIT Bomba

GCC Resource Center, IIT Bom

28/62

Essential Abstractions in GCC

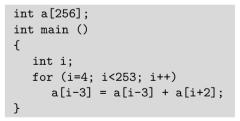
Advanced Issues in Vectorization

Advanced Issues in Vectorization

int a[256]; int main () { int i; for (i=4; i<253; i++) a[i-3] = a[i-3] + a[i+2]; }

a[1] = a[1] + a[6]

Maximize alignment with minimal peel factor



Essential Abstractions in GCC

GCC Resource Center, IIT Bombay

3 July 2011	gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework	28/62
	Advanced Issues in Vectorization	

Alignment by Peeling

Notes

Notes

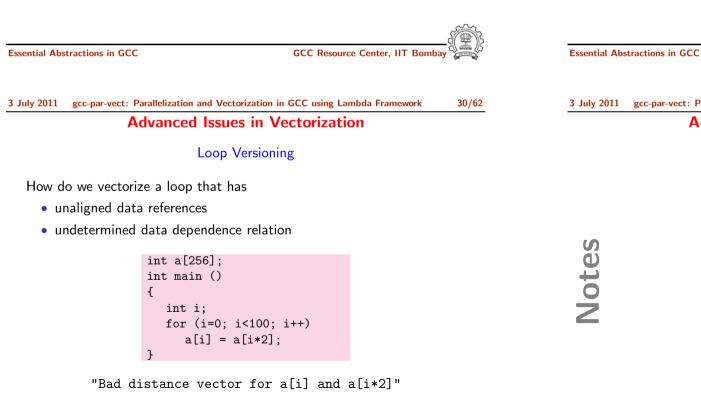
Peel the loop by 3

Essential Abstractions in GCC

GCC Resource Center, IIT Bombay 🆓

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 28/62
Advanced Issues in Vectorization

Advanced Issues in Vectorization


3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 29/62

Advanced Issues in Vectorization

An aligned vectorized code can consist of three parts

- Peeled Prologue Scalar code for alignment
- Vectorized body Iterations that are vectorized
- Epilogue Residual scalar iterations

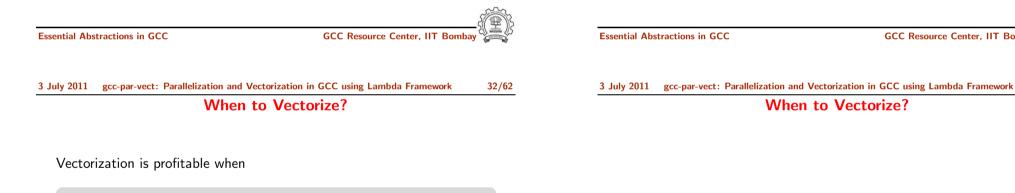
Notes

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework

Advanced Issues in Vectorization

GCC Resource Center, IIT

30/62



Advanced Issues in Vectorization

Advanced Issues in Vectorization

- Generate two versions of the loop, one which is vectorized and one which is not.
- A test is then generated to control the execution of desired version. The test checks for the alignment of all of the data references that may or may not be aligned.
- An additional sequence of runtime tests is generated for each pairs of data dependence relations whose independence was undetermined or unproven.
- The vectorized version of loop is executed only if both alias and alignment tests are passed.

$$SIC * niters + SOC > VIC * \left(\frac{niters - PL_ITERS - EP_ITERS}{VF}\right) + VOC$$

