
Workshop on Essential Abstractions in GCC

Parallelization and Vectorization in GCC

GCC Resource Center

(www.cse.iitb.ac.in/grc)

Department of Computer Science and Engineering,

Indian Institute of Technology, Bombay

3 July 2011

3 July 2011 gcc-par-vect: Outline 1/62

Outline

• An Overview of Loop Transformations in GCC

• Parallelization and Vectorization based on Lambda Framework

• Loop Transformations in Polytope Model

• Conclusions

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

Part 1

Parallelization and Vectorization

in GCC using Lambda

Framework

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 2/62

Loop Transforms in GCC

Implementation Issues

• Getting loop information (Loop discovery)

• Finding value spaces of induction variables, array subscript
functions, and pointer accesses

• Analyzing data dependence

• Performing linear transformations

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 3/62

Loop Information

Loop0

{ Loop1

{ Loop2

{

}

Loop3

{ Loop4

{

}

}

}

Loop5

{

}

}

Loop Tree

L0

L1 L5

L2 L3

L4

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 4/62

Loop Transformation Passes in GCC

NEXT PASS (pass tree loop);

{

struct opt pass **p = &pass tree loop.pass.sub;

NEXT PASS (pass tree loop init);

NEXT PASS (pass lim);

...

NEXT PASS (pass check data deps);

NEXT PASS (pass loop distribution);

NEXT PASS (pass copy prop);

NEXT PASS (pass graphite);

{

struct opt pass **p = &pass graphite.pass.sub;

NEXT PASS (pass graphite transforms);

...

}

NEXT PASS (pass iv canon);

NEXT PASS (pass if conversion);

NEXT PASS (pass vectorize);

{

struct opt pass **p = &pass vectorize.pass.sub;

NEXT PASS (pass lower vector ssa);

NEXT PASS (pass dce loop);

}

NEXT PASS (pass predcom);

NEXT PASS (pass complete unroll);

NEXT PASS (pass slp vectorize);

NEXT PASS (pass parallelize loops);

NEXT PASS (pass loop prefetch);

NEXT PASS (pass iv optimize);

NEXT PASS (pass tree loop done);

}

• Passes on tree-SSA form
A variant of Gimple IR

• Discover parallelism and
transform IR

• Parameterized by some
machine dependent features
(Vectorization factor,
alignment etc.)

• Mapping the transformed
IR to machine instructions
is achieved through
machine descriptions

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 4/62

Loop Transformation Passes in GCC
NEXT PASS (pass tree loop);

{

struct opt pass **p = &pass tree loop.pass.sub;

NEXT PASS (pass tree loop init);

NEXT PASS (pass lim);

...

NEXT PASS (pass check data deps);
NEXT PASS (pass loop distribution);
NEXT PASS (pass copy prop);

NEXT PASS (pass graphite);

{

struct opt pass **p = &pass graphite.pass.sub;

NEXT PASS (pass graphite transforms);

...

}

NEXT PASS (pass iv canon);

NEXT PASS (pass if conversion);

NEXT PASS (pass vectorize);
{

struct opt pass **p = &pass vectorize.pass.sub;

NEXT PASS (pass lower vector ssa);

NEXT PASS (pass dce loop);

}

NEXT PASS (pass predcom);

NEXT PASS (pass complete unroll);

NEXT PASS (pass slp vectorize);

NEXT PASS (pass parallelize loops);
NEXT PASS (pass loop prefetch);

NEXT PASS (pass iv optimize);

NEXT PASS (pass tree loop done);

}

• Passes on tree-SSA form
A variant of Gimple IR

• Discover parallelism and
transform IR

• Parameterized by some
machine dependent features
(Vectorization factor,
alignment etc.)

• Mapping the transformed
IR to machine instructions
is achieved through
machine descriptions

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 4/62

Loop Transformation Passes in GCC
NEXT PASS (pass tree loop);

{

struct opt pass **p = &pass tree loop.pass.sub;

NEXT PASS (pass tree loop init);

NEXT PASS (pass lim);

...

NEXT PASS (pass check data deps);
NEXT PASS (pass loop distribution);
NEXT PASS (pass copy prop);

NEXT PASS (pass graphite);
{

struct opt pass **p = &pass graphite.pass.sub;

NEXT PASS (pass graphite transforms);

...

}

NEXT PASS (pass iv canon);

NEXT PASS (pass if conversion);

NEXT PASS (pass vectorize);
{

struct opt pass **p = &pass vectorize.pass.sub;

NEXT PASS (pass lower vector ssa);

NEXT PASS (pass dce loop);

}

NEXT PASS (pass predcom);

NEXT PASS (pass complete unroll);

NEXT PASS (pass slp vectorize);

NEXT PASS (pass parallelize loops);
NEXT PASS (pass loop prefetch);

NEXT PASS (pass iv optimize);

NEXT PASS (pass tree loop done);

}

• Passes on tree-SSA form
A variant of Gimple IR

• Discover parallelism and
transform IR

• Parameterized by some
machine dependent features
(Vectorization factor,
alignment etc.)

• Mapping the transformed
IR to machine instructions
is achieved through
machine descriptions

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 5/62

Loop Transformation Passes in GCC: Our Focus

Data Dependence

Pass variable name pass check data deps

Enabling switch -fcheck-data-deps

Dump switch -fdump-tree-ckdd

Dump file extension .ckdd

Loop Distribution

Pass variable name pass loop distribution

Enabling switch -ftree-loop-distribution

Dump switch -fdump-tree-ldist

Dump file extension .ldist

Vectorization

Pass variable name pass vectorize

Enabling switch -ftree-vectorize

Dump switch -fdump-tree-vect

Dump file extension .vect

Parallelization

Pass variable name pass parallelize loops

Enabling switch -ftree-parallelize-loops=n

Dump switch -fdump-tree-parloops

Dump file extension .parloops

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 6/62

Compiling for Emitting Dumps

• Other necessary command line switches

◮ -O3 -fdump-tree-all

-O3 enables -ftree-vectorize. Other flags must be enabled
explicitly

• Processor related switches to enable transformations apart from
analysis

◮ -mtune=pentium -msse4

• Other useful options

◮ Suffixing -all to all dump switches
◮ -S to stop the compilation with assembly generation
◮ --verbose-asm to see more detailed assembly dump

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 7/62

Representing Value Spaces of Variables and Expressions

Chain of Recurrences: 3-tuple 〈Starting Value, modification, stride〉

for (i=3; i<=15; i=i+3)

{

for (j=11; j>=1; j=j-2)

{

A[i+1][2*j-1] = ...

}

}

Entity CR

Induction variable i {3,+, 3}
Induction variable j {11,+,−2}
Index expression i+1 {4,+, 3}
Index expression 2*j-1 {21,+,−4}

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 8/62

Advantages of Chain of Recurrences

CR can represent any affine expression
⇒ Accesses through pointers can also be tracked

int A[256], B[256];

int i, *p;

p = B;

for(i=1; i<200; i++)

{

*(p++) = A[i] + *p;

A[i] = *p;

}

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 8/62

Advantages of Chain of Recurrences

CR can represent any affine expression
⇒ Accesses through pointers can also be tracked

int A[256], B[256];

int i, *p;

p = B;

for(i=1; i<200; i++)

{

*(p++) = A[i] + *p;

A[i] = *p;

}

{&B,+,4bytes}

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 8/62

Advantages of Chain of Recurrences

CR can represent any affine expression
⇒ Accesses through pointers can also be tracked

int A[256], B[256];

int i, *p;

p = B;

for(i=1; i<200; i++)

{

*(p++) = A[i] + *p;

A[i] = *p;

}

{&B,+,4bytes}

{&B+4bytes,+,4bytes}

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 9/62

Example 1: Observing Data Dependence

Step 0: Compiling

int a[200];

int main()

{

int i;

for (i=0; i<150; i++)

{

a[i] = a[i+1] + 2;

}

return 0;

}

gcc -fcheck-data-deps -fdump-tree-ckdd-all -O3 -S datadep.c

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 10/62

Example 1: Observing Data Dependence

Step 1: Examining the control flow graph

Program Control Flow Graph

int a[200];

int main()

{

int i;

for (i=0; i<150; i++)

{

a[i] = a[i+1] + 2;

}

return 0;

}

<bb 3>:

i 13 = PHI <i 3(4), 0(2)>

i 3 = i 13 + 1;

D.1955 4 = a[i 3];

D.1956 5 = D.1955 4 + 2;

a[i 13] = D.1956 5;

if (i 3 != 150)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 10/62

Example 1: Observing Data Dependence

Step 1: Examining the control flow graph

Program Control Flow Graph

int a[200];

int main()

{

int i;

for (i=0; i<150; i++)

{

a[i] = a[i+1] + 2;

}

return 0;

}

<bb 3>:

i 13 = PHI <i 3(4), 0(2)>

i 3 = i 13 + 1;

D.1955 4 = a[i 3];

