
SPIM S20: A MIPS R2000 Simulator�\ 125 th the performance at none of the cost"James R. Laruslarus@cs.wisc.eduComputer Sciences DepartmentUniversity of Wisconsin{Madison1210 West Dayton StreetMadison, WI 53706, USA608-262-9519Copyright c
1990{1997 by James R. Larus(This document may be copied without royalties,so long as this copyright notice remains on it.)
1 SPIMSPIM S20 is a simulator that runs programs for the MIPS R2000/R3000 RISC computers.1SPIM can read and immediately execute �les containing assembly language. SPIM is a self-contained system for running these programs and contains a debugger and interface to a fewoperating system services.The architecture of the MIPS computers is simple and regular, which makes it easy to learnand understand. The processor contains 32 general-purpose 32-bit registers and a well-designedinstruction set that make it a propitious target for generating code in a compiler.However, the obvious question is: why use a simulator when many people have workstationsthat contain a hardware, and hence signi�cantly faster, implementation of this computer? Onereason is that these workstations are not generally available. Another reason is that these ma-chine will not persist for many years because of the rapid progress leading to new and fastercomputers. Unfortunately, the trend is to make computers faster by executing several instruc-tions concurrently, which makes their architecture more di�cult to understand and program.The MIPS architecture may be the epitome of a simple, clean RISC machine.In addition, simulators can provide a better environment for low-level programming than anactual machine because they can detect more errors and provide more features than an actualcomputer. For example, SPIM has a X-window interface that is better than most debuggers forthe actual machines.�I grateful to the many students at UW who used SPIM in their courses and happily found bugs in a professor'scode. In particular, the students in CS536, Spring 1990, painfully found the last few bugs in an \already-debugged"simulator. I am grateful for their patience and persistence. Alan Yuen-wui Siow wrote the X-window interface.1For a description of the real machines, see Gerry Kane and Joe Heinrich, MIPS RISC Architecture, PrenticeHall, 1992. 1

Finally, simulators are an useful tool for studying computers and the programs that run onthem. Because they are implemented in software, not silicon, they can be easily modi�ed to addnew instructions, build new systems such as multiprocessors, or simply to collect data.1.1 Simulation of a Virtual MachineThe MIPS architecture, like that of most RISC computers, is di�cult to program directly becauseof its delayed branches, delayed loads, and restricted address modes. This di�culty is tolerablesince these computers were designed to be programmed in high-level languages and so presentan interface designed for compilers, not programmers. A good part of the complexity resultsfrom delayed instructions. A delayed branch takes two cycles to execute. In the second cycle,the instruction immediately following the branch executes. This instruction can perform usefulwork that normally would have been done before the branch or it can be a nop (no operation).Similarly, delayed loads take two cycles so the instruction immediately following a load cannotuse the value loaded from memory.MIPS wisely choose to hide this complexity by implementing a virtual machine with theirassembler. This virtual computer appears to have non-delayed branches and loads and a richerinstruction set than the actual hardware. The assembler reorganizes (rearranges) instructionsto �ll the delay slots. It also simulates the additional, pseudoinstructions by generating shortsequences of actual instructions.By default, SPIM simulates the richer, virtual machine. It can also simulate the actualhardware. We will describe the virtual machine and only mention in passing features thatdo not belong to the actual hardware. In doing so, we are following the convention of MIPSassembly language programmers (and compilers), who routinely take advantage of the extendedmachine. Instructions marked with a dagger (y) are pseudoinstructions.1.2 SPIM InterfaceSPIM provides a simple terminal and a X-window interface. Both provide equivalent function-ality, but the X interface is generally easier to use and more informative.spim, the terminal version, and xspim, the X version, have the following command-lineoptions:-bareSimulate a bare MIPS machine without pseudoinstructions or the additional addressingmodes provided by the assembler. Implies -quiet.-asmSimulate the virtual MIPS machine provided by the assembler. This is the default.-pseudoAccept pseudoinstructions in assembly code.-nopseudoDo not accept pseudoinstructions in assembly code.-notrapDo not load the standard trap handler. This trap handler has two functions that mustbe assumed by the user's program. First, it handles traps. When a trap occurs, SPIMjumps to location 0x80000080, which should contain code to service the exception. Second,2