 $\mathtt{SIC} = \mathtt{scalar} \ \mathtt{iteration} \ \mathtt{cost}$

VIC = vector iteration cost

 $\mathtt{VOC} = \mathtt{vector} \ \mathtt{outside} \ \mathtt{cost}$

 $\mathtt{VF} = \mathtt{vectorization} \ \mathtt{factor}$

 ${\tt PL_ITERS} = {\tt prologue \ iterations}$

 ${\tt EP_ITERS} = {\sf epilogue} \ {\sf iterations}$

SOC = scalar outside cost

Notes

Notes

32/62

Part 2

Loop Transformations in Polytope Model

Notes

3 July 2011	gcc-par-vect: Loop Transformations in Polytope Model	33/62
	Problems with Classical Loop Nest Transforms	

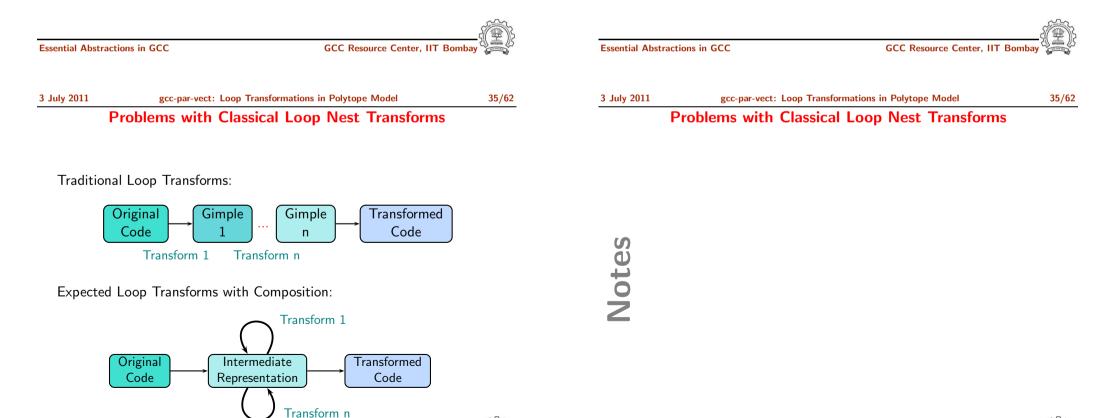
Loop nest optimization is a combinatorial problem. Due to the growing complexity of modern architectures, it involves two increasingly difficult tasks:

- Analyzing the profitability of sequences of transformations to enhance parallelism, locality, and resource usage
- the construction and exploration of search space of legal transformation sequences

Practical optimizing and parallelizing compilers restore to a predefined set of enabling

3 July 2011	gcc-par-vect: Loop Transformations in Polytope Model	33/62
	Problems with Classical Loop Nest Transforms	

gcc-par-vect: Loop Transformations in Polytope Model
Problems with Classical Loop Nest Transforms


34/62

Problems with Classical Loop Nest Transforms

Loop transformations on Lambda Framework were discontinued in gcc-4.6.0 for the following reasons:

- Difficult to undo loop transformations transforms are applied on the syntactic form
- Difficult to compose transformations intermediate translation to a syntactic form is necessary after each transformation
- Ordering of transformations is fixed

Notes

GCC Resource Center, IIT Bomb

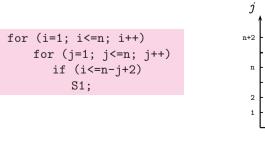
gcc-par-vect: Loop Transformations in Polytope Model

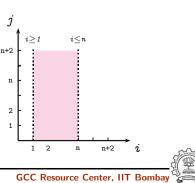
Requirement

36/62

3 July 2011

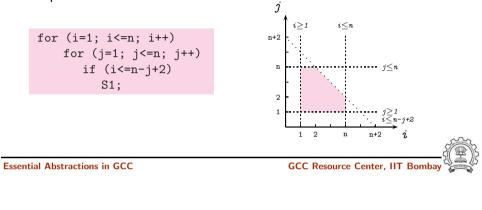
Requirement


GCC requires a rich algebraic representation that

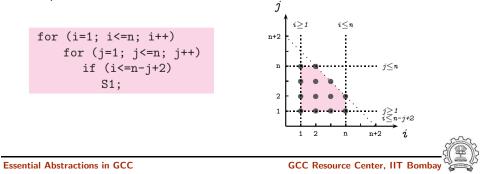

- Provides a solution to phase-ordering problem facilitate efficient exploration and configuration of multiple transformation sequences
- Decouples the transformations from the syntatic form of program. avoiding code size explosion
- Performs only legal transformation sequences
- Provides precise performance models and profitability prediction heuristics

Notes

• An affine scheduling function specifies the scanning order of integral points



Notes


Solution : Polyhedral Representation

- Polytope Model is a mathematical framework for loop nest optimizations
- The loop bounds parametrized as inequalities form a convex polyhedron
- An affine scheduling function specifies the scanning order of integral points