D.1956 5 = D.1955 4 + 2;

a[i 13] = D.1956 5;

if (i 3 != 150)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 10/62

Example 1: Observing Data Dependence

Step 1: Examining the control flow graph

Program Control Flow Graph

int a[200];

int main()

{

int i;

for (i=0; i<150; i++)

{

a[i] = a[i+1] + 2;

}

return 0;

}

<bb 3>:

i 13 = PHI <i 3(4), 0(2)>

i 3 = i 13 + 1;

D.1955 4 = a[i 3];

D.1956 5 = D.1955 4 + 2;

a[i 13] = D.1956 5;

if (i 3 != 150)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 10/62

Example 1: Observing Data Dependence

Step 1: Examining the control flow graph

Program Control Flow Graph

int a[200];

int main()

{

int i;

for (i=0; i<150; i++)

{

a[i] = a[i+1] + 2;

}

return 0;

}

<bb 3>:

i 13 = PHI <i 3(4), 0(2)>

i 3 = i 13 + 1;

D.1955 4 = a[i 3];

D.1956 5 = D.1955 4 + 2;

a[i 13] = D.1956 5;

if (i 3 != 150)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 11/62

Example 1: Observing Data Dependence

Step 2: Understanding the chain of recurrences

<bb 3>:

i 13 = PHI <i 3(4), 0(2)>

i 3 = i 13 + 1;

D.1955 4 = a[i 3];

D.1956 5 = D.1955 4 + 2;

a[i 13] = D.1956 5;

if (i 3 != 150)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 11/62

Example 1: Observing Data Dependence

Step 2: Understanding the chain of recurrences

<bb 3>:

i 13 = PHI <i 3(4), 0(2)>

i 3 = i 13 + 1;

D.1955 4 = a[i 3];

D.1956 5 = D.1955 4 + 2;

a[i 13] = D.1956 5;

if (i 3 != 150)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

(scalar evolution = {0, +, 1} 1)

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 11/62

Example 1: Observing Data Dependence

Step 2: Understanding the chain of recurrences

<bb 3>:

i 13 = PHI <i 3(4), 0(2)>

i 3 = i 13 + 1;

D.1955 4 = a[i 3];

D.1956 5 = D.1955 4 + 2;

a[i 13] = D.1956 5;

if (i 3 != 150)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

(scalar evolution = {1, +, 1} 1)

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 11/62

Example 1: Observing Data Dependence

Step 2: Understanding the chain of recurrences

<bb 3>:

i 13 = PHI <i 3(4), 0(2)>

i 3 = i 13 + 1;

D.1955 4 = a[i 3];

D.1956 5 = D.1955 4 + 2;

a[i 13] = D.1956 5;

if (i 3 != 150)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

base address: &a

offset from base address: 0

constant offset from base

address: 4

aligned to: 128

(chrec = {1, +, 1} 1)

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 11/62

Example 1: Observing Data Dependence

Step 2: Understanding the chain of recurrences

<bb 3>:

i 13 = PHI <i 3(4), 0(2)>

i 3 = i 13 + 1;

D.1955 4 = a[i 3];

D.1956 5 = D.1955 4 + 2;

a[i 13] = D.1956 5;

if (i 3 != 150)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

base address: &a

offset from base address: 0

constant offset from base

address: 0

aligned to: 128

base object: a[0]

(chrec = {0, +, 1} 1)

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 12/62

Example 1: Observing Data Dependence

Step 3: Understanding Banerjee’s test

Source View CFG View

• Relevant assignment is

a[i] = a[i+1]+ 2

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 12/62

Example 1: Observing Data Dependence

Step 3: Understanding Banerjee’s test

Source View CFG View

• Relevant assignment is

a[i] = a[i+1]+ 2

• Solve for 0 ≤ x , y < 150

y = x + 1

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 12/62

Example 1: Observing Data Dependence

Step 3: Understanding Banerjee’s test

Source View CFG View

• Relevant assignment is

a[i] = a[i+1]+ 2

• Solve for 0 ≤ x , y < 150

y = x + 1
⇒ x − y + 1 = 0

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 12/62

Example 1: Observing Data Dependence

Step 3: Understanding Banerjee’s test

Source View CFG View

• Relevant assignment is

a[i] = a[i+1]+ 2

• Solve for 0 ≤ x , y < 150

y = x + 1
⇒ x − y + 1 = 0

• Find min and max of LHS

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 12/62

Example 1: Observing Data Dependence

Step 3: Understanding Banerjee’s test

Source View CFG View

• Relevant assignment is

a[i] = a[i+1]+ 2

• Solve for 0 ≤ x , y < 150

y = x + 1
⇒ x − y + 1 = 0

• Find min and max of LHS

x − y + 1

Min: -148 Max: +150

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 12/62

Example 1: Observing Data Dependence

Step 3: Understanding Banerjee’s test

Source View CFG View

• Relevant assignment is

a[i] = a[i+1]+ 2

• Solve for 0 ≤ x , y < 150

y = x + 1
⇒ x − y + 1 = 0

• Find min and max of LHS

x − y + 1

Min: -148 Max: +150

RHS belongs to [−148,+150]
and dependence may exist

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 12/62

Example 1: Observing Data Dependence

Step 3: Understanding Banerjee’s test

Source View CFG View

• Relevant assignment is

a[i] = a[i+1]+ 2

• Solve for 0 ≤ x , y < 150

y = x + 1
⇒ x − y + 1 = 0

• Find min and max of LHS

x − y + 1

Min: -148 Max: +150

RHS belongs to [−148,+150]
and dependence may exist

• i 3 = i 13 + 1;

D.1955 4 = a[i 3];

D.1956 5 = D.1955 4 + 2;

a[i 13] = D.1956 5;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 12/62

Example 1: Observing Data Dependence

Step 3: Understanding Banerjee’s test

Source View CFG View

• Relevant assignment is

a[i] = a[i+1]+ 2

• Solve for 0 ≤ x , y < 150

y = x + 1
⇒ x − y + 1 = 0

• Find min and max of LHS

x − y + 1

Min: -148 Max: +150

RHS belongs to [−148,+150]
and dependence may exist

• i 3 = i 13 + 1;

D.1955 4 = a[i 3];

D.1956 5 = D.1955 4 + 2;

a[i 13] = D.1956 5;

• Chain of recurrences are

For a[i 3]: {1, +, 1} 1

For a[i 13]: {0, +, 1} 1

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 12/62

Example 1: Observing Data Dependence

Step 3: Understanding Banerjee’s test

Source View CFG View

• Relevant assignment is

a[i] = a[i+1]+ 2

• Solve for 0 ≤ x , y < 150

y = x + 1
⇒ x − y + 1 = 0

• Find min and max of LHS

x − y + 1

Min: -148 Max: +150

RHS belongs to [−148,+150]
and dependence may exist

• i 3 = i 13 + 1;

D.1955 4 = a[i 3];

D.1956 5 = D.1955 4 + 2;

a[i 13] = D.1956 5;

• Chain of recurrences are

For a[i 3]: {1, +, 1} 1

For a[i 13]: {0, +, 1} 1

• Solve for 0 ≤ x 1 < 150

1 + 1*x 1 − 0 + 1*x 1 = 0

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 12/62

Example 1: Observing Data Dependence

Step 3: Understanding Banerjee’s test

Source View CFG View

• Relevant assignment is

a[i] = a[i+1]+ 2

• Solve for 0 ≤ x , y < 150

y = x + 1
⇒ x − y + 1 = 0

• Find min and max of LHS

x − y + 1

Min: -148 Max: +150

RHS belongs to [−148,+150]
and dependence may exist

• i 3 = i 13 + 1;

D.1955 4 = a[i 3];

D.1956 5 = D.1955 4 + 2;

a[i 13] = D.1956 5;

• Chain of recurrences are

For a[i 3]: {1, +, 1} 1

For a[i 13]: {0, +, 1} 1

• Solve for 0 ≤ x 1 < 150

1 + 1*x 1 − 0 + 1*x 1 = 0

• Min of LHS is -148, Max is +150

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 12/62

Example 1: Observing Data Dependence

Step 3: Understanding Banerjee’s test

Source View CFG View

• Relevant assignment is

a[i] = a[i+1]+ 2

• Solve for 0 ≤ x , y < 150

y = x + 1
⇒ x − y + 1 = 0

• Find min and max of LHS

x − y + 1

Min: -148 Max: +150

RHS belongs to [−148,+150]
and dependence may exist

• i 3 = i 13 + 1;

D.1955 4 = a[i 3];

D.1956 5 = D.1955 4 + 2;

a[i 13] = D.1956 5;