this �le contains startup code that invokes the routine main. Without the trap handler,execution begins at the instruction labeled start.-trapLoad the standard trap handler. This is the default.-trap fileLoad the trap handler in the �le.-noquietPrint a message when an exception occurs. This is the default.-quietDo not print a message at an exception.-nomapped ioDisable the memory-mapped IO facility (see Section 5).-mapped ioEnable the memory-mapped IO facility (see Section 5). Programs that use SPIM syscalls(see Section 1.5) to read from the terminal should not also use memory-mapped IO.-fileLoad and execute the assembly code in the �le.-s seg size Sets the initial size of memory segment seg to be size bytes. The memorysegments are named: text, data, stack, ktext, and kdata. For example, the pair ofarguments -sdata 2000000 starts the user data segment at 2,000,000 bytes.-lseg size Sets the limit on how large memory segment seg can grow to be size bytes. Thememory segments that can grow are: data, stack, and kdata.1.2.1 Terminal InterfaceThe terminal interface (spim) provides the following commands:exitExit the simulator.read "file"Read �le of assembly language commands into SPIM's memory. If the �le has alreadybeen read into SPIM, the system should be cleared (see reinitialize, below) or globalsymbols will be multiply de�ned.load "file"Synonym for read.run <addr>Start running a program. If the optional address addr is provided, the program startsat that address. Otherwise, the program starts at the global symbol start, which isde�ned by the default trap handler to call the routine at the global symbol main with theusual MIPS calling convention. 3

step <N>Step the program for N (default: 1) instructions. Print instructions as they execute.continueContinue program execution without stepping.print $NPrint register N .print $fNPrint
oating point register N .print addrPrint the contents of memory at address addr .print symPrint the contents of the symbol table, i.e., the addresses of the global (but not local)symbols.reinitializeClear the memory and registers.breakpoint addrSet a breakpoint at address addr . addr can be either a memory address or symbolic label.delete addrDelete all breakpoints at address addr .listList all breakpoints.. Rest of line is an assembly instruction that is stored in memory.<nl>A newline reexecutes previous command.? Print a help message.Most commands can be abbreviated to their unique pre�x e.g., ex, re, l, ru, s, p. Moredangerous commands, such as reinitialize, require a longer pre�x.1.2.2 X-Window InterfaceThe X version of SPIM, xspim, looks di�erent, but should operate in the same manner as spim.The X window has �ve panes (see Figure 1). The top pane displays the contents of the registers.It is continually updated, except while a program is running.The next pane contains the buttons that control the simulator:quitExit from the simulator. 4

PC = 00000000 EPC = 00000000 Cause = 0000000 BadVaddr = 00000000
Status= 00000000 HI = 00000000 LO = 0000000

R0 (r0) = 00000000 R8 (t0) = 00000000 R16 (s0) = 0000000 R24 (t8) = 00000000
R1 (at) = 00000000 R9 (t1) = 00000000 R17 (s1) = 0000000 R25 (s9) = 00000000
R2 (v0) = 00000000 R10 (t2) = 00000000 R18 (s2) = 0000000 R26 (k0) = 00000000
R3 (v1) = 00000000 R11 (t3) = 00000000 R19 (s3) = 0000000 R27 (k1) = 00000000
R4 (a0) = 00000000 R12 (t4) = 00000000 R20 (s4) = 0000000 R28 (gp) = 00000000
R5 (a1) = 00000000 R13 (t5) = 00000000 R21 (s5) = 0000000 R29 (gp) = 00000000
R6 (a2) = 00000000 R14 (t6) = 00000000 R22 (s6) = 0000000 R30 (s8) = 00000000
R7 (a3) = 00000000 R15 (t7) = 00000000 R23 (s7) = 0000000 R31 (ra) = 00000000

