Workshop on Essential Abstractions in GCC

Parallelization and Vectorization in GCC

GCC Resource Center

(www.cse.iitb.ac.in/grc)

Department of Computer Science and Engineering,
Indian Institute of Technology, Bombay

3 July 2011

3 July 2011 gcc-par-vect: Outline 1/62

Outline

An Overview of Loop Transformations in GCC

Parallelization and Vectorization based on Lambda Framework

Loop Transformations in Polytope Model

Conclusions

GCC Resource Center, |IT Bombay I% I

Essential Abstractions in GCC

3 July 2011 gcc-par-vect: Outline 1/62

Outline

Notes

GCC Resource Center, |IT Bombay I% I

Essential Abstractions in GCC

Part 1

Parallelization and Vectorization
in GCC using Lambda

Framework

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 2/62

Loop Transforms in GCC

Implementation Issues
e Getting loop information (Loop discovery)

e Finding value spaces of induction variables, array subscript
functions, and pointer accesses

e Analyzing data dependence

e Performing linear transformations

Essential Abstractions in GCC GCC Resource Center, IIT Bombayn

Notes

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework

2/62

Notes

Loop Transforms in GCC

Essential Abstractions in GCC

GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 3/62

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 3/62

Loop Information

Loop Tree

{ Loop2 @
{
@ ®
) W
} (L)
Loopb

}

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 4/62

Loop Information

Notes

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 4/62

Loop Transformation Passes in GCC

NEXT-PASS (pass_tree_loop);

struct opt_pass **p = &pass_tree_loop.pass.sub;
NEXT_PASS (pass_tree_loop_init);

NEXT_PASS (pase-Lin); e Passes on tree-SSA form
NEXT_PASS (pass_check_data.deps); A variant of Gimple IR
NEXT_PASS (pass_loop.distribution);)
Bﬁ&?i APgES—CZPY—PmP)s hite) e Discover parallelism and
ass_graphite) ;
< pass-erap transform IR

struct opt.pass **p = &pass_graphite.pass.sub;

NEXT_PASS (pass_graphite_transforms); ° Parameterized by some
¥ machine dependent features
NEXT_PASS (pass-iv_canon); . .
(Vectorization factor,

NEXT_PASS (pass.if_conversion);
NEXT_PASS (pass_vectorize); .
< alignment etc.)

struct opt_pass **p = &pass_vectorize.pass.sub;

NEXT_PASS (pass-_lower.vector_ssa); e Mapping the tra nsformed
NEXT_PASS (pass_dce_loop); . . .
IR to machine instructions
NEXT_PASS (pass_complete_unroll); is achieved through
NEXT_PASS (pass.slp-vectorize); . . .
NEXT_PASS (pass_parallelize_loops); machine descriptions

NEXT_PASS (pass.loop-prefetch);
NEXT_PASS (pass-iv_optimize);
NEXT_PASS (pass_tree_loop-done);

}

}
NEXT.PASS (pass.-predcom) ;

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

Loop Transformation Passes in GCC

Notes

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 5/62

Loop Transformation Passes in GCC: Our Focus

Pass variable name | pass_check_data_deps
Enabling switch -fcheck-data-deps
Dump switch -fdump-tree-ckdd
Dump file extension | .ckdd

Data Dependence

Pass variable name | pass_loop_distribution
Enabling switch -ftree-loop-distribution
Dump switch -fdump-tree-1dist

Dump file extension | .1ldist

Loop Distribution

Pass variable name | pass_vectorize
Enabling switch -ftree-vectorize
Dump switch -fdump-tree-vect
Dump file extension | .vect

Vectorization

Pass variable name | pass_parallelize loops
Enabling switch -ftree-parallelize-loops=n

Parallelization

Dump switch -fdump-tree-parloops

Dump file extension | .parloops
Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 6/62

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 5/62

Loop Transformation Passes in GCC: Our Focus

Notes

Compiling for Emitting Dumps

e Other necessary command line switches

» -03 -fdump-tree-all
-03 enables -ftree-vectorize. Other flags must be enabled
explicitly

e Processor related switches to enable transformations apart from
analysis
» -mtune=pentium -msse4
e Other useful options

» Suffixing —all to all dump switches
» -S to stop the compilation with assembly generation
» --verbose-asm to see more detailed assembly dump

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

GCC Resource Center, |IT Bombay I I

Essential Abstractions in GCC

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 6/62

Compiling for Emitting Dumps

Notes

GCC Resource Center, |IT Bombay I%I

Essential Abstractions in GCC

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 7/62

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework

7/62

Representing Value Spaces of Variables and Expressions

Chain of Recurrences: 3-tuple (Starting Value, modification, stride)

for (i=3; i<=15; i=i+3)
{
for (j=11; j>=1; j=j-2)
{
A[i+11[2%j-11 = ...
3
}
‘ Entity ‘ CR ‘
Induction variable i {3,+,3}
Induction variable j {11,+, -2}
Index expression i+1 {4,+,3}

Index expression 2%j-1 | {21,+, —4} n

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 8/62

Representing Value Spaces of Variables and Expressions

Notes

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework

8/62

Advantages of Chain of Recurrences

CR can represent any affine expression
= Accesses through pointers can also be tracked

int A[256], B[256];
int i, *p;

+ {&B,+,4bytes}

//‘

{&B+4bytes,+,4bytes}

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

Advantages of Chain of Recurrences

Notes

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 9/62

Example 1: Observing Data Dependence

Step 0: Compiling

int a[200];
int main()
{
int i;
for (i=0; i<150; i++)
{
ali] = al[i+1] + 2;
}
return O;

gcc —-fcheck-data-deps —-fdump-tree-ckdd-all -03 -S datadep.c

Essential Abstractions in GCC

GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 10/62

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 9/62

Example 1: Observing Data Dependence

Notes

Example 1: Observing Data Dependence

Step 1: Examining the control flow graph

Program

Control Flow Graph

int a[200];
int main()

{
int i;
for (i=0; i<150; i++)
{
ali] = al[i+1] + 2;
}
return O;
}

<bb 3>:
113 = PHI <i_3(4), 0(2)>
i3 =113 + 1;
D.19554 = a[i_ 3];
D.1956.5 = D.1955.4 + 2;
ali_13] = D.1956.5;
if (1.3 !'= 150)
goto <bb 4>;
else
goto <bb 5>;
<bb 4>:
goto <bb 3>;