• Chain of recurrences are

For a[i 3]: {1, +, 1} 1

For a[i 13]: {0, +, 1} 1

• Solve for 0 ≤ x 1 < 150

1 + 1*x 1 − 0 + 1*x 1 = 0

• Min of LHS is -148, Max is +150

• Dependence may exist

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 13/62

Example 1: Observing Data Dependence

Step 4: Observing the data dependence information

iterations_that_access_an_element_twice_in_A: [1 + 1 * x_1]

last_conflict: 149

iterations_that_access_an_element_twice_in_B: [0 + 1 * x_1]

last_conflict: 149

Subscript distance: 1

inner loop index: 0

loop nest: (1)

distance_vector: 1

direction_vector: +

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 14/62

Example 2: Observing Vectorization and Parallelization

Step 0: Compiling the code with -O3

int a[256], b[256];

int main()

{

int i;

for (i=0; i<256; i++)

{

a[i] = b[i];

}

return 0;

}

• Additional options for parallelization
-ftree-parallelize-loops=2 -fdump-tree-parloops-all

• Additional options for vectorization
-fdump-tree-vect-all -msse4

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 15/62

Example 2: Observing Vectorization and Parallelization

Step 1: Examining the control flow graph

Program Control Flow Graph

int a[256], b[256];

int main()

{

int i;

for (i=0; i<256; i++)

{

a[i] = b[i];

}

return 0;

}

<bb 3>:

i 11 = PHI <i 4(4), 0(2)>

D.2836 3 = b[i 11];

a[i 11] = D.2836 3;

i 4 = i 11 + 1;

if (i 4 != 256)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 15/62

Example 2: Observing Vectorization and Parallelization

Step 1: Examining the control flow graph

Program Control Flow Graph

int a[256], b[256];

int main()

{

int i;

for (i=0; i<256; i++)

{

a[i] = b[i];

}

return 0;

}

<bb 3>:

i 11 = PHI <i 4(4), 0(2)>

D.2836 3 = b[i 11];

a[i 11] = D.2836 3;

i 4 = i 11 + 1;

if (i 4 != 256)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 15/62

Example 2: Observing Vectorization and Parallelization

Step 1: Examining the control flow graph

Program Control Flow Graph

int a[256], b[256];

int main()

{

int i;

for (i=0; i<256; i++)

{

a[i] = b[i];

}

return 0;

}

<bb 3>:

i 11 = PHI <i 4(4), 0(2)>

D.2836 3 = b[i 11];

a[i 11] = D.2836 3;

i 4 = i 11 + 1;

if (i 4 != 256)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 16/62

Example 2: Observing Vectorization and Parallelization

Step 2: Observing the final decision about vectorization

parvec.c:5: note: LOOP VECTORIZED.

parvec.c:2: note: vectorized 1 loops in function.

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 17/62

Example 2: Observing Vectorization and Parallelization

Step 3: Examining the vectorized control flow graph

Original control flow graph Transformed control flow graph

<bb 3>:

i 11 = PHI <i 4(4), 0(2)>

D.2836 3 = b[i 11];

a[i 11] = D.2836 3;

i 4 = i 11 + 1;

if (i 4 != 256)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

<bb 2>:

vect pb.7 10 = &b;

vect pa.12 15 = &a;

<bb 3>:

vect pb.4 6 = PHI <vect pb.4 13,

vect pb.7 10>

vect pa.9 16 = PHI <vect pa.9 17,

vect pa.12 15>

vect var .8 14 = MEM[vect pb.4 6];

MEM[vect pa.9 16] = vect var .8 14;

vect pb.4 13 = vect pb.4 6 + 16;

vect pa.9 17 = vect pa.9 16 + 16;

ivtmp.13 19 = ivtmp.13 18 + 1;

if (ivtmp.13 19 < 64)

goto <bb 4>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 17/62

Example 2: Observing Vectorization and Parallelization

Step 3: Examining the vectorized control flow graph

Original control flow graph Transformed control flow graph

<bb 3>:

i 11 = PHI <i 4(4), 0(2)>

D.2836 3 = b[i 11];

a[i 11] = D.2836 3;

i 4 = i 11 + 1;

if (i 4 != 256)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

<bb 2>:

vect pb.7 10 = &b;

vect pa.12 15 = &a;

<bb 3>:

vect pb.4 6 = PHI <vect pb.4 13,

vect pb.7 10>

vect pa.9 16 = PHI <vect pa.9 17,

vect pa.12 15>

vect var .8 14 = MEM[vect pb.4 6];

MEM[vect pa.9 16] = vect var .8 14;

vect pb.4 13 = vect pb.4 6 + 16;

vect pa.9 17 = vect pa.9 16 + 16;

ivtmp.13 19 = ivtmp.13 18 + 1;

if (ivtmp.13 19 < 64)

goto <bb 4>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 17/62

Example 2: Observing Vectorization and Parallelization

Step 3: Examining the vectorized control flow graph

Original control flow graph Transformed control flow graph

<bb 3>:

i 11 = PHI <i 4(4), 0(2)>

D.2836 3 = b[i 11];

a[i 11] = D.2836 3;

i 4 = i 11 + 1;

if (i 4 != 256)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

<bb 2>:

vect pb.7 10 = &b;

vect pa.12 15 = &a;

<bb 3>:

vect pb.4 6 = PHI <vect pb.4 13,

vect pb.7 10>

vect pa.9 16 = PHI <vect pa.9 17,

vect pa.12 15>

vect var .8 14 = MEM[vect pb.4 6];

MEM[vect pa.9 16] = vect var .8 14;

vect pb.4 13 = vect pb.4 6 + 16;

vect pa.9 17 = vect pa.9 16 + 16;

ivtmp.13 19 = ivtmp.13 18 + 1;

if (ivtmp.13 19 < 64)

goto <bb 4>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 17/62

Example 2: Observing Vectorization and Parallelization

Step 3: Examining the vectorized control flow graph

Original control flow graph Transformed control flow graph

<bb 3>:

i 11 = PHI <i 4(4), 0(2)>

D.2836 3 = b[i 11];

a[i 11] = D.2836 3;

i 4 = i 11 + 1;

if (i 4 != 256)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

<bb 2>:

vect pb.7 10 = &b;

vect pa.12 15 = &a;

<bb 3>:

vect pb.4 6 = PHI <vect pb.4 13,

vect pb.7 10>

vect pa.9 16 = PHI <vect pa.9 17,

vect pa.12 15>

vect var .8 14 = MEM[vect pb.4 6];

MEM[vect pa.9 16] = vect var .8 14;

vect pb.4 13 = vect pb.4 6 + 16;

vect pa.9 17 = vect pa.9 16 + 16;

ivtmp.13 19 = ivtmp.13 18 + 1;

if (ivtmp.13 19 < 64)

goto <bb 4>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 17/62

Example 2: Observing Vectorization and Parallelization

Step 3: Examining the vectorized control flow graph

Original control flow graph Transformed control flow graph

<bb 3>:

i 11 = PHI <i 4(4), 0(2)>

D.2836 3 = b[i 11];

a[i 11] = D.2836 3;

i 4 = i 11 + 1;

if (i 4 != 256)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

<bb 2>:

vect pb.7 10 = &b;

vect pa.12 15 = &a;

<bb 3>:

vect pb.4 6 = PHI <vect pb.4 13,

vect pb.7 10>

vect pa.9 16 = PHI <vect pa.9 17,

vect pa.12 15>

vect var .8 14 = MEM[vect pb.4 6];

MEM[vect pa.9 16] = vect var .8 14;

vect pb.4 13 = vect pb.4 6 + 16;

vect pa.9 17 = vect pa.9 16 + 16;

ivtmp.13 19 = ivtmp.13 18 + 1;

if (ivtmp.13 19 < 64)

goto <bb 4>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 18/62

Example 2: Observing Vectorization and Parallelization

Step 4: Understanding the strategy of parallel execution

• Create threads ti for 1 ≤ i ≤ MAX THREADS

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 18/62

Example 2: Observing Vectorization and Parallelization

Step 4: Understanding the strategy of parallel execution

• Create threads ti for 1 ≤ i ≤ MAX THREADS

• Assigning start and end iteration for each thread
⇒ Distribute iteration space across all threads

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 18/62

Example 2: Observing Vectorization and Parallelization

Step 4: Understanding the strategy of parallel execution

• Create threads ti for 1 ≤ i ≤ MAX THREADS

• Assigning start and end iteration for each thread
⇒ Distribute iteration space across all threads

• Create the following code body for each thread ti

for (j=start_for_thread_i; j<=end_for_thread_i; j++)

{

/* execute the loop body to be parallelized */

}

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 18/62

Example 2: Observing Vectorization and Parallelization

Step 4: Understanding the strategy of parallel execution

• Create threads ti for 1 ≤ i ≤ MAX THREADS

• Assigning start and end iteration for each thread
⇒ Distribute iteration space across all threads

• Create the following code body for each thread ti

for (j=start_for_thread_i; j<=end_for_thread_i; j++)

{

/* execute the loop body to be parallelized */

}

• All threads are executed in parallel

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 19/62

Example 2: Observing Vectorization and Parallelization

Step 5: Examining the thread creation in parallelized control flow graph

D.1996 6 = builtin omp get num threads ();