3 July 2011	gcc-par-vect: Loop Transformations in Polytope Model	38/62
	Solution : Polyhedral Representation	

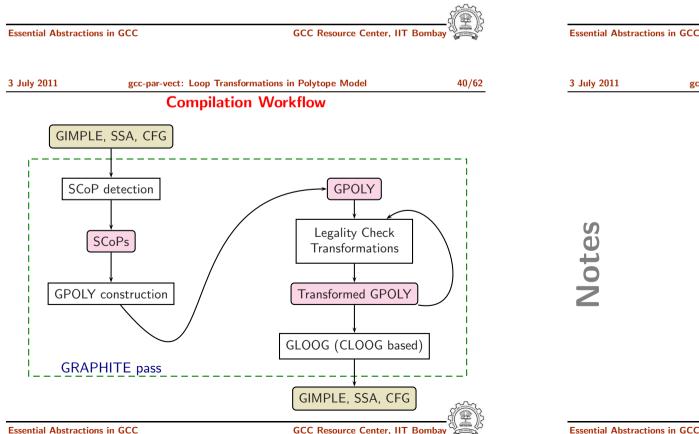
- Polytope Model is a mathematical framework for loop nest optimizations
- The loop bounds parametrized as inequalities form a convex polyhedron
- An affine scheduling function specifies the scanning order of integral points

	Solution : Polyhedral Representation	
3 July 2011	gcc-par-vect: Loop Transformations in Polytope Model	38/62
Essential Abstraction	ns in GCC GCC Resource Center, IIT	Bombay

3 July 2011

Notes

39/62


GRAPHITE

GRAPHITE is the interface for polyhedra representation of GIMPLE

goal: more high level loop optimizations

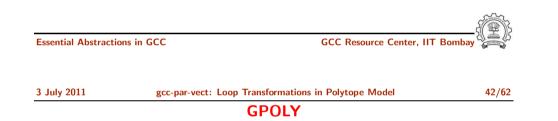
Tasks of GRAPHITE Pass:

- Extract the polyhedral model representation out of GIMPLE
- Perform the various optimizations and analyses on this polyhedral model representation
- Regenerate the GIMPLE three-address code that corresponds to transformations on the polyhedral model

	Compilation Workflow	
3 July 2011	gcc-par-vect: Loop Transformations in Polytope Model	40/62
Essential Abstractio	ns in GCC GCC Resource Cen	iter, IIT Bombay

Essential Abstractions in GCC

gcc-par-vect: Loop Transformations in Polytope Model What Code Can be Represented? 41/62


Notes

What Code Can be Represented?

The target of polyhedral representation are sequence of loop nests with

- Affine loop bounds (e.g. i < 4*n+4*j-1)
- Affine array accesses (e.g. A[3i+1])
- Constant loop strides (e.g. i += 2)
- Conditions containing comparisons (<,≤,>,≥,==,!=) between affine functions
- Invariant global parameters

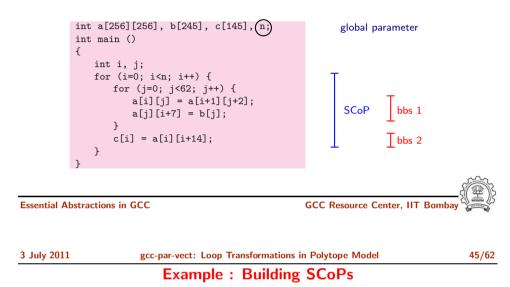
Non-rectangular, non-perfectly nested loops are also represented polyhedrally for optimization

 $\ensuremath{\mathsf{GPOLY}}$: the polytope representation in GRAPHITE, currently implemented by the Parma Polyhedra Library (PPL)

- SCoP The optimization unit (e.g. a loop with some basic blocks)
 scop := ([black box])
- Black Box An operation (e.g. basic block with one or more statements) where the memory accesses are known black box := (iteration domain, scattering matrix, [data reference])
- Iteration Domain The set of loop iterations for the black box
- Data Reference The memory cells accessed by the black box
- Scattering Matrix Defines the execution order of statement iterations (e.g. schedule)

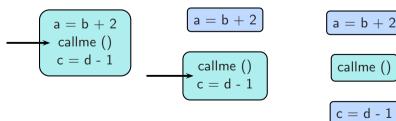
 Essential Abstractions in GCC
 GCC Resource Center, IIT Bombay