FP0 = 0.000000 FP8 = 0.000000 FP16 = 0.00000 FP24 = 0.000000

FP6 = 0.000000 FP14 = 0.000000 FP22 = 0.00000 FP30 = 0.000000
FP4 = 0.000000 FP12 = 0.000000 FP20 = 0.00000 FP28 = 0.000000
FP2 = 0.000000 FP10 = 0.000000 FP18 = 0.00000 FP26 = 0.000000

quit load run step clear set value

print breakpt help terminal mode

SPIM Version 3.2 of January 14, 1990

Text Segments

xspim

Register
Display

Control
Buttons

User and
Kernel
Text
Segments

SPIM
Messages

General Registers

Double Floating Point Registers

Single Floating Point Registers

Data Segments

Data and
Stack
Segments

[0x00400000] 0x8fa40000 lw R4, 0(R29) []
[0x00400004] 0x27a50004 addiu R5, R29, 4 []
[0x00400008] 0x24a60004 addiu R6, R5, 4 []
[0x0040000c] 0x00041090 sll R2, R4, 2
[0x00400010] 0x00c23021 addu R6, R6, R2
[0x00400014] 0x0c000000 jal 0x00000000 []
[0x00400018] 0x3402000a ori R0, R0, 10 []
[0x0040001c] 0x0000000c syscall

[0x10000000]...[0x10010000] 0x00000000
[0x10010004] 0x74706563 0x206e6f69 0x636f2000
[0x10010010] 0x72727563 0x61206465 0x6920646e 0x726f6e67
[0x10010020] 0x000a6465 0x495b2020 0x7265746e 0x74707572
[0x10010030] 0x0000205d 0x20200000 0x616e555b 0x6e67696c
[0x10010040] 0x61206465 0x65726464 0x69207373 0x6e69206e
[0x10010050] 0x642f7473 0x20617461 0x63746566 0x00205d68
[0x10010060] 0x555b2020 0x696c616e 0x64656e67 0x64646120
[0x10010070] 0x73736572 0x206e6920 0x726f7473 0x00205d65

Figure 1: X-window interface to SPIM.

5

loadRead a source �le into memory.runStart the program running.stepSingle-step through a program.clearReinitialize registers or memory.set valueSet the value in a register or memory location.printPrint the value in a register or memory location.breakpointSet or delete a breakpoint or list all breakpoints.helpPrint a help message.terminalRaise or hide the console window.modeSet SPIM operating modes.The next two panes display the memory contents. The top one shows instructions from theuser and kernel text segments.2 The �rst few instructions in the text segment are startup code(start) that loads argc and argv into registers and invokes the main routine.The lower of these two panes displays the data and stack segments. Both panes are updatedas a program executes.The bottom pane is used to display messages from the simulator. It does not display outputfrom an executing program. When a program reads or writes, its IO appears in a separatewindow, called the Console, which pops up when needed.1.3 Surprising FeaturesAlthough SPIM faithfully simulates the MIPS computer, it is a simulator and certain things arenot identical to the actual computer. The most obvious di�erences are that instruction timingand the memory systems are not identical. SPIM does not simulate caches or memory latency,nor does it accurate re
ect the delays for
oating point operations or multiplies and divides.Another surprise (which occurs on the real machine as well) is that a pseudoinstructionexpands into several machine instructions. When single-stepping or examining memory, theinstructions that you see are slightly di�erent from the source program. The correspondence be-tween the two sets of instructions is fairly simple since SPIM does not reorganize the instructionsto �ll delay slots.2These instructions are real|not pseudo|MIPS instructions. SPIM translates assembler pseudoinstructionsto 1{3 MIPS instructions before storing the program in memory. Each source instruction appears as a commenton the �rst instruction to which it is translated. 6

1.4 Assembler SyntaxComments in assembler �les begin with a sharp-sign (#). Everything from the sharp-sign to theend of the line is ignored.Identi�ers are a sequence of alphanumeric characters, underbars (), and dots (.) that do notbegin with a number. Opcodes for instructions are reserved words that are not valid identi�ers.Labels are declared by putting them at the beginning of a line followed by a colon, for example:.dataitem: .word 1.text.globl main # Must be globalmain: lw $t0, itemStrings are enclosed in double-quotes ("). Special characters in strings follow the C conven-tion:newline \ntab \tquote \"SPIM supports a subset of the assembler directives provided by the MIPS assembler:.align nAlign the next datum on a 2n byte boundary. For example, .align 2 aligns the next valueon a word boundary. .align 0 turns o� automatic alignment of .half, .word, .float,and .double directives until the next .data or .kdata directive..ascii strStore the string in memory, but do not null-terminate it..asciiz strStore the string in memory and null-terminate it..byte b1, ..., bnStore the n values in successive bytes of memory..data <addr>The following data items should be stored in the data segment. If the optional argumentaddr is present, the items are stored beginning at address addr ..double d1, ..., dnStore the n
oating point double precision numbers in successive memory locations..extern sym sizeDeclare that the datum stored at sym is size bytes large and is a global symbol. Thisdirective enables the assembler to store the datum in a portion of the data segment thatis e�ciently accessed via register $gp..float f1, ..., fnStore the n
oating point single precision numbers in successive memory locations..globl symDeclare that symbol sym is global and can be referenced from other �les.7