D.1998 8 = builtin omp get thread num ();

D.2000 10 = 255 / D.1997 6;

D.2001 11 = D.2000 10 * D.1997 6;

D.2002 12 = D.2001 11 != 255;

D.2003 13 = D.2002 12 + D.2000 10;

ivtmp.7 14 = D.2003 13 * D.1999 8;

D.2005 15 = ivtmp.7 14 + D.2003 13;

D.2006 16 = MIN EXPR <D.2005 15, 255>;

if (ivtmp.7 14 >= D.2006 16)

goto <bb 3>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 19/62

Example 2: Observing Vectorization and Parallelization

Step 5: Examining the thread creation in parallelized control flow graph

D.1996 6 = builtin omp get num threads ();

D.1998 8 = builtin omp get thread num ();

D.2000 10 = 255 / D.1997 6;

D.2001 11 = D.2000 10 * D.1997 6;

D.2002 12 = D.2001 11 != 255;

D.2003 13 = D.2002 12 + D.2000 10;

ivtmp.7 14 = D.2003 13 * D.1999 8;

D.2005 15 = ivtmp.7 14 + D.2003 13;

D.2006 16 = MIN EXPR <D.2005 15, 255>;

if (ivtmp.7 14 >= D.2006 16)

goto <bb 3>;

Get the number of threads

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 19/62

Example 2: Observing Vectorization and Parallelization

Step 5: Examining the thread creation in parallelized control flow graph

D.1996 6 = builtin omp get num threads ();

D.1998 8 = builtin omp get thread num ();

D.2000 10 = 255 / D.1997 6;

D.2001 11 = D.2000 10 * D.1997 6;

D.2002 12 = D.2001 11 != 255;

D.2003 13 = D.2002 12 + D.2000 10;

ivtmp.7 14 = D.2003 13 * D.1999 8;

D.2005 15 = ivtmp.7 14 + D.2003 13;

D.2006 16 = MIN EXPR <D.2005 15, 255>;

if (ivtmp.7 14 >= D.2006 16)

goto <bb 3>;

Get thread identity

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 19/62

Example 2: Observing Vectorization and Parallelization

Step 5: Examining the thread creation in parallelized control flow graph

D.1996 6 = builtin omp get num threads ();

D.1998 8 = builtin omp get thread num ();

D.2000 10 = 255 / D.1997 6;

D.2001 11 = D.2000 10 * D.1997 6;

D.2002 12 = D.2001 11 != 255;

D.2003 13 = D.2002 12 + D.2000 10;

ivtmp.7 14 = D.2003 13 * D.1999 8;

D.2005 15 = ivtmp.7 14 + D.2003 13;

D.2006 16 = MIN EXPR <D.2005 15, 255>;

if (ivtmp.7 14 >= D.2006 16)

goto <bb 3>;

Perform load calculations

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 19/62

Example 2: Observing Vectorization and Parallelization

Step 5: Examining the thread creation in parallelized control flow graph

D.1996 6 = builtin omp get num threads ();

D.1998 8 = builtin omp get thread num ();

D.2000 10 = 255 / D.1997 6;

D.2001 11 = D.2000 10 * D.1997 6;

D.2002 12 = D.2001 11 != 255;

D.2003 13 = D.2002 12 + D.2000 10;

ivtmp.7 14 = D.2003 13 * D.1999 8;

D.2005 15 = ivtmp.7 14 + D.2003 13;

D.2006 16 = MIN EXPR <D.2005 15, 255>;

if (ivtmp.7 14 >= D.2006 16)

goto <bb 3>;

Assign start iteration to the chosen thread

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 19/62

Example 2: Observing Vectorization and Parallelization

Step 5: Examining the thread creation in parallelized control flow graph

D.1996 6 = builtin omp get num threads ();

D.1998 8 = builtin omp get thread num ();

D.2000 10 = 255 / D.1997 6;

D.2001 11 = D.2000 10 * D.1997 6;

D.2002 12 = D.2001 11 != 255;

D.2003 13 = D.2002 12 + D.2000 10;

ivtmp.7 14 = D.2003 13 * D.1999 8;

D.2005 15 = ivtmp.7 14 + D.2003 13;

D.2006 16 = MIN EXPR <D.2005 15, 255>;

if (ivtmp.7 14 >= D.2006 16)

goto <bb 3>;

Assign end iteration to the chosen thread

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 19/62

Example 2: Observing Vectorization and Parallelization

Step 5: Examining the thread creation in parallelized control flow graph

D.1996 6 = builtin omp get num threads ();

D.1998 8 = builtin omp get thread num ();

D.2000 10 = 255 / D.1997 6;

D.2001 11 = D.2000 10 * D.1997 6;

D.2002 12 = D.2001 11 != 255;

D.2003 13 = D.2002 12 + D.2000 10;

ivtmp.7 14 = D.2003 13 * D.1999 8;

D.2005 15 = ivtmp.7 14 + D.2003 13;

D.2006 16 = MIN EXPR <D.2005 15, 255>;

if (ivtmp.7 14 >= D.2006 16)

goto <bb 3>;

Start execution of iterations of the chosen thread

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 20/62

Example 2: Observing Vectorization and Parallelization

Step 6: Examining the loop body to be executed by a thread

Control Flow Graph Parallel loop body

<bb 3>:

i 11 = PHI <i 4(4), 0(2)>

D.1956 3 = b[i 11];

a[i 11] = D.1956 3;

i 4 = i 11 + 1;

if (i 4 != 256)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

<bb 5>:

i.8 21 = (int) ivtmp.7 18;

D.2010 23 = *b.10 4[i.8 21];

*a.11 5[i.8 21] = D.2010 23;

ivtmp.7 19 = ivtmp.7 18 + 1;

if (D.2006 16 > ivtmp.7 19)

goto <bb 5>;

else

goto <bb 3>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 20/62

Example 2: Observing Vectorization and Parallelization

Step 6: Examining the loop body to be executed by a thread

Control Flow Graph Parallel loop body

<bb 3>:

i 11 = PHI <i 4(4), 0(2)>

D.1956 3 = b[i 11];

a[i 11] = D.1956 3;

i 4 = i 11 + 1;

if (i 4 != 256)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

<bb 5>:

i.8 21 = (int) ivtmp.7 18;

D.2010 23 = *b.10 4[i.8 21];

*a.11 5[i.8 21] = D.2010 23;

ivtmp.7 19 = ivtmp.7 18 + 1;

if (D.2006 16 > ivtmp.7 19)

goto <bb 5>;

else

goto <bb 3>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 20/62

Example 2: Observing Vectorization and Parallelization

Step 6: Examining the loop body to be executed by a thread

Control Flow Graph Parallel loop body

<bb 3>:

i 11 = PHI <i 4(4), 0(2)>

D.1956 3 = b[i 11];

a[i 11] = D.1956 3;

i 4 = i 11 + 1;

if (i 4 != 256)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

<bb 5>:

i.8 21 = (int) ivtmp.7 18;

D.2010 23 = *b.10 4[i.8 21];

*a.11 5[i.8 21] = D.2010 23;

ivtmp.7 19 = ivtmp.7 18 + 1;

if (D.2006 16 > ivtmp.7 19)

goto <bb 5>;

else

goto <bb 3>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 20/62

Example 2: Observing Vectorization and Parallelization

Step 6: Examining the loop body to be executed by a thread

Control Flow Graph Parallel loop body

<bb 3>:

i 11 = PHI <i 4(4), 0(2)>

D.1956 3 = b[i 11];

a[i 11] = D.1956 3;

i 4 = i 11 + 1;

if (i 4 != 256)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

<bb 5>:

i.8 21 = (int) ivtmp.7 18;

D.2010 23 = *b.10 4[i.8 21];

*a.11 5[i.8 21] = D.2010 23;

ivtmp.7 19 = ivtmp.7 18 + 1;

if (D.2006 16 > ivtmp.7 19)

goto <bb 5>;

else

goto <bb 3>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 20/62

Example 2: Observing Vectorization and Parallelization

Step 6: Examining the loop body to be executed by a thread

Control Flow Graph Parallel loop body

<bb 3>:

i 11 = PHI <i 4(4), 0(2)>

D.1956 3 = b[i 11];

a[i 11] = D.1956 3;

i 4 = i 11 + 1;

if (i 4 != 256)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

<bb 5>:

i.8 21 = (int) ivtmp.7 18;

D.2010 23 = *b.10 4[i.8 21];

*a.11 5[i.8 21] = D.2010 23;

ivtmp.7 19 = ivtmp.7 18 + 1;

if (D.2006 16 > ivtmp.7 19)

goto <bb 5>;

else

goto <bb 3>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 21/62

Example 3: Vectorization but No Parallelization

Step 0: Compiling with
-O3 -fdump-tree-vect-all -msse4

int a[624];

int main()

{

int i;

for (i=0; i<619; i++)

{

a[i] = a[i+4];

}

return 0;

}

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 22/62

Example 3: Vectorization but No Parallelization

Step 1: Observing the final decision about vectorization

vecnopar.c:5: note: LOOP VECTORIZED.

vecnopar.c:2: note: vectorized 1 loops in function.