Essential Abstractions in GCC

GCC Resource Center, |IT Bombay

Essential Abstractions in GCC GCC Resource Center, IIT Bombay “g==y

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 10/62

Example 1: Observing Data Dependence

Notes

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 11/62

Example 1: Observing Data Dependence

Step 2: Understanding the chain of recurrences

<bb 3>:
i_13 = PHI <i_3(4), 0(2)>
i3 =113 + 1;
D.19554 = a[i 3];
D.1956.5 D.19554 + 2;
ali_13] = D.1956.5;
if (4.3 !'= 150)
goto <bb 4>;
else
goto <bb 5>;
<bb 4>:
goto <bb 3>;

GCC Resource Center, |IT Bombay I = I

Essential Abstractions in GCC

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 11/62

Example 1: Observing Data Dependence

Step 2: Understanding the chain of recurrences

<bb 3>:
i.13 = PHI <i_3(4), 0(2)>
i3 =113 + 1;
D.19554 = a[i_3];
D.1956.5 D.19554 + 2;
a[i_13] = D.1956.5;
if (i3 != 150)
goto <bb 4>;
else
goto <bb 5>;
<bb 4>:
goto <bb 3>;

(scalar_evolution = {0, +, 1}_.1)

GCC Resource Center, |IT Bombay I% I

Essential Abstractions in GCC

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 11/62

Example 1: Observing Data Dependence

Notes

GCC Resource Center, |IT Bombay I : I

R

Essential Abstractions in GCC

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 11/62

Example 1: Observing Data Dependence

Notes

GCC Resource Center, IIT Bombay@

Essential Abstractions in GCC

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 11/62

Example 1: Observing Data Dependence

Step 2: Understanding the chain of recurrences

<bb 3>:
i_13 = PHI <i_3(4), 0(2)>
i3 =113 + 1;
D.19554 = a[i 3];
D.1956.5 D.19554 + 2;
ali_13] = D.1956.5;
if (4.3 !'= 150)
goto <bb 4>;
else
goto <bb 5>;
<bb 4>:
goto <bb 3>;

(scalar_evolution = {1, +, 1}_.1)

Essential Abstractions in GCC

GCC Resource Center, |IT Bombay I = I

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 11/62

Example 1: Observing Data Dependence

Step 2: Understanding the chain of recurrences

<bb 3>:
i_13 = PHI <i_3(4), 0(2)>
i3 =113 + 1;
D.19554 = a[i_3];
D.1956.5 D.19554 + 2;
a[i_13] = D.1956.5;
if (i3 != 150)
goto <bb 4>;
else
goto <bb 5>;
<bb 4>:
goto <bb 3>;

base_address: &a

offset from base address: 0O

constant offset from base
address: 4

aligned to: 128

(chrec = {1, +, 1}_.1)

Essential Abstractions in GCC

GCC Resource Center, IIT Bombay@

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 11/62

Example 1: Observing Data Dependence

Notes

GCC Resource Center, |IT Bombay I = I

Essential Abstractions in GCC

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 11/62

Example 1: Observing Data Dependence

Notes

GCC Resource Center, IIT Bombay@

Essential Abstractions in GCC

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 11/62

Example 1: Observing Data Dependence

Step 2: Understanding the chain of recurrences

<bb 3>:
i_13 = PHI <i_3(4), 0(2)>
i3 =113 + 1;
D.19554 = a[i3];
D.1956.5 D.19554 + 2; base_address: &a
ali_13] = D.1956.5; offset from base address: O
if (i3 !'= 150) constant offset from base

goto <bb 4>; address: O
else aligned to: 128
goto <bb 5>; base_object: a[0]
<bb 4>: (chrec = {0, +, 1}.1)
goto <bb 3>;
Essential Abstractions in GCC GCC Resource Center, |IT Bombay I
3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 12/62

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 11/62

Example 1: Observing Data Dependence

Notes

Example 1: Observing Data Dependence
Step 3: Understanding Banerjee's test

Source View CFG View

e i3 =313 + 1;
D.19554 = a[i_3];
D.1956.5 = D.19554 + 2;
ali_13] = D.1956.5;

e Relevant assignment is
ali] = ali+1] +2

e Solve for 0 < x,y < 150

y = x+1 e Chain of recurrences are

- x-y+l =0 Forali3]: {1, +, 1}_1
e Find min and max of LHS Forali 13]: {0, +, 1}.1

— 1
Xyt e Solve for 0 < x_1 < 150

1+ 1*xx1 — 0+ 1*x.1=0
e Min of LHS is -148, Max is +150

Min: -148 Max: +150

RHS belongs to [—148,4150]
and dependence may exist e Dependence may exist

GCC Resource Center, |IT Bombay I% I

Essential Abstractions in GCC

Essential Abstractions in GCC

GCC Resource Center, |IT Bombay I = I

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 12/62

Example 1: Observing Data Dependence

Notes

GCC Resource Center, |IT Bombay I% I

Essential Abstractions in GCC

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 13/62

Example 1: Observing Data Dependence

Step 4: Observing the data dependence information

iterations_that_access_an_element_twice_in_A: [1 + 1 * x_1]
last_conflict: 149
iterations_that_access_an_element_twice_in_B: [0 + 1 * x_1]
last_conflict: 149

Subscript distance: 1

inner loop index: O
loop nest: (1)

distance_vector: 1
direction_vector: +

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 14/62

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 13/62

Example 1: Observing Data Dependence

Notes

Example 2: Observing Vectorization and Parallelization

Step 0: Compiling the code with -03

int a[256], b[256];
int main()
{
int i;
for (i=0; i<256; i++)
{
ali]l = b[il;
}
return O;
}

e Additional options for parallelization
-ftree-parallelize-loops=2 —-fdump-tree-parloops-all
¢ Additional options for vectorization

-fdump-tree-vect-all -msse4

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 14/62

Example 2: Observing Vectorization and Parallelization

Notes

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 15/62

Example 2: Observing Vectorization and Parallelization

Step 1: Examining the control flow graph

Program Control Flow Graph
int a[256], b[256]; <bb 3>:
int main() # i_11 = PHI <i_4(4), 0(2)>
{ D.2836.3 = b[i_11];
int i ali_11] = D.2836.3;
for (i=0; i<256; i++) | 1-4 = 111 +1;
{ if (i4 != 256)
ali] = blil; goto <bb 4>;
} else
return O: goto <bb 5>;
} <bb 4>:

goto <bb 3>;

GCC Resource Center, |IT Bombay I = I

Essential Abstractions in GCC

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 16/62

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 15/62

Example 2: Observing Vectorization and Parallelization

Notes

Example 2: Observing Vectorization and Parallelization

Step 2: Observing the final decision about vectorization

parvec.c:5: note: LOOP VECTORIZED.
parvec.c:2: note: vectorized 1 loops in function.