 3 July 2011
 gcc-par-vect: Loop Transformations in Polytope Model
 42/62


 GPOLY

3 July 2011

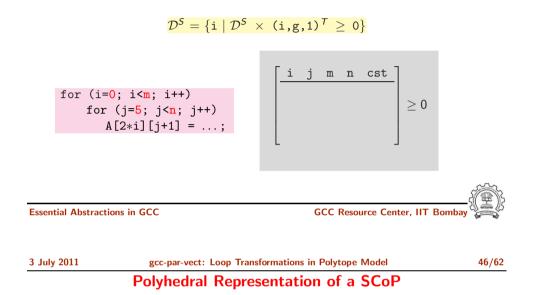
Building SCoPs

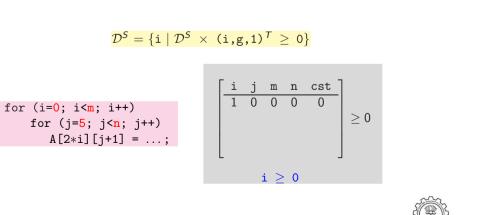

- SCoPs built on top of the CFG
- Basic blocks with side-effect statements are split
- All basic blocks belonging to a SCoP are dominated by entry, and postdominated by exit of the SCoP

Building SCoPs

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model		
	July 2011	
Essential Abstractions in GCC GCC Resource Center, IIT Bombay	Essential Abstractions in GCC	

Splitting basic blocks:




The statements and parametric affine inequalities can be expressed by:

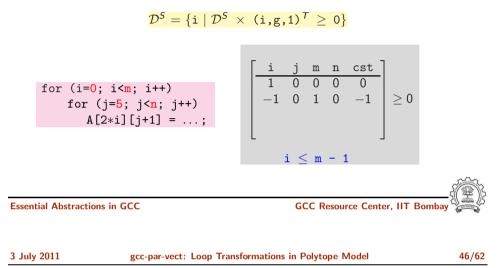
• Iteration Domain (bounds of enclosing loops)

The statements and parametric affine inequalities can be expressed by:

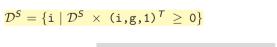
• Iteration Domain (bounds of enclosing loops)

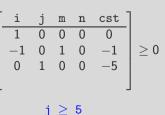
Notes

46/62


46/62

The statements and parametric affine inequalities can be expressed by:


• Iteration Domain (bounds of enclosing loops)



Polyhedral Representation of a SCoP

The statements and parametric affine inequalities can be expressed by:

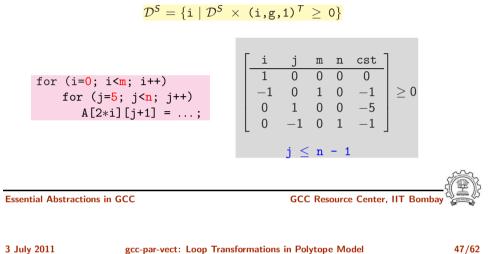
• Iteration Domain (bounds of enclosing loops)

Notes

46/62

Polyhedral Representation of a SCoP

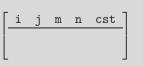
Essential Abstractions in GCC GCC Resource Center, IIT Bombay 3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 46/62 Polyhedral Representation of a SCoP


Notes

Essential Abstractions in GCC

The statements and parametric affine inequalities can be expressed by:

• Iteration Domain (bounds of enclosing loops)



Polyhedral Representation of a SCoP

The statements and parametric affine inequalities can be expressed by:

- Iteration Domain (bounds of enclosing loops)
- Data Reference (a list of access functions)

 $\mathcal{F} = \{ (\texttt{i},\texttt{a},\texttt{s}) \mid \mathcal{F} \times (\texttt{i},\texttt{a},\texttt{s},\texttt{g},\texttt{1})^T \geq 0 \}$