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 23/62

Example 3: Vectorization but No Parallelization

Step 2: Examining vectorization

Control Flow Graph Vectorized Control Flow Graph

<bb 3>:

i 12 = PHI <i 5(4), 0(2)>

D.2834 3 = i 12 + 4;

D.2835 4 = a[D.2834 3];

a[i 12] = D.2835 4;

i 5 = i 12 + 1;

if (i 5 != 619)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

<bb 2>:

vect pa.10 26 = &a[4];

vect pa.15 30 = &a;

<bb 3>:

vect pa.7 27 = PHI <vect pa.7 28,

vect pa.10 26>

vect pa.12 31 = PHI <vect pa.12 32,

vect pa.15 30>

vect var .11 29 = MEM[vect pa.7 27];

MEM[vect pa.12 31] = vect var .11 29;

vect pa.7 28 = vect pa.7 27 + 16;

vect pa.12 32 = vect pa.12 31 + 16;

ivtmp.16 34 = ivtmp.16 33 + 1;

if (ivtmp.16 34 < 154)

goto <bb 4>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 23/62

Example 3: Vectorization but No Parallelization

Step 2: Examining vectorization

Control Flow Graph Vectorized Control Flow Graph

<bb 3>:

i 12 = PHI <i 5(4), 0(2)>

D.2834 3 = i 12 + 4;

D.2835 4 = a[D.2834 3];

a[i 12] = D.2835 4;

i 5 = i 12 + 1;

if (i 5 != 619)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

<bb 2>:

vect pa.10 26 = &a[4];

vect pa.15 30 = &a;

<bb 3>:

vect pa.7 27 = PHI <vect pa.7 28,

vect pa.10 26>

vect pa.12 31 = PHI <vect pa.12 32,

vect pa.15 30>

vect var .11 29 = MEM[vect pa.7 27];

MEM[vect pa.12 31] = vect var .11 29;

vect pa.7 28 = vect pa.7 27 + 16;

vect pa.12 32 = vect pa.12 31 + 16;

ivtmp.16 34 = ivtmp.16 33 + 1;

if (ivtmp.16 34 < 154)

goto <bb 4>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 23/62

Example 3: Vectorization but No Parallelization

Step 2: Examining vectorization

Control Flow Graph Vectorized Control Flow Graph

<bb 3>:

i 12 = PHI <i 5(4), 0(2)>

D.2834 3 = i 12 + 4;

D.2835 4 = a[D.2834 3];

a[i 12] = D.2835 4;

i 5 = i 12 + 1;

if (i 5 != 619)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

<bb 2>:

vect pa.10 26 = &a[4];

vect pa.15 30 = &a;

<bb 3>:

vect pa.7 27 = PHI <vect pa.7 28,

vect pa.10 26>

vect pa.12 31 = PHI <vect pa.12 32,

vect pa.15 30>

vect var .11 29 = MEM[vect pa.7 27];

MEM[vect pa.12 31] = vect var .11 29;

vect pa.7 28 = vect pa.7 27 + 16;

vect pa.12 32 = vect pa.12 31 + 16;

ivtmp.16 34 = ivtmp.16 33 + 1;

if (ivtmp.16 34 < 154)

goto <bb 4>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 23/62

Example 3: Vectorization but No Parallelization

Step 2: Examining vectorization

Control Flow Graph Vectorized Control Flow Graph

<bb 3>:

i 12 = PHI <i 5(4), 0(2)>

D.2834 3 = i 12 + 4;

D.2835 4 = a[D.2834 3];

a[i 12] = D.2835 4;

i 5 = i 12 + 1;

if (i 5 != 619)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

<bb 2>:

vect pa.10 26 = &a[4];

vect pa.15 30 = &a;

<bb 3>:

vect pa.7 27 = PHI <vect pa.7 28,

vect pa.10 26>

vect pa.12 31 = PHI <vect pa.12 32,

vect pa.15 30>

vect var .11 29 = MEM[vect pa.7 27];

MEM[vect pa.12 31] = vect var .11 29;

vect pa.7 28 = vect pa.7 27 + 16;

vect pa.12 32 = vect pa.12 31 + 16;

ivtmp.16 34 = ivtmp.16 33 + 1;

if (ivtmp.16 34 < 154)

goto <bb 4>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 23/62

Example 3: Vectorization but No Parallelization

Step 2: Examining vectorization

Control Flow Graph Vectorized Control Flow Graph

<bb 3>:

i 12 = PHI <i 5(4), 0(2)>

D.2834 3 = i 12 + 4;

D.2835 4 = a[D.2834 3];

a[i 12] = D.2835 4;

i 5 = i 12 + 1;

if (i 5 != 619)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

<bb 2>:

vect pa.10 26 = &a[4];

vect pa.15 30 = &a;

<bb 3>:

vect pa.7 27 = PHI <vect pa.7 28,

vect pa.10 26>

vect pa.12 31 = PHI <vect pa.12 32,

vect pa.15 30>

vect var .11 29 = MEM[vect pa.7 27];

MEM[vect pa.12 31] = vect var .11 29;

vect pa.7 28 = vect pa.7 27 + 16;

vect pa.12 32 = vect pa.12 31 + 16;

ivtmp.16 34 = ivtmp.16 33 + 1;

if (ivtmp.16 34 < 154)

goto <bb 4>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 23/62

Example 3: Vectorization but No Parallelization

Step 2: Examining vectorization

Control Flow Graph Vectorized Control Flow Graph

<bb 3>:

i 12 = PHI <i 5(4), 0(2)>

D.2834 3 = i 12 + 4;

D.2835 4 = a[D.2834 3];

a[i 12] = D.2835 4;

i 5 = i 12 + 1;

if (i 5 != 619)

goto <bb 4>;

else

goto <bb 5>;

<bb 4>:

goto <bb 3>;

<bb 2>:

vect pa.10 26 = &a[4];

vect pa.15 30 = &a;

<bb 3>:

vect pa.7 27 = PHI <vect pa.7 28,

vect pa.10 26>

vect pa.12 31 = PHI <vect pa.12 32,

vect pa.15 30>

vect var .11 29 = MEM[vect pa.7 27];

MEM[vect pa.12 31] = vect var .11 29;

vect pa.7 28 = vect pa.7 27 + 16;

vect pa.12 32 = vect pa.12 31 + 16;

ivtmp.16 34 = ivtmp.16 33 + 1;

if (ivtmp.16 34 < 154)

goto <bb 4>;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 24/62

Example 3: Vectorization but No Parallelization

• Step 3: Observing the conclusion about dependence information

inner loop index: 0

loop nest: (1)

distance_vector: 4

direction_vector: +

• Step 4: Observing the final decision about parallelization

FAILED: data dependencies exist across iterations

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 25/62

Example 4: No Vectorization and No Parallelization

Step 0: Compiling the code with -O3

int a[256], b[256];

int main ()

{

int i;

for (i=0; i<216; i++)

{

a[i+2] = b[i] + 5;

b[i+3] = a[i] + 10;

}

return 0;

}

• Additional options for parallelization
-ftree-parallelize-loops=2 -fdump-tree-parloops-all

• Additional options for vectorization
-fdump-tree-vect-all -msse4

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 26/62

Example 4: No Vectorization and No Parallelization

• Step 1: Observing the final decision about vectorization

noparvec.c:5: note: vectorized 0 loops in function.