GCC Resource Center, |IT Bombay I% I

Essential Abstractions in GCC

GCC Resource Center, |IT Bombay I : I

R

Essential Abstractions in GCC

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 16/62

Example 2: Observing Vectorization and Parallelization

Notes

GCC Resource Center, IIT Bombay@

Essential Abstractions in GCC

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 17/62

Example 2: Observing Vectorization and Parallelization

Step 3: Examining the vectorized control flow graph

Original control flow graph Transformed control flow graph

<bb 2>:
vect_pb.7.10 = &b;
<bb 3>: vect_pa.12_15 = &a;

111 = PHI <i_4(4), 0(2)3 <bb 3>:
D.2836.3 = b[i.11]; # vect_pb.4.6 = PHI <vect_pb.4.13,

ali_11] = D.2836.3; vect_pb.7.10>
id =i11 + 1; # vect_pa.9.16 = PHI <vect_pa.9.17,

if (i4 '= 256) vect_pa.12.15>

goto <bb 4>; vect_var_.8.14 = MEM[vect pb.4.6];
else MEM[vect_pa.9-16] = vect_var_.8_14;
goto <bb 5>; vect_pb.4.13 = vectpb.4.6 + 16;
<bb 4>: vect_pa.9.17 = vect_pa.9.16 + 16;
goto <bb 3>; ivtmp.13.19 = ivtmp.13.18 + 1;

if (ivtmp.13.19 < 64)

goto <bb 4>;
GCC Resource Center, |IT Bombay

Essential Abstractions in GCC

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 18/62

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 17/62

Example 2: Observing Vectorization and Parallelization

Notes

Example 2: Observing Vectorization and Parallelization

Step 4: Understanding the strategy of parallel execution
e Create threads t; for 1 </ < MAX_THREADS

e Assigning start and end iteration for each thread
= Distribute iteration space across all threads

e Create the following code body for each thread t;
for (j=start_for_thread_i; j<=end_for_thread_i; j++)
{

/* execute the loop body to be parallelized */
}

o All threads are executed in parallel

GCC Resource Center, |IT Bombay I% I

Essential Abstractions in GCC

Essential Abstractions in GCC

GCC Resource Center, |IT Bombay I = I

R

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 18/62

Example 2: Observing Vectorization and Parallelization

Notes

GCC Resource Center, |IT Bombay I% I

Essential Abstractions in GCC

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 19/62

Example 2: Observing Vectorization and Parallelization

Step 5: Examining the thread creation in parallelized control flow graph

D.1996.6 = _builtin_omp_get_num threads () ;
D.19988 = __builtin omp_get_thread num ();
D.2000.10 = 255 / D.1997.6;

D.2001_11 = D.2000-10 * D.1997.6;
D.2002_12 = D.2001_11 != 255;

D.2003-13 = D.2002_12 + D.2000-10;

ivtmp.7-14 = D.2003_13 * D.1999.8;
D.2005-15 ivtmp.7-14 + D.2003_.13;
D.2006_16 MIN_EXPR <D.2005_15, 255>;
if (ivtmp.7_14 >= D.2006_16)

goto <bb 3>;

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 19/62

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 19/62

Example 2: Observing Vectorization and Parallelization

Notes

Example 2: Observing Vectorization and Parallelization

Step 5: Examining the thread creation in parallelized control flow graph

.1996.6 = __builtin_omp_get num_threads () ;
.1998.8 = _builtin_omp_get_thread num ();
.2000.10 = 255 / D.1997.6;

O 0OuUouoogouo

.2001_11 = D.2000-10 * D.1997.6;
.2002_12 = D.2001_11 !'= 255;
.2003_13 = D.2002_12 + D.2000_10;

ivtmp.7-14 = D.2003_.13 * D.1999.8;
D.2005_15 ivtmp.7-14 + D.2003_.13;
D.2006_16 MIN_EXPR <D.2005_15, 255>;
if (ivtmp.7-14 >= D.2006_.16)

goto <bb 3>;

Get the number of threads

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 19/62

Example 2: Observing Vectorization and Parallelization

Notes

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 19/62

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 19/62

Example 2: Observing Vectorization and Parallelization

Step 5: Examining the thread creation in parallelized control flow graph

.1996.6 = _builtin omp_get num threads ();
.1998.8 = __builtin omp_get_thread num ();
.2000.10 = 255 / D.1997.6;

.2001_11 = D.2000_-10 * D.1997.6;

.2002_12 = D.2001_11 !'= 255;

.2003_13 = D.2002_12 + D.2000_10;
ivtmp.7-14 = D.2003_13 * D.1999.8;
D.2005_15 ivtmp.7-14 + D.2003_.13;
D.2006_16 = MIN_EXPR <D.2005_15, 255>;

if (ivtmp.7-14 >= D.2006-16)

goto <bb 3>;

O U0UUououoo
] non

Get thread identity

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 19/62

Example 2: Observing Vectorization and Parallelization

Notes

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 19/62

Example 2: Observing Vectorization and Parallelization

Step 5: Examining the thread creation in parallelized control flow graph

D.1996. 6 = __builtin_omp_get num_threads ();
D.1998.8 = _builtin_omp_get_thread num ();
D.2000_10 = 255 / D.1997.6;

D.2001_11 = D.2000-10 * D.1997.6;

D.2002_12 = D.2001_11 != 255;

D.2003-13 = D.2002_12 + D.2000.10;

ivtmp.7.14 = D.2003_13 * D.1999.8;
D.2005_15 ivtmp.7-14 + D.2003_.13;
D.2006_16 MIN_EXPR <D.2005_15, 255>;
if (ivtmp.7-14 >= D.2006_.16)

goto <bb 3>;

Perform load calculations

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

Example 2: Observing Vectorization and Parallelization

Notes

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 19/62

Example 2: Observing Vectorization and Parallelization

Step 5: Examining the thread creation in parallelized control flow graph

.1996.6 = _builtin omp_get num threads ();
.1998.8 = __builtin_omp_get_thread num ();
.2000.10 = 255 / D.1997.6;

.2001_11 = D.2000_-10 * D.1997.6;

.2002_12 = D.2001_11 !'= 255;

.2003_13 = D.2002_12 + D.2000_10;
ivtmp.7.14 = D.2003_13 * D.1999.8;
D.2005_15 ivtmp.7-14 + D.2003_.13;
D.2006_16 = MIN_EXPR <D.2005_15, 255>;

if (ivtmp.7-14 >= D.2006-16)

goto <bb 3>;