GCC Resource Center, IIT Bomb

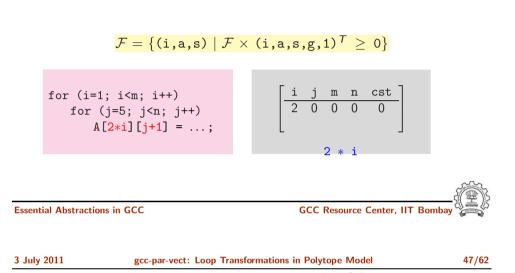
Notes

46/62

Polyhedral Representation of a SCoP

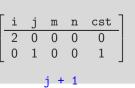
Essential Abstractions in GCC

GCC Resource Center, IIT Bombay


3 July 2011	gcc-par-vect: Loop Transformations in Polytope Model	47/62
	Polyhedral Representation of a SCoP	

The statements and parametric affine inequalities can be expressed by:

- Iteration Domain (bounds of enclosing loops)
- Data Reference (a list of access functions)



Polyhedral Representation of a SCoP

The statements and parametric affine inequalities can be expressed by:

- Iteration Domain (bounds of enclosing loops)
- Data Reference (a list of access functions)

$\mathcal{F} = \{ (\texttt{i,a,s}) \mid \mathcal{F} \times (\texttt{i,a,s,g,1})^T \geq 0 \}$

Notes

47/62

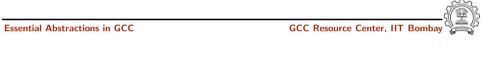
47/62

Polyhedral Representation of a SCoP

Essential Abstractions in GCC GCC Resource Center, IIT Bombay 3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 47/62 Polyhedral Representation of a SCoP

Essential Abstractions in GCC

The statements and parametric affine inequalities can be expressed by:


- Iteration Domain (bounds of enclosing loops)
- Data Reference (a list of access functions)
- Scattering Function (scheduling order)

 $\theta = \{ (\texttt{t},\texttt{i}) \mid \theta \times (\texttt{t},\texttt{i},\texttt{g},\texttt{1})^T \geq 0 \}$

sequence $[s_1, s_2]$: $\mathcal{S}[s_1] = t$,

 $S[s_2] = t + 1$

 $loop [loop_1 s end_1]$: i₁ indexes $loop_1$ iterations $\mathcal{S}[loop_1] = t$, $S[s] = (t, i_1, 0)$

gcc-par-vect: Loop Transformations in Polytope Model 3 July 2011 48/62 Polyhedral Representation of a SCoP

The statements and parametric affine inequalities can be expressed by:

- Iteration Domain (bounds of enclosing loops)
- Data Reference (a list of access functions)
- Scattering Function (scheduling order)

$\theta = \{ (\texttt{t},\texttt{i}) \mid \theta \times (\texttt{t},\texttt{i},\texttt{g},\texttt{1})^T > 0 \}$

Scattering Function $\theta_{S1}(i,j)^T = (0,i,0,j,0)^T$

48/62

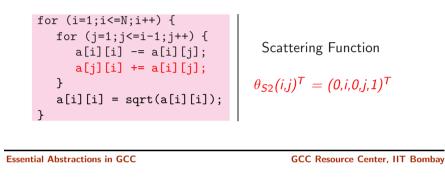
Polyhedral Representation of a SCoP

Essential Abstractions in GCC

Notes

GCC Resource Center, IIT

gcc-par-vect: Loop Transformations in Polytope Model 3 July 2011 Polyhedral Representation of a SCoP

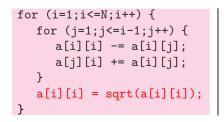


48/62

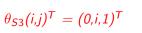
The statements and parametric affine inequalities can be expressed by:

- Iteration Domain (bounds of enclosing loops)
- Data Reference (a list of access functions)
- Scattering Function (scheduling order)

$\theta = \{ (\texttt{t},\texttt{i}) \mid \theta \times (\texttt{t},\texttt{i},\texttt{g},\texttt{1})^T > 0 \}$



3 July 2011	gcc-par-vect: Loop Transformations in Polytope Model	48/62
	Polyhedral Representation of a SCoP	


The statements and parametric affine inequalities can be expressed by:

- Iteration Domain (bounds of enclosing loops)
- Data Reference (a list of access functions)
- Scattering Function (scheduling order)

$\theta = \{ (\texttt{t},\texttt{i}) \mid \theta \times (\texttt{t},\texttt{i},\texttt{g},\texttt{1})^T > 0 \}$