Service System Call Code Arguments Resultprint int 1 $a0 = integerprint
oat 2 $f12 =
oatprint double 3 $f12 = doubleprint string 4 $a0 = stringread int 5 integer (in $v0)read
oat 6
oat (in $f0)read double 7 double (in $f0)read string 8 $a0 = bu�er, $a1 = lengthsbrk 9 $a0 = amount address (in $v0)exit 10 Table 1: System services..half h1, ..., hnStore the n 16-bit quantities in successive memory halfwords..kdata <addr>The following data items should be stored in the kernel data segment. If the optionalargument addr is present, the items are stored beginning at address addr ..ktext <addr>The next items are put in the kernel text segment. In SPIM, these items may only beinstructions or words (see the .word directive below). If the optional argument addr ispresent, the items are stored beginning at address addr ..space nAllocate n bytes of space in the current segment (which must be the data segment inSPIM)..text <addr>The next items are put in the user text segment. In SPIM, these items may only beinstructions or words (see the .word directive below). If the optional argument addr ispresent, the items are stored beginning at address addr ..word w1, ..., wnStore the n 32-bit quantities in successive memory words.SPIM does not distinguish various parts of the data segment (.data, .rdata, and .sdata).1.5 System CallsSPIM provides a small set of operating-system-like services through the system call (syscall)instruction. To request a service, a program loads the system call code (see Table 1) into register$v0 and the arguments into registers $a0: : :$a3 (or $f12 for
oating point values). System callsthat return values put their result in register $v0 (or $f0 for
oating point results). For example,to print \the answer = 5", use the commands:.datastr: .asciiz "the answer = ".text 8

Registers

$0

$31

.

.

.

Arithmetic
Unit

FPU (Coprocessor 1)

BadVAddr

Status

Cause

EPC

Coprocessor 0 (Traps and Memory)

Registers

$0

$31

.

.

.

Arithmetic
Unit

CPU

Multiply
Divide

Lo Hi

Memory

Figure 2: MIPS R2000 CPU and FPUli $v0, 4 # system call code for print_strla $a0, str # address of string to printsyscall # print the stringli $v0, 1 # system call code for print_intli $a0, 5 # integer to printsyscall # print itprint int is passed an integer and prints it on the console. print float prints a single
oating point number. print double prints a double precision number. print string is passeda pointer to a null-terminated string, which it writes to the console.read int, read float, and read double read an entire line of input up to and including thenewline. Characters following the number are ignored. read string has the same semantics asthe Unix library routine fgets. It reads up to n � 1 characters into a bu�er and terminatesthe string with a null byte. If there are fewer characters on the current line, it reads throughthe newline and again null-terminates the string. Warning: programs that use these syscallsto read from the terminal should not use memory-mapped IO (see Section 5).sbrk returns a pointer to a block of memory containing n additional bytes. exit stops aprogram from running.
9

Register Name Number Usagezero 0 Constant 0at 1 Reserved for assemblerv0 2 Expression evaluation andv1 3 results of a functiona0 4 Argument 1a1 5 Argument 2a2 6 Argument 3a3 7 Argument 4t0 8 Temporary (not preserved across call)t1 9 Temporary (not preserved across call)t2 10 Temporary (not preserved across call)t3 11 Temporary (not preserved across call)t4 12 Temporary (not preserved across call)t5 13 Temporary (not preserved across call)t6 14 Temporary (not preserved across call)t7 15 Temporary (not preserved across call)s0 16 Saved temporary (preserved across call)s1 17 Saved temporary (preserved across call)s2 18 Saved temporary (preserved across call)s3 19 Saved temporary (preserved across call)s4 20 Saved temporary (preserved across call)s5 21 Saved temporary (preserved across call)s6 22 Saved temporary (preserved across call)s7 23 Saved temporary (preserved across call)t8 24 Temporary (not preserved across call)t9 25 Temporary (not preserved across call)k0 26 Reserved for OS kernelk1 27 Reserved for OS kernelgp 28 Pointer to global areasp 29 Stack pointerfp 30 Frame pointerra 31 Return address (used by function call)Table 2: MIPS registers and the convention governing their use.2 Description of the MIPS R2000A MIPS processor consists of an integer processing unit (the CPU) and a collection of coproces-sors that perform ancillary tasks or operate on other types of data such as
oating point numbers(see Figure 2). SPIM simulates two coprocessors. Coprocessor 0 handles traps, exceptions, andthe virtual memory system. SPIM simulates most of the �rst two and entirely omits details ofthe memory system. Coprocessor 1 is the
oating point unit. SPIM simulates most aspects ofthis unit.2.1 CPU RegistersThe MIPS (and SPIM) central processing unit contains 32 general purpose 32-bit registers thatare numbered 0{31. Register n is designated by $n. Register $0 always contains the hardwiredvalue 0. MIPS has established a set of conventions as to how registers should be used. Thesesuggestions are guidelines, which are not enforced by the hardware. However a program that10