O U0UUououoo
] non

Assign start iteration to the chosen thread

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 19/62

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 19/62

Example 2: Observing Vectorization and Parallelization

Notes

Example 2: Observing Vectorization and Parallelization

Step 5: Examining the thread creation in parallelized control flow graph

D.1996_ 6 = __builtin_omp_get num_threads ();
D.1998.8 = _builtin_omp_get_thread num ();
D.2000.10 = 255 / D.1997.6;

D.2001_11 = D.2000-10 * D.1997.6;
D.2002_12 = D.2001_11 !'= 255;

D.2003_13 = D.2002_12 + D.2000_10;

ivtmp.7.14 = D.2003_13 * D.1999.8;
D.2005.15 = ivtmp.7-14 + D.2003_13;
D.2006.16 = MIN_EXPR <D.2005.15, 255>;
if (ivtmp.7-14 >= D.2006.16)

goto <bb 3>;

Assign end iteration to the chosen thread

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 19/62

Example 2: Observing Vectorization and Parallelization

Notes

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 19/62

Example 2: Observing Vectorization and Parallelization

Step 5: Examining the thread creation in parallelized control flow graph

D.1996 6 = _builtin_omp_get num threads () ;
D.1998.8 = _builtin_omp_get_thread num ();
D.2000.10 = 255 / D.1997.6;

D.2001_11 = D.2000_.10 * D.1997.6;

D.2002_12 = D.2001_11 !'= 255;

D.2003_13 = D.2002_.12 + D.2000_10;

ivtmp.7-14 = D.2003_13 * D.1999.8;
D.2005_15 ivtmp.7.14 + D.2003_.13;
D.2006_16 MIN_EXPR <D.2005_15, 255>;
if (ivtmp.7-14 >= D.2006.16)

goto <bb 3>;

Start execution of iterations of the chosen thread

Essential Abstractions in GCC GCC Resource Center, |IT Bombay I

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 20/62

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework

19/62

Example 2: Observing Vectorization and Parallelization

Notes

Example 2: Observing Vectorization and Parallelization

Step 6: Examining the loop body to be executed by a thread

Control Flow Graph Parallel loop body
<bb 3>:
i_11 = PHI <i_4(4), 0(2)> | <bb 5>:
D.1956.3 = b[i_11]; i.8.21 = (int) ivtmp.7.18;
ali_11] = D.1956.3; D.201023 = *b.10.4[i.821];
id4 =111+ 1; *a.11.5[1.8.21] = D.2010.23;
if (i4 != 256) ivtmp.7.19 = ivtmp.7.18 + 1;
goto <bb 4>; if (D.2006.16 > ivtmp.7-19)
else goto <bb 5>;
goto <bb 5>; else
<bb 4>: goto <bb 3>;
goto <bb 3>;
Essential Abstractions in GCC GCC Resource Center, IIT Bombay

Essential Abstractions in GCC

GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework

20/62

Example 2: Observing Vectorization and Parallelization

Notes

Essential Abstractions in GCC

GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 21/62

Example 3: Vectorization but No Parallelization

Step 0: Compiling with
-03 -fdump-tree-vect-all -msse4

int a[624];
int main()
{
int i;
for (i=0; i<619; i++)
{
alil = ali+4];
}
return O;
}
Essential Abstractions in GCC GCC Resource Center, IIT Bombay
3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 22/62

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework

21/62

Example 3: Vectorization but No Parallelization

Notes

Example 3: Vectorization but No Parallelization

Step 1: Observing the final decision about vectorization

vecnopar.c:5: note: LOOP VECTORIZED.
vecnopar.c:2: note: vectorized 1 loops in function.

Essential Abstractions in GCC GCC Resource Center, IIT Bombayn

Essential Abstractions in GCC

GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework

22/62

Example 3: Vectorization but No Parallelization

Notes

Essential Abstractions in GCC

GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 23/62

Example 3: Vectorization but No Parallelization

Step 2: Examining vectorization

Control Flow Graph Vectorized Control Flow Graph

<bb 2>:
vect_pa.1026 = &al4];
vect_pa.15.30 = &a;
<bb 3>:
vect_pa.7_27 = PHI <vect_pa.7.28,
vect_pa.10.26>
vect_pa.12_.31 = PHI <vect_pa.12.32,
vect_pa.15_30>
vect_var_.11.29 = MEM[vect_pa.7.27];

<bb 3>:
i_12 = PHI <i 5(4), 0(2)>
D.2834.3 = i_12 + 4;
D.28354 = a[D.2834.3];
al[i_12] = D.2835.4;
ib =112 + 1;
if (i5 '= 619)

elg:to <bb 433 MEM[vect_pa.12_31] = vect_var_.11_29;
goto <bb 5>; vect_pa.728 = vect_pa.727 + 16;
<bb 4>: ’ vect_pa.12.32 = vect_pa.12.31 + 16;
goto <bb 3>; ivtmp.16.34 = ivtmp.1633 + 1;

if (ivtmp.16.34 < 154)

goto <bb 4>;
GCC Resource Center, |IT Bombay

Essential Abstractions in GCC

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 24/62

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 23/62

Example 3: Vectorization but No Parallelization

Notes

Example 3: Vectorization but No Parallelization

e Step 3: Observing the conclusion about dependence information

inner loop index: O
loop nest: (1)

distance_vector: 4
direction_vector: +

e Step 4: Observing the final decision about parallelization

FATLED: data dependencies exist across iterations

GCC Resource Center, IIT Bombay@

Essential Abstractions in GCC

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 24/62

Example 3: Vectorization but No Parallelization

Notes

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 25/62

Example 4: No Vectorization and No Parallelization

Step 0: Compiling the code with -03

int a[256], b[256];
int main ()
{
int i;
for (i=0; i<216; i++)
{
al[i+2] = b[i] + 5;
b[i+3] = al[i] + 10;
}
return O;
)3

e Additional options for parallelization
-ftree-parallelize-loops=2 —-fdump-tree-parloops-all
e Additional options for vectorization
-fdump-tree-vect-all -msse4 n

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 26/62

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework

25/62

Example 4: No Vectorization and No Parallelization

Notes

Example 4: No Vectorization and No Parallelization

e Step 1: Observing the final decision about vectorization

noparvec.c:5: note: vectorized O loops in function.