Scattering Function

48/62

48/62

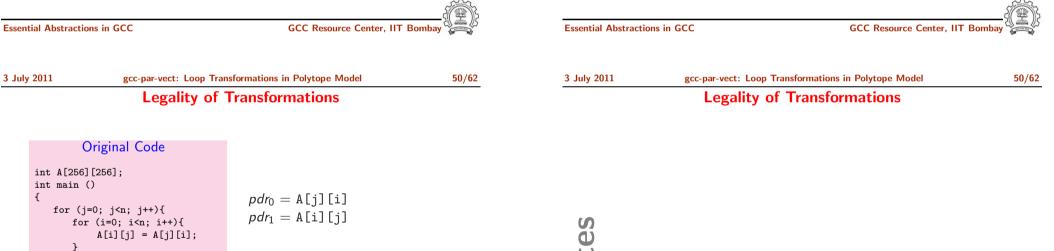
48/62

Polyhedral Representation of a SCoP

Notes

Essential Abstractions in GCC

3 July 2011	gcc-par-vect: Loop Transformations in Polytope Model
	Polyhedral Representation of a SCoP



49/62

Polyhedral Dependence Analysis in GRAPHITE

- An *instancewise dependence analysis* dependences between source and sink represented as polyhedra
- Scalar dependences are treated as zero-dimensional arrays
- Global parameters are handled
- Can take care of conditional and some form of triangular loops, as the information can be safely integrated with the iteration domain
- High cost, and therefore dependence is computed only to validate a transformation

Memory location A[0][1] is read at pdr_0 when j = 0 and later written at pdr_1 when j = 1Dependence : Write after Read Notes

}

when i = 1

Legality of Transformations

Original Code	Loop Interchange
0	
int A[256][256];	int A[256][256];
1	110 11[200][200],
int main ()	int main ()
{	{
for (j=0; j <n; j++){<="" th=""><th>for (i=0; j<n; i++){<="" th=""></n;></th></n;>	for (i=0; j <n; i++){<="" th=""></n;>
for (i=0; i <n; i++){<="" td=""><td>for (j=0; j<n; j++){<="" td=""></n;></td></n;>	for (j=0; j <n; j++){<="" td=""></n;>
A[i][j] = A[j][i];	A[i][i] = A[i][i]
}	}
}	}
}	}

Are the dependences preserved after the transformation?

3 July 2011

Notes

Essential Abstractions in GCC

51/62

51/62

Legality of Transformations

bay

Essential Abstractions in GCC

Dependence : Read after Write

GCC Resource Center, IIT Bombay

3 July 2011	gcc-par-vect: Loop Transformations in Polytope Model	52/62
	Legality of Transformations	

No! A [0] [1] is first written at pdr_1 when i = 0, and then read at pdr_0

- A transformation is legal if the dependences are preserved for any dependence instance, the source and sink remain same across transformation
- If the dependence is reversed, source becomes sink and sink becomes source in the transformed space
- GRAPHITE captures this notion in *Violated Dependence Analysis*. A reverse data dependence polyhedron is constructed in the transformed scattering from sink to source, and it is intersected with the original polyhedron
- If the intersection is non-empty, atleast one pair of iterations is executed in wrong order, rendering the transformation illegal

GCC Resource Center, IIT

r-vect: Loop Transformations in Polytope Model	52/62
	ar-vect: Loop Transformations in Polytope Model

GCC Resource Center, IIT

Parallelization with GRAPHITE

54/62

53/62

Parallelization with GRAPHITE

- The GRAPHITE pass without optimizations is run (GIMPLE ightarrow
- During this conversion, data dependence is performed using instancewise data dependence analysis
- This dependence result is used to determine if the loop can be parallelized

Benefits:

POLY \rightarrow GIMPLE)

- Stronger dependence analysis, can detect parallelism in loops with invariant parameters
- Conditional loops and some triangular loops can be parallelized after loop distribution

Extra Compilation flag : -floop-parallelize-all

3 July 2011	gcc-par-vect: Loop Transformations in Polytope Model
	Loop Tranformations in GRAPHITE

Loop transforms implemented in GRAPHITE:

- loop interchange
- loop blocking and loop stripmining
- loop flattening

These transformations are mostly used to improve scope of parallelization or vectorization. Application of such transformations must not violate the dependences