• Step 2: Observing the final decision about parallelization

FAILED: data dependencies exist across iterations

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 27/62

Example 4: No Vectorization and No Parallelization

Step 3: Understanding the dependencies that prohibit vectorization and
parallelization

a[i+2] = b[i] + 5

b[i+3] = a[i] + 10

δ1 δ1

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 28/62

Advanced Issues in Vectorization

Alignment by Peeling

int a[256];

int main ()

{

int i;

for (i=4; i<253; i++)

a[i-3] = a[i-3] + a[i+2];

}

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 28/62

Advanced Issues in Vectorization

Alignment by Peeling

int a[256];

int main ()

{

int i;

for (i=4; i<253; i++)

a[i-3] = a[i-3] + a[i+2];

}

a[1] = a[1] + a[6]

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 28/62

Advanced Issues in Vectorization

Alignment by Peeling

int a[256];

int main ()

{

int i;

for (i=4; i<253; i++)

a[i-3] = a[i-3] + a[i+2];

}

a[1] = a[1] + a[6]a[1]

Peel Factor = 3

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 28/62

Advanced Issues in Vectorization

Alignment by Peeling

int a[256];

int main ()

{

int i;

for (i=4; i<253; i++)

a[i-3] = a[i-3] + a[i+2];

}

a[1] = a[1] + a[6]a[1]

Peel Factor = 3

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 28/62

Advanced Issues in Vectorization

Alignment by Peeling

int a[256];

int main ()

{

int i;

for (i=4; i<253; i++)

a[i-3] = a[i-3] + a[i+2];

}

a[1] = a[1] + a[6]a[6]

Peel Factor = 2

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 28/62

Advanced Issues in Vectorization

Alignment by Peeling

int a[256];

int main ()

{

int i;

for (i=4; i<253; i++)

a[i-3] = a[i-3] + a[i+2];

}

a[1] = a[1] + a[6]

Maximize alignment with minimal peel factor

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 28/62

Advanced Issues in Vectorization

Alignment by Peeling

int a[256];

int main ()

{

int i;

for (i=4; i<253; i++)

a[i-3] = a[i-3] + a[i+2];

}

Peel the loop by 3

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 29/62

Advanced Issues in Vectorization

An aligned vectorized code can consist of three parts

• Peeled Prologue - Scalar code for alignment

• Vectorized body - Iterations that are vectorized

• Epilogue - Residual scalar iterations

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 30/62

Advanced Issues in Vectorization

Loop Versioning

How do we vectorize a loop that has

• unaligned data references

• undetermined data dependence relation

int a[256];

int main ()

{

int i;

for (i=0; i<100; i++)

a[i] = a[i*2];

}

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 30/62

Advanced Issues in Vectorization

Loop Versioning

How do we vectorize a loop that has

• unaligned data references

• undetermined data dependence relation

int a[256];

int main ()

{

int i;

for (i=0; i<100; i++)

a[i] = a[i*2];

}

"Bad distance vector for a[i] and a[i*2]"

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 31/62

Advanced Issues in Vectorization

• Generate two versions of the loop, one which is vectorized and one
which is not.

• A test is then generated to control the execution of desired version.
The test checks for the alignment of all of the data references that
may or may not be aligned.

• An additional sequence of runtime tests is generated for each pairs
of data dependence relations whose independence was undetermined
or unproven.

• The vectorized version of loop is executed only if both alias and
alignment tests are passed.

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Parallelization and Vectorization in GCC using Lambda Framework 32/62

When to Vectorize?

Vectorization is profitable when

SIC ∗niters+SOC > VIC ∗

(

niters − PL ITERS − EP ITERS

VF

)

+VOC

SIC = scalar iteration cost
VIC = vector iteration cost
VOC = vector outside cost
VF = vectorization factor
PL ITERS = prologue iterations
EP ITERS = epilogue iterations
SOC = scalar outside cost

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

Part 2

Loop Transformations in

Polytope Model

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 33/62

Problems with Classical Loop Nest Transforms

Loop nest optimization is a combinatorial problem. Due to the growing
complexity of modern architectures, it involves two increasingly difficult
tasks:

• Analyzing the profitability of sequences of transformations to
enhance parallelism, locality, and resource usage

• the construction and exploration of search space of legal
transformation sequences

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 33/62

Problems with Classical Loop Nest Transforms

Loop nest optimization is a combinatorial problem. Due to the growing
complexity of modern architectures, it involves two increasingly difficult
tasks:

• Analyzing the profitability of sequences of transformations to
enhance parallelism, locality, and resource usage

• the construction and exploration of search space of legal
transformation sequences

Practical optimizing and parallelizing compilers restore to a predefined
set of enabling

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 34/62

Problems with Classical Loop Nest Transforms

Loop transformations on Lambda Framework were discontinued in
gcc-4.6.0 for the following reasons:

• Difficult to undo loop transformations - transforms are applied on
the syntactic form

• Difficult to compose transformations - intermediate translation to a
syntactic form is necessary after each transformation

• Ordering of transformations is fixed

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 35/62

Problems with Classical Loop Nest Transforms

Traditional Loop Transforms:

Original
Code

Gimple
1

...
Gimple

n
Transformed

Code

Transform 1 Transform n

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 35/62

Problems with Classical Loop Nest Transforms

Traditional Loop Transforms:

Original
Code

Gimple
1

...
Gimple

n
Transformed

Code

Transform 1 Transform n

Expected Loop Transforms with Composition:

Transform 1

Original
Code

Intermediate
Representation

Transformed
Code

Transform n

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 36/62

Requirement

GCC requires a rich algebraic representation that

• Provides a solution to phase-ordering problem - facilitate efficient
exploration and configuration of multiple transformation sequences

• Decouples the transformations from the syntatic form of program,
avoiding code size explosion

• Performs only legal transformation sequences

• Provides precise performance models and profitability prediction
heuristics

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 37/62

Solution : Polyhedral Representation

• Polytope Model is a mathematical framework for loop nest
optimizations

• The loop bounds parametrized as inequalities form a convex
polyhedron

• An affine scheduling function specifies the scanning order of integral
points

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 38/62

Solution : Polyhedral Representation

• Polytope Model is a mathematical framework for loop nest
optimizations

• The loop bounds parametrized as inequalities form a convex
polyhedron

• An affine scheduling function specifies the scanning order of integral
points

for (i=1; i<=n; i++)

for (j=1; j<=n; j++)

if (i<=n-j+2)

S1;

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 38/62

Solution : Polyhedral Representation

• Polytope Model is a mathematical framework for loop nest
optimizations

• The loop bounds parametrized as inequalities form a convex
polyhedron

• An affine scheduling function specifies the scanning order of integral
points

for (i=1; i<=n; i++)

for (j=1; j<=n; j++)

if (i<=n-j+2)

S1;

1 2 n n+2 i

1

2

n

n+2

j

i≥1 i≤n

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 38/62

Solution : Polyhedral Representation

• Polytope Model is a mathematical framework for loop nest
optimizations

• The loop bounds parametrized as inequalities form a convex
polyhedron

• An affine scheduling function specifies the scanning order of integral
points

for (i=1; i<=n; i++)

for (j=1; j<=n; j++)

if (i<=n-j+2)

S1;

1 2 n n+2 i

1

2

n

n+2

j

j≤n

j≥1

i≥1 i≤n

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 38/62

Solution : Polyhedral Representation

• Polytope Model is a mathematical framework for loop nest
optimizations

• The loop bounds parametrized as inequalities form a convex
polyhedron

• An affine scheduling function specifies the scanning order of integral
points

for (i=1; i<=n; i++)

for (j=1; j<=n; j++)

if (i<=n-j+2)

S1;

1 2 n n+2 i

1

2

n

n+2

j

j≤n

j≥1

i≥1 i≤n

i≤n-j+2

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 38/62

Solution : Polyhedral Representation

• Polytope Model is a mathematical framework for loop nest
optimizations

• The loop bounds parametrized as inequalities form a convex
polyhedron

• An affine scheduling function specifies the scanning order of integral
points

for (i=1; i<=n; i++)

for (j=1; j<=n; j++)

if (i<=n-j+2)

S1;

s s s s

ss

s

s

s

s

s s

s

1 2 n n+2 i

1

2

n

n+2

j

j≤n

j≥1

i≥1 i≤n

i≤n-j+2

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 39/62

GRAPHITE

GRAPHITE is the interface for polyhedra representation of GIMPLE

goal: more high level loop optimizations

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 39/62

GRAPHITE

GRAPHITE is the interface for polyhedra representation of GIMPLE

goal: more high level loop optimizations

Tasks of GRAPHITE Pass:

• Extract the polyhedral model representation out of GIMPLE

• Perform the various optimizations and analyses on this polyhedral
model representation

• Regenerate the GIMPLE three-address code that corresponds to
transformations on the polyhedral model

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 40/62

Compilation Workflow

GIMPLE, SSA, CFG

SCoP detection

SCoPs

GPOLY construction

GRAPHITE pass

GPOLY

Legality Check
Transformations

Transformed GPOLY

GLOOG (CLOOG based)

GIMPLE, SSA, CFG

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 41/62

What Code Can be Represented?

The target of polyhedral representation are sequence of loop nests with

• Affine loop bounds (e.g. i < 4∗n+4∗j-1)

• Affine array accesses (e.g. A[3i+1])

• Constant loop strides (e.g. i += 2)

• Conditions containing comparisons (<,≤,>,≥,==,!=) between
affine functions

• Invariant global parameters

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 41/62

What Code Can be Represented?