e Step 2: Observing the final decision about parallelization

FAILED: data dependencies exist across iterations

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework

R

26/62

Example 4: No Vectorization and No Parallelization

Notes

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 27/62

Example 4: No Vectorization and No Parallelization

Step 3: Understanding the dependencies that prohibit vectorization and
parallelization

ali+2] = b[i] + 5

51 (51

b[i+3] alil + 10

GCC Resource Center, |IT Bombay

Essential Abstractions in GCC

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 28/62

Advanced Issues in Vectorization

Alignment by Peeling

int a[256];
int main ()

{
int i;
for (i=4; i<253; i++)
al[i-3] = a[i-3] + al[i+2];
}
al[1] = a[1] + a[6]
Peel Factor = 3 Peel Factor = 3 Peel Factor = 2

GCC Resource Center, |IT Bombay

Essential Abstractions in GCC

3 July 2011

gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework

27/62

Example 4: No Vectorization and No Parallelization

Notes

Essential Abstractions in GCC

3 July 2011

GCC Resource Center, |IT Bombay

gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework

R

28/62

Notes

Advanced Issues in Vectorization

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 28/62

Advanced Issues in Vectorization

Alignment by Peeling

int a[256];
int main ()

{
int i;
for (i=4; i<253; i++)
al[i-3] = a[i-3] + al[i+2];
+

al[1] = a[1] + al[6]

Maximize alignment with minimal peel factor

GCC Resource Center, |IT Bombay

Essential Abstractions in GCC

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 28/62

Advanced Issues in Vectorization

Alignment by Peeling

int a[256];
int main ()

{
int i;
for (i=4; i<253; i++)
al[i-3] = al[i-3] + al[i+2];
}

Peel the loop by 3

GCC Resource Center, |IT Bombay

Essential Abstractions in GCC

3 July 2011

gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework

28/62

Notes

3 July 2011

Advanced lIssues in Vectorization

gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework

28/62

Notes

Advanced Issues in Vectorization

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 29/62

Advanced Issues in Vectorization

An aligned vectorized code can consist of three parts
e Peeled Prologue - Scalar code for alignment
e Vectorized body - Iterations that are vectorized

e Epilogue - Residual scalar iterations

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 30/62

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 29/62

Advanced lIssues in Vectorization

Notes

Advanced Issues in Vectorization

Loop Versioning

How do we vectorize a loop that has
e unaligned data references
e undetermined data dependence relation

int a[256];
int main ()

{
int i;
for (i=0; i<100; i++)
ali] = al[ix*2];
+

"Bad distance vector for al[i] and a[ix2]"

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

GCC Resource Center, |IT Bombay I = I

Essential Abstractions in GCC

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 30/62

Advanced Issues in Vectorization

Notes

GCC Resource Center, |IT Bombay I% I

Essential Abstractions in GCC

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 31/62

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 31/62

Advanced Issues in Vectorization

e Generate two versions of the loop, one which is vectorized and one
which is not.

e A test is then generated to control the execution of desired version.
The test checks for the alignment of all of the data references that
may or may not be aligned.

e An additional sequence of runtime tests is generated for each pairs
of data dependence relations whose independence was undetermined
or unproven.

e The vectorized version of loop is executed only if both alias and
alignment tests are passed.

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 32/62

Advanced lIssues in Vectorization

Notes

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 32/62

When to Vectorize?

Vectorization is profitable when

niters — PL_ITERS — EP_ITERS
VF

SIC xniters+SOC > VIC x () +VOC

SIC = scalar iteration cost

VIC = vector iteration cost
VOC = vector outside cost

VF = vectorization factor
PL_ITERS = prologue iterations
EP_ITERS = epilogue iterations
SOC = scalar outside cost

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

When to Vectorize?

Notes

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

Part 2

Loop Transformations in
Polytope Model

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 33/62

Notes

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 33/62

Problems with Classical Loop Nest Transforms

Loop nest optimization is a combinatorial problem. Due to the growing
complexity of modern architectures, it involves two increasingly difficult
tasks:

e Analyzing the profitability of sequences of transformations to
enhance parallelism, locality, and resource usage

e the construction and exploration of search space of legal
transformation sequences

Practical optimizing and parallelizing compilers restore to a predefined
set of enabling

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

Problems with Classical Loop Nest Transforms

Notes

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 34/62

Problems with Classical Loop Nest Transforms

Loop transformations on Lambda Framework were discontinued in
gcc-4.6.0 for the following reasons:

e Difficult to undo loop transformations - transforms are applied on
the syntactic form

e Difficult to compose transformations - intermediate translation to a
syntactic form is necessary after each transformation

e Ordering of transformations is fixed

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 35/62

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 34/62

Problems with Classical Loop Nest Transforms

Notes

Problems with Classical Loop Nest Transforms

Traditional Loop Transforms:

Original Gimple Gimple Transformed
Code 1 n Code

Transform 1 Transform n

Expected Loop Transforms with Composition:

Transform 1

Original Intermediate Transformed
Code Representation Code

Transform n

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 35/62

Problems with Classical Loop Nest Transforms

Notes

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 36/62

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 36/62

Requirement

GCC requires a rich algebraic representation that

e Provides a solution to phase-ordering problem - facilitate efficient
exploration and configuration of multiple transformation sequences

e Decouples the transformations from the syntatic form of program,
avoiding code size explosion

e Performs only legal transformation sequences

e Provides precise performance models and profitability prediction
heuristics

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 38/62

Requirement

Notes

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 38/62

Solution : Polyhedral Representation

e Polytope Model is a mathematical framework for loop nest
optimizations

e The loop bounds parametrized as inequalities form a convex

polyhedron
e An affine scheduling function specifies the scanning order of integral
points
J
i>1 i<n
for (i=1; i<=n; i++) 2 |
for (j=1; j<=n; j++) r
if (i<=n-j+2) ot

Sl g r

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

Solution : Polyhedral Representation

Notes

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 38/62

Solution : Polyhedral Representation

e Polytope Model is a mathematical framework for loop nest
optimizations

e The loop bounds parametrized as inequalities form a convex

polyhedron
e An affine scheduling function specifies the scanning order of integral

points)

J
i>1 i<n
for (i=1; i<=n; i++) ML
for (j=1; j<=n; j++) :
if (i<=n-j+2) ol AT S sn

S1;

: f i =1
GCC Resource Center, |IT Bombay I I

Essential Abstractions in GCC

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 38/62

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 38/62

Solution : Polyhedral Representation

Notes

Solution : Polyhedral Representation

e Polytope Model is a mathematical framework for loop nest
optimizations

e The loop bounds parametrized as inequalities form a convex

polyhedron
e An affine scheduling function specifies the scanning order of integral
points)
J
i>1 i<n
for (i=1; i<=n; i++) w2 r ;
for (j=1; j<=n; j++) P :
if (i<=n-j+2) T g<n
s1; BN
2F & © © &
.. @e-- P S >
! . e ’ 1,§7f—_7+2
12 n n+2 7
Essential Abstractions in GCC GCC Resource Center, IIT Bombay