Cost Model:

- Cost models are used to check the profitability of transformation.
- For example, loops are interchanged only if the sum total of inner loop's strides are greater than the outer loop

GCC Resource Center, IIT

Notes

3 July 2011

Essential Abstraction	ons in GCC GCC Resource Center, IIT	Bombay
3 July 2011	gcc-par-vect: Loop Transformations in Polytope Model	54/62

Loop Tranformations in GRAPHITE

Original Code
<pre>int A[256][256]; int main ()</pre>
<pre>{ for (j=0; j<n; j++){<="" pre=""></n;></pre>
for (i=1; i <n; i++){<="" td=""></n;>
}
}

 $\begin{array}{l} \mbox{Strides of } i=255\,+\,255\,=\,510\\ \mbox{Strides of } j\,=\,1\,+\,1\,=\,2 \end{array}$

Since strides of i > strides of j, interchange loop i with j

Essential Abstractions in GCC

GCC Resource Center, IIT Bombay

55/62

56/62

3 July 2011	gcc-par-vect: Loop Transformations in Polytope Model
	Loop Interchange in GRAPHITE

outermost loop has the largest stride

Essential Abstractions in GCC

3 July 2011

Notes

GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model
Loop Interchange in GRAPHITE

Notes

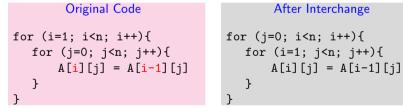
56/62

gcc-par-vect: Loop Transformations in Polytope Model Loop Interchange in GRAPHITE

3 July 2011

58/62

Loop Interchange in GRAPHITE


Original Code

for (i=1; i<n; i++){
 for (j=0; j<n; j++){
 A[i][j] = A[i-1][j]
 }
}</pre>

 $\begin{array}{l} Outer\ Loop\ -\ dependence\ on\ i,\ can\ not\ be\ parallelized\\ Inner\ Loop\ -\ parallelizable,\ but\ synchronization\ barrier\ required\\ Total\ number\ of\ times\ synchronization\ executed\ =\ n \end{array}$

Outer Loop - parallelizable Total number of times synchronization executed = 1

Is this loop interchange profitable in GRAPHITE?

Notes

Essential Abstractions in GCC

3 July 2011

3 July 2011	gcc-par-vect: Loop 7	Transformations in Polytope Model	59/62	3 July 2011	gcc-par-vect: Loop Transformations in Polytope Model	59/6
	Loop Regeneration			Loop Regeneration		
		CLooG) is used to regenerate the s of the polyhedra to recreate loo				
Orig	inal Program	Loop generated by CLoo for (i=0; i<=249; i++) {	G	GS		

Merge conditional code with loop bounds if possible

Advantages of GRAPHITE

- Better data dependence analysis handles conditional codes, parametric invariants
- Makes auto-parallelization more efficient
- Composition of transforms is possible

Future Scope

- Making instancewise dependence analysis algorithmically cheaper
- Automating the search most profitable transform composition sequence
- Developing efficient cost models
- Exploring scalability issues

	CRAPHITE Conclusions
luly 2011	gcc-par-vect: Loop Transformations in Polytope Model

GRAPHILE Conclusions

60/62

Notes

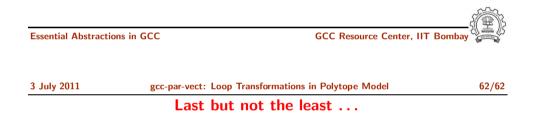
GCC Resource Center, IIT

GCC Resource Center, IIT

gcc-par-vect: Loop Transformations in Polytope Model

Parallelization and Vectorization in GCC : Conclusions

3 July 2011 gcc-par


gcc-par-vect: Loop Transformations in Polytope Model

Parallelization and Vectorization in GCC : Conclusions

- Chain of recurrences seems to be a useful generalization
- Interaction between different passes is not clear due to fixed order
- Auto-vectorization and auto-parallelization can be improved by enhancing the dependence analysis framework
- Efficient cost models are needed to automate legal transformation composition
- GRAPHITE seems to be a promising mathematical abstraction

Notes

61/62

Thank You!

61/62

Essential Abstractions in GCC

GCC Resource Center, IIT Bombay