The target of polyhedral representation are sequence of loop nests with

• Affine loop bounds (e.g. i < 4∗n+4∗j-1)

• Affine array accesses (e.g. A[3i+1])

• Constant loop strides (e.g. i += 2)

• Conditions containing comparisons (<,≤,>,≥,==,!=) between
affine functions

• Invariant global parameters

Non-rectangular, non-perfectly nested loops are also represented
polyhedrally for optimization

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 42/62

GPOLY

GPOLY : the polytope representation in GRAPHITE, currently
implemented by the Parma Polyhedra Library (PPL)

• SCoP - The optimization unit (e.g. a loop with some basic blocks)
scop := ([black box])

• Black Box - An operation (e.g. basic block with one or more
statements) where the memory accesses are known
black box := (iteration domain, scattering matrix,
[data reference])

• Iteration Domain - The set of loop iterations for the black box

• Data Reference - The memory cells accessed by the black box

• Scattering Matrix - Defines the execution order of statement
iterations (e.g. schedule)

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 43/62

Building SCoPs

• SCoPs built on top of the CFG

• Basic blocks with side-effect statements are split

• All basic blocks belonging to a SCoP are dominated by entry, and
postdominated by exit of the SCoP

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 44/62

Building SCoPs

• SCoPs built on top of the CFG

• Basic blocks with side-effect statements are split

• All basic blocks belonging to a SCoP are dominated by entry, and
postdominated by exit of the SCoP

int a[256][256], b[245], c[145], n;

int main ()

{

int i, j;

for (i=0; i<n; i++) {

for (j=0; j<62; j++) {

a[i][j] = a[i+1][j+2];

a[j][i+7] = b[j];

}

c[i] = a[i][i+14];

}

}

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 44/62

Building SCoPs

• SCoPs built on top of the CFG

• Basic blocks with side-effect statements are split

• All basic blocks belonging to a SCoP are dominated by entry, and
postdominated by exit of the SCoP

int a[256][256], b[245], c[145], n;

int main ()

{

int i, j;

for (i=0; i<n; i++) {

for (j=0; j<62; j++) {

a[i][j] = a[i+1][j+2];

a[j][i+7] = b[j];

}

c[i] = a[i][i+14];

}

}

global parameter

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 44/62

Building SCoPs

• SCoPs built on top of the CFG

• Basic blocks with side-effect statements are split

• All basic blocks belonging to a SCoP are dominated by entry, and
postdominated by exit of the SCoP

int a[256][256], b[245], c[145], n;

int main ()

{

int i, j;

for (i=0; i<n; i++) {

for (j=0; j<62; j++) {

a[i][j] = a[i+1][j+2];

a[j][i+7] = b[j];

}

c[i] = a[i][i+14];

}

}

global parameter

SCoP

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 44/62

Building SCoPs

• SCoPs built on top of the CFG

• Basic blocks with side-effect statements are split

• All basic blocks belonging to a SCoP are dominated by entry, and
postdominated by exit of the SCoP

int a[256][256], b[245], c[145], n;

int main ()

{

int i, j;

for (i=0; i<n; i++) {

for (j=0; j<62; j++) {

a[i][j] = a[i+1][j+2];

a[j][i+7] = b[j];

}

c[i] = a[i][i+14];

}

}

global parameter

SCoP bbs 1

bbs 2

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 45/62

Example : Building SCoPs

Splitting basic blocks:

a = b + 2
callme ()
c = d - 1

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 45/62

Example : Building SCoPs

Splitting basic blocks:

a = b + 2
callme ()
c = d - 1

a = b + 2

callme ()
c = d - 1

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 45/62

Example : Building SCoPs

Splitting basic blocks:

a = b + 2
callme ()
c = d - 1

a = b + 2

callme ()
c = d - 1

a = b + 2

callme ()

c = d - 1

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 46/62

Polyhedral Representation of a SCoP

The statements and parametric affine inequalities can be expressed by:

• Iteration Domain (bounds of enclosing loops)

DS = {i | DS × (i,g,1)T ≥ 0}

for (i=0; i<m; i++)

for (j=5; j<n; j++)

A[2∗i][j+1] = . . . ;

i j m n cst

≥ 0

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 46/62

Polyhedral Representation of a SCoP

The statements and parametric affine inequalities can be expressed by:

• Iteration Domain (bounds of enclosing loops)

DS = {i | DS × (i,g,1)T ≥ 0}

for (i=0; i<m; i++)

for (j=5; j<n; j++)

A[2∗i][j+1] = . . . ;

i j m n cst

1 0 0 0 0

≥ 0

i ≥ 0

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 46/62

Polyhedral Representation of a SCoP

The statements and parametric affine inequalities can be expressed by:

• Iteration Domain (bounds of enclosing loops)

DS = {i | DS × (i,g,1)T ≥ 0}

for (i=0; i<m; i++)

for (j=5; j<n; j++)

A[2∗i][j+1] = . . . ;

i j m n cst

1 0 0 0 0
−1 0 1 0 −1

≥ 0

i ≤ m - 1

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 46/62

Polyhedral Representation of a SCoP

The statements and parametric affine inequalities can be expressed by:

• Iteration Domain (bounds of enclosing loops)

DS = {i | DS × (i,g,1)T ≥ 0}

for (i=0; i<m; i++)

for (j=5; j<n; j++)

A[2∗i][j+1] = . . . ;

i j m n cst

1 0 0 0 0
−1 0 1 0 −1
0 1 0 0 −5

≥ 0

j ≥ 5

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 46/62

Polyhedral Representation of a SCoP

The statements and parametric affine inequalities can be expressed by:

• Iteration Domain (bounds of enclosing loops)

DS = {i | DS × (i,g,1)T ≥ 0}

for (i=0; i<m; i++)

for (j=5; j<n; j++)

A[2∗i][j+1] = . . . ;

i j m n cst

1 0 0 0 0
−1 0 1 0 −1
0 1 0 0 −5
0 −1 0 1 −1

≥ 0

j ≤ n - 1

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 47/62

Polyhedral Representation of a SCoP

The statements and parametric affine inequalities can be expressed by:

• Iteration Domain (bounds of enclosing loops)

• Data Reference (a list of access functions)

F = {(i,a,s) | F × (i,a,s,g,1)T ≥ 0}

for (i=1; i<m; i++)

for (j=5; j<n; j++)

A[2∗i][j+1] = . . . ;

i j m n cst

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 47/62

Polyhedral Representation of a SCoP

The statements and parametric affine inequalities can be expressed by:

• Iteration Domain (bounds of enclosing loops)

• Data Reference (a list of access functions)

F = {(i,a,s) | F × (i,a,s,g,1)T ≥ 0}

for (i=1; i<m; i++)

for (j=5; j<n; j++)

A[2∗i][j+1] = . . . ;

i j m n cst

2 0 0 0 0

2 ∗ i

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 47/62

Polyhedral Representation of a SCoP

The statements and parametric affine inequalities can be expressed by:

• Iteration Domain (bounds of enclosing loops)

• Data Reference (a list of access functions)

F = {(i,a,s) | F × (i,a,s,g,1)T ≥ 0}

for (i=1; i<m; i++)

for (j=5; j<n; j++)

A[2∗i][j+1] = . . . ;

i j m n cst

2 0 0 0 0
0 1 0 0 1

j + 1

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 48/62

Polyhedral Representation of a SCoP

The statements and parametric affine inequalities can be expressed by:

• Iteration Domain (bounds of enclosing loops)

• Data Reference (a list of access functions)

• Scattering Function (scheduling order)

θ = {(t,i) | θ × (t,i,g,1)T ≥ 0}

sequence [s1, s2]:
S[s1] = t, S[s2] = t + 1

loop [loop1 s end1] : i1 indexes loop1 iterations
S[loop1] = t, S[s] = (t, i1, 0)

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 48/62

Polyhedral Representation of a SCoP

The statements and parametric affine inequalities can be expressed by:

• Iteration Domain (bounds of enclosing loops)

• Data Reference (a list of access functions)

• Scattering Function (scheduling order)

θ = {(t,i) | θ × (t,i,g,1)T ≥ 0}

for (i=1;i<=N;i++) {

for (j=1;j<=i-1;j++) {

a[i][i] -= a[i][j];

a[j][i] += a[i][j];

}

a[i][i] = sqrt(a[i][i]);

}

Scattering Function

θS1(i,j)
T = (0,i,0,j,0)T

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 48/62

Polyhedral Representation of a SCoP

The statements and parametric affine inequalities can be expressed by:

• Iteration Domain (bounds of enclosing loops)

• Data Reference (a list of access functions)

• Scattering Function (scheduling order)

θ = {(t,i) | θ × (t,i,g,1)T ≥ 0}

for (i=1;i<=N;i++) {

for (j=1;j<=i-1;j++) {

a[i][i] -= a[i][j];

a[j][i] += a[i][j];

}

a[i][i] = sqrt(a[i][i]);

}

Scattering Function

θS2(i,j)
T = (0,i,0,j,1)T

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 48/62

Polyhedral Representation of a SCoP

The statements and parametric affine inequalities can be expressed by:

• Iteration Domain (bounds of enclosing loops)

• Data Reference (a list of access functions)

• Scattering Function (scheduling order)

θ = {(t,i) | θ × (t,i,g,1)T ≥ 0}

for (i=1;i<=N;i++) {

for (j=1;j<=i-1;j++) {

a[i][i] -= a[i][j];

a[j][i] += a[i][j];

}

a[i][i] = sqrt(a[i][i]);

}

Scattering Function

θS3(i,j)
T = (0,i,1)T

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 49/62

Polyhedral Dependence Analysis in GRAPHITE

• An instancewise dependence analysis - dependences between source
and sink represented as polyhedra

• Scalar dependences are treated as zero-dimensional arrays

• Global parameters are handled

• Can take care of conditional and some form of triangular loops, as
the information can be safely integrated with the iteration domain

• High cost, and therefore dependence is computed only to validate a
transformation

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 50/62

Legality of Transformations

Original Code

int A[256][256];

int main ()

{

for (j=0; j<n; j++){

for (i=0; i<n; i++){

A[i][j] = A[j][i];

}

}

}

pdr0 = A[j][i]

pdr1 = A[i][j]

Memory location A[0][1] is read at pdr0 when j = 0 and later written
at pdr1 when j = 1
Dependence : Write after Read

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 51/62

Legality of Transformations

Original Code

int A[256][256];

int main ()

{

for (j=0; j<n; j++){

for (i=0; i<n; i++){

A[i][j] = A[j][i];

}

}

}

Loop Interchange

int A[256][256];

int main ()

{

for (i=0; j<n; i++){

for (j=0; j<n; j++){

A[i][j] = A[j][i];

}

}

}

Are the dependences preserved after the transformation?