GCC Resource Center, |IT Bombay I = I

Essential Abstractions in GCC

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 38/62

Solution : Polyhedral Representation

Notes

GCC Resource Center, |IT Bombay I% I

Essential Abstractions in GCC

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 39/62

GRAPHITE

GRAPHITE is the interface for polyhedra representation of GIMPLE

goal: more high level loop optimizations

Tasks of GRAPHITE Pass:

e Extract the polyhedral model representation out of GIMPLE
e Perform the various optimizations and analyses on this polyhedral
model representation

e Regenerate the GIMPLE three-address code that corresponds to
transformations on the polyhedral model

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 40/62

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 39/62

GRAPHITE

Notes

Compilation Workflow

[GIMPLE, SSA, CFG]

| SCoP detection |

| GPOLY construction |

Legality Check
Transformations

=)

[Transformed GPOLY]

GLOOG (CLOOG based)

GRAPHITE pass

[GIMPLE, SSA, CFG]

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 40/62

Compilation Workflow

Notes

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 41/62

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 41/62

What Code Can be Represented?

The target of polyhedral representation are sequence of loop nests with
Affine loop bounds (e.g. i < 4xn-+4xj-1)
Affine array accesses (e.g. A[3i+1])

Constant loop strides (e.g. i += 2)

Conditions containing comparisons (<,<,>,>,==,I=) between
affine functions

Invariant global parameters

Non-rectangular, non-perfectly nested loops are also represented
polyhedrally for optimization

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 42/62

What Code Can be Represented?

Notes

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 42/62

GPOLY

GPOLY : the polytope representation in GRAPHITE, currently
implemented by the Parma Polyhedra Library (PPL)

e SCoP - The optimization unit (e.g. a loop with some basic blocks)
scop := ([black box])

Black Box - An operation (e.g. basic block with one or more
statements) where the memory accesses are known
black box := (iteration domain, scattering matrix,
[data reference])

Iteration Domain - The set of loop iterations for the black box

Data Reference - The memory cells accessed by the black box

Scattering Matrix - Defines the execution order of statement
iterations (e.g. schedule)

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

GPOLY

Notes

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 44/62

Building SCoPs

e SCoPs built on top of the CFG
e Basic blocks with side-effect statements are split

e All basic blocks belonging to a SCoP are dominated by entry, and
postdominated by exit of the SCoP

int a[266][256], b[245], c[145],@ global parameter
int main ()
{
int i, j;
for (i=0; i<n; i++) {
for (j=0; j<62; j++) {

alil [j]1 = ali+1][j+2];
alj1[i+7] = bljl; SCoP bbs 1
¥
clil = alil[i+14]; T obs 2
}
¥
Essential Abstractions in GCC GCC Resource Center, |IT Bombay I
3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 45/62

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 44/62

Building SCoPs

Example : Building SCoPs

Splitting basic blocks:

callme () callme ()
c=d-1

GCC Resource Center, |IT Bombay I% I

Essential Abstractions in GCC

GCC Resource Center, |IT Bombay I I

Essential Abstractions in GCC

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 45/62

Example : Building SCoPs

Notes

GCC Resource Center, |IT Bombay I% I

Essential Abstractions in GCC

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 46/62

Polyhedral Representation of a SCoP

The statements and parametric affine inequalities can be expressed by:

e Iteration Domain (bounds of enclosing loops)

D3 ={i|D° x (i,g,1)7 > 0}

i j m n cst

for (i=0; i<m; i++)
for (j=5; j<n; j++) =
A[2+1] [j+1] = ...;

GCC Resource Center, |IT Bombay I = I

Essential Abstractions in GCC

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 46/62

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 46/62

Polyhedral Representation of a SCoP

Notes

Polyhedral Representation of a SCoP

The statements and parametric affine inequalities can be expressed by:

e Iteration Domain (bounds of enclosing loops)

DS ={i|D° x (i,g,1)7 > 0}

i j m n cst
for (i=0; i<m; i++) 1000 O
for (j=5; j<n; j++) =0
A[2%i] [j+1] = ...;
i>0
Essential Abstractions in GCC GCC Resource Center, IIT Bombay

Essential Abstractions in GCC GCC Resource Center, IIT Bombay “g==y

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 46/62

Polyhedral Representation of a SCoP

Notes

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 46/62

Polyhedral Representation of a SCoP

The statements and parametric affine inequalities can be expressed by:

e Iteration Domain (bounds of enclosing loops)

DS ={i|D° x (i,g,1)7 > 0}

i j m n cst
for (i=0; i<m; i++) 1000 0
for (j=5; j<Il; j++) -1 0 1 0 -1 >0
A[2+i] [j+1] = ...;
i<m-1
Essential Abstractions in GCC GCC Resource Center, IIT Bombay
3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 46/62

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model

46/62

Polyhedral Representation of a SCoP

Notes

Polyhedral Representation of a SCoP

The statements and parametric affine inequalities can be expressed by:

e Iteration Domain (bounds of enclosing loops)

DS ={i|D° x (i,g,1)7 > 0}

i j m n cst
for (i=0; i<m; i++) 1 00 0 O
for (j=5; j<n; j++) -1 01 0 -1 |>0
A[2%i][j+1] = ...; 0 1 0 0 -5
j=>5
Essential Abstractions in GCC GCC Resource Center, IIT Bombay

Essential Abstractions in GCC

GCC Resource Center, |IT Bombay I : I

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model

R

46/62

Polyhedral Representation of a SCoP

Notes

Essential Abstractions in GCC

GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 46/62

Polyhedral Representation of a SCoP

The statements and parametric affine inequalities can be expressed by:
e lteration Domain (bounds of enclosing loops)

DS ={i|D° x (i,g,1)7 > 0}

i j m n cst
for (i=0; i<m; i++) 10 00 0
for (j=5; j<Il; j++) -1 0 1 0 -1 >0
A[2+i] [j+1] = ...; 0 1 020 -5
0 -1 0 1 -1
j<n-1

Essential Abstractions in GCC GCC Resource Center, IIT Bombay
3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 47/62

Polyhedral Representation of a SCoP

The statements and parametric affine inequalities can be expressed by:
e Iteration Domain (bounds of enclosing loops)
e Data Reference (a list of access functions)

F={{,a,s) | F x (i,a,s,g,1)7 > 0}

for (i=1; i<m; i++) i j m n cst
for (j=5; j<n; j++)
A[2+i] [j+1] = ...;

Essential Abstractions in GCC GCC Resource Center, IIT Bombayn

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model

46/62

Polyhedral Representation of a SCoP

Notes

Essential Abstractions in GCC

GCC Resource Center, |IT Bombay I : I

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model

R

47/62

Polyhedral Representation of a SCoP

Notes

Essential Abstractions in GCC

GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 47/62

Polyhedral Representation of a SCoP
The statements and parametric affine inequalities can be expressed by:

e Iteration Domain (bounds of enclosing loops)

e Data Reference (a list of access functions)

f:{(i’a,s) |~F>< (i’a9syg91)T Z o}

for (i=1; i<m; i++) i j m n cst
for (j=5; j<n; j++) 2 0 00 O
A[2+i] [j+1] = ...;
2 x i
Essential Abstractions in GCC GCC Resource Center, |IT Bombay I
3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 47/62

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model

47/62

Polyhedral Representation of a SCoP

Notes

Polyhedral Representation of a SCoP
The statements and parametric affine inequalities can be expressed by:

e Iteration Domain (bounds of enclosing loops)
o Data Reference (a list of access functions)

F={{,a,s) | F x (i,a,s,g,1)7 > 0}

for (i=1; i<m; i++) i j m n cst
for (j=5; j<m; j++) 2 0 0 0 O
AD2+i] [5+1] = ... 0100 1
j+1
Essential Abstractions in GCC GCC Resource Center, |IT Bombay

Essential Abstractions in GCC

GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model

R

47/62

Polyhedral Representation of a SCoP

Notes

Essential Abstractions in GCC

GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 48/62

Polyhedral Representation of a SCoP

The statements and parametric affine inequalities can be expressed by:
e Iteration Domain (bounds of enclosing loops)
e Data Reference (a list of access functions)

e Scattering Function (scheduling order)

6 ={,i)|0x (t,i,g,107 > 0}

sequence [s1, s2]:
Sls1] =t, S[e]=t+1

loop [loopy s endi] : i1 indexes loop; iterations
S[loop1] =t, S[s] = (t, i1, 0)

GCC Resource Center, |IT Bombay

Essential Abstractions in GCC

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 48/62

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 48/62

Polyhedral Representation of a SCoP

Notes

Essential Abstractions in GCC GCC Resource Center, IIT Bombay “g==y

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 48/62

Polyhedral Representation of a SCoP

The statements and parametric affine inequalities can be expressed by:
e Iteration Domain (bounds of enclosing loops)
o Data Reference (a list of access functions)

e Scattering Function (scheduling order)

6 ={(,i) |0 x (¢t,i,g,)7 > 0}

for (i=1;i<=N;i++) {
for (j=1;j<=i-1;j++) {
alil[i] -= alil[j]l;
aljl[i] += alil([j];
} 051(i)7 = (0i,0,0)"
al[i]l [i] = sqrt(alil [i1);

Scattering Function

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

Polyhedral Representation of a SCoP

Notes

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 48/62
Polyhedral Representation of a SCoP

The statements and parametric affine inequalities can be expressed by:
e Iteration Domain (bounds of enclosing loops)
e Data Reference (a list of access functions)

e Scattering Function (scheduling order)

0 ={C,i)|0x (t,i,g,107 > 0}

for (i=1;i<=N;i++) {
for (j=1;j<=i-1;j++) {
ali]l[i] -= alil[j];
aljl[i] += alil[j1;
¥ 0s2(ij)" = (0,i,0,4,1)"

alil [i] = sqrt(alil [i]);
GCC Resource Center, IIT Bombay

Scattering Function

Essential Abstractions in GCC

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 48/62

3 July 2011

gcc-par-vect: Loop Transformations in Polytope Model

48/62

Notes

Polyhedral Representation of a SCoP

Polyhedral Representation of a SCoP

The statements and parametric affine inequalities can be expressed by:
e Iteration Domain (bounds of enclosing loops)
o Data Reference (a list of access functions)

e Scattering Function (scheduling order)

6 ={(,i) |0 x (¢t,i,g,)7 > 0}

for (i=1;i<=N;i++) {
for (j=1;j<=i-1;j++) {
alil[i] -= alil(jl;
aljl[i] += alil[j];
) bs3(i)T = (0, 1)7
alil [i] = sqrt(alil [i]);

Scattering Function

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

Essential Abstractions in GCC

3 July 2011

gcc-par-vect: Loop Transformations in Polytope Model

GCC Resource Center, |IT Bombay

R

48/62

Notes

Polyhedral Representation of a SCoP

Essential Abstractions in GCC

GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 49/62

Polyhedral Dependence Analysis in GRAPHITE

e An instancewise dependence analysis - dependences between source
and sink represented as polyhedra

e Scalar dependences are treated as zero-dimensional arrays
e Global parameters are handled

e Can take care of conditional and some form of triangular loops, as
the information can be safely integrated with the iteration domain

e High cost, and therefore dependence is computed only to validate a
transformation

GCC Resource Center, |IT Bombay I s I

Essential Abstractions in GCC

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 50/62

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 49/62

Polyhedral Dependence Analysis in GRAPHITE

Notes

Legality of Transformations

Original Code

int A[256] [256];
int main ()
{ for (120 1<ms 1emy pdro = A[j][i]
or (j=0; j<n; j++ . .
for (i=0; i<n; i++){ pdrl = A[i] [J]
ATi][3] = A[31[4il;
¥

Memory location A[0] [1] is read at pdry when j = 0 and later written
at pdr; when j =1
Dependence : Write after Read

GCC Resource Center, |IT Bombay I% I

Essential Abstractions in GCC

GCC Resource Center, |IT Bombay I = I

Essential Abstractions in GCC

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 50/62

Legality of Transformations

Notes

GCC Resource Center, |IT Bombay I% I

Essential Abstractions in GCC

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 51/62

Legality of Transformations

Original Code Loop Interchange
int A[256] [256]; int A[256] [256];
int main () int main ()
{ {

for (j=0; j<m; j++){
for (i=0; i<n; i++){
A[i1[31 = A[31[4l;
} }

for (i=0; j<n; i++){
for (j=0; j<m; j++){
A[i1[3] = A[31[41;

Are the dependences preserved after the transformation?