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 51/62

Legality of Transformations

Original Code

int A[256][256];

int main ()

{

for (j=0; j<n; j++){

for (i=0; i<n; i++){

A[i][j] = A[j][i];

}

}

}

Loop Interchange

int A[256][256];

int main ()

{

for (i=0; j<n; i++){

for (j=0; j<n; j++){

A[i][j] = A[j][i];

}

}

}

Are the dependences preserved after the transformation?

No! A[0][1] is first written at pdr1 when i = 0, and then read at pdr0
when i = 1
Dependence : Read after Write

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 52/62

Legality of Transformations

• A transformation is legal if the dependences are preserved - for any
dependence instance, the source and sink remain same across
transformation

• If the dependence is reversed, source becomes sink and sink
becomes source in the transformed space

• GRAPHITE captures this notion in Violated Dependence Analysis.
A reverse data dependence polyhedron is constructed in the
transformed scattering from sink to source, and it is intersected
with the original polyhedron

• If the intersection is non-empty, atleast one pair of iterations is
executed in wrong order, rendering the transformation illegal

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 53/62

Parallelization with GRAPHITE

• The GRAPHITE pass without optimizations is run (GIMPLE →
POLY → GIMPLE)

• During this conversion, data dependence is performed using
instancewise data dependence analysis

• This dependence result is used to determine if the loop can be
parallelized

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 53/62

Parallelization with GRAPHITE

• The GRAPHITE pass without optimizations is run (GIMPLE →
POLY → GIMPLE)

• During this conversion, data dependence is performed using
instancewise data dependence analysis

• This dependence result is used to determine if the loop can be
parallelized

Benefits:

• Stronger dependence analysis, can detect parallelism in loops with
invariant parameters

• Conditional loops and some triangular loops can be parallelized after
loop distribution

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 53/62

Parallelization with GRAPHITE

• The GRAPHITE pass without optimizations is run (GIMPLE →
POLY → GIMPLE)

• During this conversion, data dependence is performed using
instancewise data dependence analysis

• This dependence result is used to determine if the loop can be
parallelized

Benefits:

• Stronger dependence analysis, can detect parallelism in loops with
invariant parameters

• Conditional loops and some triangular loops can be parallelized after
loop distribution

Extra Compilation flag : -floop-parallelize-all

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 54/62

Loop Tranformations in GRAPHITE

Loop transforms implemented in GRAPHITE:

• loop interchange

• loop blocking and loop stripmining

• loop flattening

These transformations are mostly used to improve scope of
parallelization or vectorization. Application of such transformations must
not violate the dependences

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 54/62

Loop Tranformations in GRAPHITE

Loop transforms implemented in GRAPHITE:

• loop interchange

• loop blocking and loop stripmining

• loop flattening

These transformations are mostly used to improve scope of
parallelization or vectorization. Application of such transformations must
not violate the dependences

Cost Model:

• Cost models are used to check the profitability of transformation.

• For example, loops are interchanged only if the sum total of inner
loop’s strides are greater than the outer loop

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 55/62

Loop Interchange in GRAPHITE

Original Code

int A[256][256];

int main ()

{

for (j=0; j<n; j++){

for (i=1; i<n; i++){

A[i][j] = A[i-1][j];

}

}

}

Strides of i = 255 + 255 = 510
Strides of j = 1 + 1 = 2

Since strides of i > strides of j, interchange loop i with j

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 56/62

Loop Interchange in GRAPHITE

Original Code

int A[256][256];

int main ()

{

for (j=0; j<n; j++){

for (i=1; i<n; i++){

A[i][j] = A[i-1][j];

}

}

}

After Interchange

int A[256][256];

int main ()

{

for (i=1; i<n; i++){

for (j=0; j<n; j++){

A[i][j] = A[i-1][j];

}

}

}

outermost loop has the largest stride

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 57/62

Loop Interchange in GRAPHITE

Original Code

for (i=1; i<n; i++){

for (j=0; j<n; j++){

A[i][j] = A[i-1][j]

}

}

Outer Loop - dependence on i, can not be parallelized
Inner Loop - parallelizable, but synchronization barrier required
Total number of times synchronization executed = n

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 58/62

Loop Interchange in GRAPHITE

Original Code

for (i=1; i<n; i++){

for (j=0; j<n; j++){

A[i][j] = A[i-1][j]

}

}

After Interchange

for (j=0; i<n; i++){

for (i=1; j<n; j++){

A[i][j] = A[i-1][j]

}

}

Outer Loop - parallelizable
Total number of times synchronization executed = 1

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 58/62

Loop Interchange in GRAPHITE

Original Code

for (i=1; i<n; i++){

for (j=0; j<n; j++){

A[i][j] = A[i-1][j]

}

}

After Interchange

for (j=0; i<n; i++){

for (i=1; j<n; j++){

A[i][j] = A[i-1][j]

}

}

Outer Loop - parallelizable
Total number of times synchronization executed = 1

Is this loop interchange profitable in GRAPHITE?

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 59/62

Loop Regeneration

• Chunky Loop Generator (CLooG) is used to regenerate the loop

• It scans the integral points of the polyhedra to recreate loop bounds

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 59/62

Loop Regeneration

• Chunky Loop Generator (CLooG) is used to regenerate the loop

• It scans the integral points of the polyhedra to recreate loop bounds

Original Program

for (i=0; i<250; i++)

for (j=0; j<200; j++) {

if (j < k+3)

S1;

}

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 59/62

Loop Regeneration

• Chunky Loop Generator (CLooG) is used to regenerate the loop

• It scans the integral points of the polyhedra to recreate loop bounds

Original Program

for (i=0; i<250; i++)

for (j=0; j<200; j++) {

if (j < k+3)

S1;

}

Loop generated by CLooG

for (i=0; i<=249; i++) {

for (j=0; j<=min(k+2,199); j++) {

S1;

}

}

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 59/62

Loop Regeneration

• Chunky Loop Generator (CLooG) is used to regenerate the loop

• It scans the integral points of the polyhedra to recreate loop bounds

Original Program

for (i=0; i<250; i++)

for (j=0; j<200; j++) {

if (j < k+3)

S1;

}

Loop generated by CLooG

for (i=0; i<=249; i++) {

for (j=0; j<=min(k+2,199); j++) {

S1;

}

}

Merge conditional code with loop bounds if possible

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 60/62

GRAPHITE Conclusions

Advantages of GRAPHITE

• Better data dependence analysis - handles conditional codes,
parametric invariants

• Makes auto-parallelization more efficient

• Composition of transforms is possible

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 60/62

GRAPHITE Conclusions

Advantages of GRAPHITE

• Better data dependence analysis - handles conditional codes,
parametric invariants

• Makes auto-parallelization more efficient

• Composition of transforms is possible

Future Scope

• Making instancewise dependence analysis algorithmically cheaper

• Automating the search most profitable transform composition
sequence

• Developing efficient cost models

• Exploring scalability issues

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 61/62

Parallelization and Vectorization in GCC : Conclusions

• Chain of recurrences seems to be a useful generalization

• Interaction between different passes is not clear due to fixed order

• Auto-vectorization and auto-parallelization can be improved by
enhancing the dependence analysis framework

• Efficient cost models are needed to automate legal transformation
composition

• GRAPHITE seems to be a promising mathematical abstraction

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2011 gcc-par-vect: Loop Transformations in Polytope Model 62/62

Last but not the least . . .

Thank You!

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

	Outline
	3.75inParallelization and Vectorization in GCC using Lambda Framework
	Parallelization and Vectorization in GCC using Lambda Framework
	3.75inLoop Transformations in Polytope Model
	Loop Transformations in Polytope Model