No! A[0] [1] is first written at pdr; when i = 0, and then read at pdry
when i =1

Dependence : Read after Write

GCC Resource Center, |IT Bombay I I

Essential Abstractions in GCC

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 52/62

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 51/62

Legality of Transformations

Notes

Legality of Transformations

A transformation is legal if the dependences are preserved - for any
dependence instance, the source and sink remain same across
transformation

e If the dependence is reversed, source becomes sink and sink
becomes source in the transformed space

e GRAPHITE captures this notion in Violated Dependence Analysis.
A reverse data dependence polyhedron is constructed in the
transformed scattering from sink to source, and it is intersected
with the original polyhedron

e If the intersection is non-empty, atleast one pair of iterations is
executed in wrong order, rendering the transformation illegal

GCC Resource Center, IIT Bombay@

Essential Abstractions in GCC

GCC Resource Center, |IT Bombay I I

Essential Abstractions in GCC

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 52/62

Legality of Transformations

Notes

GCC Resource Center, |IT Bombay I%I

Essential Abstractions in GCC

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 53/62

Parallelization with GRAPHITE

e The GRAPHITE pass without optimizations is run (GIMPLE —
POLY — GIMPLE)

e During this conversion, data dependence is performed using
instancewise data dependence analysis

e This dependence result is used to determine if the loop can be
parallelized
Benefits:

e Stronger dependence analysis, can detect parallelism in loops with
invariant parameters

e Conditional loops and some triangular loops can be parallelized after
loop distribution

Extra Compilation flag : -floop-parallelize-all
Essential Abstractions in GCC GCC Resource Center, |IT Bombay I
3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 54/62

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 53/62

Parallelization with GRAPHITE

Notes

Loop Tranformations in GRAPHITE

Loop transforms implemented in GRAPHITE:
e loop interchange
e loop blocking and loop stripmining

e loop flattening

These transformations are mostly used to improve scope of
parallelization or vectorization. Application of such transformations must
not violate the dependences

Cost Model:
e Cost models are used to check the profitability of transformation.

e For example, loops are interchanged only if the sum total of inner
loop's strides are greater than the outer loop

GCC Resource Center, IIT Bombay@

Essential Abstractions in GCC

Essential Abstractions in GCC

GCC Resource Center, |IT Bombay I I

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 54/62

Loop Tranformations in GRAPHITE

Notes

GCC Resource Center, |IT Bombay I%I

Essential Abstractions in GCC

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 55/62

Loop Interchange in GRAPHITE

Original Code

int A[256] [256] ;
int main ()

{
for (j=0; j<n; j++){
for (i=1; i<n; i++){
A[il[3] = A[i-11[5];
}
}
}

Strides of i = 255 + 255 = 510
Stridesof j=1+1=2

Since strides of i > strides of j, interchange loop i with j

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 56/62

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model

55/62

Loop Interchange in GRAPHITE

Notes

Loop Interchange in GRAPHITE

Original Code After Interchange
int A[256] [256]; int A[256] [256];
int main () int main ()
{ {
for (j=0; j<n; j+H){
for (i=1; i<n; i++){
A[i1[3] = A[i-11[5];
¥ ¥

for (i=1; i<n; i++){
for (j=0; j<n; j++){
AGi1[3] = ALi-11051;

outermost loop has the largest stride

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model

R

56/62

Loop Interchange in GRAPHITE

Notes

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 57/62

Loop Interchange in GRAPHITE

Original Code

for (i=1; i<n; i++){
for (j=0; j<m; j++){
A[i1[3] = ACfi-11[3]
}
}

Outer Loop - dependence on i, can not be parallelized
Inner Loop - parallelizable, but synchronization barrier required
Total number of times synchronization executed = n

Essential Abstractions in GCC GCC Resource Center, |IT Bombay I

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 58/62

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model

57/62

Loop Interchange in GRAPHITE

Notes

Loop Interchange in GRAPHITE

Original Code After Interchange
for (i=1; i<n; i++){ for (j=0; i<n; i++){
for (j=0; j<n; j++){ for (i=1; j<n; j++){
A[i1[3j]1 = A[i-11[j] A[i1[31 = A[i-11[j]
¥ ¥
} i

Outer Loop - parallelizable
Total number of times synchronization executed = 1

Is this loop interchange profitable in GRAPHITE?

Essential Abstractions in GCC GCC Resource Center, IIT Bombayn

Essential Abstractions in GCC

GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model

58/62

Loop Interchange in GRAPHITE

Notes

Essential Abstractions in GCC

GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 59/62

Loop Regeneration

e Chunky Loop Generator (CLooG) is used to regenerate the loop
e |t scans the integral points of the polyhedra to recreate loop bounds

Original Program Loop generated by CLooG
for (i=0; i<250; i++) for (i=0; i<=249; i++) {
for (j=0; j<200; j++) { for (j=0; j<=min(k+2,199); j++) {
if (j < k+3) Bl 5
S13 }
b }

Merge conditional code with loop bounds if possible

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 60/62

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model

59/62

Notes

Loop Regeneration

GRAPHITE Conclusions

Advantages of GRAPHITE

e Better data dependence analysis - handles conditional codes,
parametric invariants

e Makes auto-parallelization more efficient

e Composition of transforms is possible

Future Scope
e Making instancewise dependence analysis algorithmically cheaper

e Automating the search most profitable transform composition
sequence

e Developing efficient cost models

e Exploring scalability issues

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

Essential Abstractions in GCC

GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model

60,62

Notes

GRAPHITE Conclusions

Essential Abstractions in GCC

GCC Resource Center, |IT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 61/62 3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 61/62

Parallelization and Vectorization in GCC : Conclusions Parallelization and Vectorization in GCC : Conclusions

e Chain of recurrences seems to be a useful generalization
e Interaction between different passes is not clear due to fixed order

e Auto-vectorization and auto-parallelization can be improved by
enhancing the dependence analysis framework

o Efficient cost models are needed to automate legal transformation
composition

Notes

e GRAPHITE seems to be a promising mathematical abstraction

&= &=

Essential Abstractions in GCC GCC Resource Center, |IT Bombay “==y Essential Abstractions in GCC GCC Resource Center, |IT Bombay “==y

3 July 2011 gcce-par-vect: Loop Transformations in Polytope Model 62/62

Last but not the least ...

&=

Essential Abstractions in GCC GCC Resource Center, |IT Bombay

	Outline
	3.75inParallelization and Vectorization in GCC using Lambda Framework
	Parallelization and Vectorization in GCC using Lambda Framework
	3.75inLoop Transformations in Polytope Model
	Loop Transformations in Polytope Model