15 10 012345

Interrupt
Mask

Old Previous Current

Ker
ne

l/

Use
r Int

er
ru

pt

Ena
ble Ker

ne
l/

Use
r Int

er
ru

pt

Ena
ble Ker

ne
l/

Use
r Int

er
ru

pt

Ena
bleFigure 3: The Status register.violates them will not work properly with other software. Table 2 lists the registers and describestheir intended use.Registers $at (1), $k0 (26), and $k1 (27) are reserved for use by the assembler and operatingsystem.Registers $a0{$a3 (4{7) are used to pass the �rst four arguments to routines (remainingarguments are passed on the stack). Registers $v0 and $v1 (2, 3) are used to return valuesfrom functions. Registers $t0{$t9 (8{15, 24, 25) are caller-saved registers used for temporaryquantities that do not need to be preserved across calls. Registers $s0{$s7 (16{23) are callee-saved registers that hold long-lived values that should be preserved across calls.Register $sp (29) is the stack pointer, which points to the last location in use on the stack.3Register $fp (30) is the frame pointer.4 Register $ra (31) is written with the return address fora call by the jal instruction.Register $gp (28) is a global pointer that points into the middle of a 64K block of memoryin the heap that holds constants and global variables. The objects in this heap can be quicklyaccessed with a single load or store instruction.In addition, coprocessor 0 contains registers that are useful to handle exceptions. SPIM doesnot implement all of these registers, since they are not of much use in a simulator or are part ofthe memory system, which is not implemented. However, it does provide the following:Register Name Number UsageBadVAddr 8 Memory address at which address exception occurredStatus 12 Interrupt mask and enable bitsCause 13 Exception type and pending interrupt bitsEPC 14 Address of instruction that caused exceptionThese registers are part of coprocessor 0's register set and are accessed by the lwc0, mfc0, mtc0,and swc0 instructions.Figure 3 describes the bits in the Status register that are implemented by SPIM. Theinterrupt mask contains a bit for each of the �ve interrupt levels. If a bit is one, interrupts atthat level are allowed. If the bit is zero, interrupts at that level are disabled. The low six bits ofthe Status register implement a three-level stack for the kernel/user and interrupt enablebits. The kernel/user bit is 0 if the program was running in the kernel when the interruptoccurred and 1 if it was in user mode. If the interrupt enable bit is 1, interrupts are allowed.3In earlier version of SPIM, $sp was documented as pointing at the �rst free word on the stack (not the lastword of the stack frame). Recent MIPS documents have made it clear that this was an error. Both conventionswork equally well, but we choose to follow the real system.4The MIPS compiler does not use a frame pointer, so this register is used as callee-saved register $s8.11

251015

Pending
Interrupts

Exception
CodeFigure 4: The Cause register.If it is 0, they are disabled. At an interrupt, these six bits are shifted left by two bits, so thecurrent bits become the previous bits and the previous bits become the old bits. The currentbits are both set to 0 (i.e., kernel mode with interrupts disabled).Figure 4 describes the bits in the Cause registers. The �ve pending interrupt bits corre-spond to the �ve interrupt levels. A bit becomes 1 when an interrupt at its level has occurredbut has not been serviced. The exception code register contains a code from the followingtable describing the cause of an exception.Number Name Description0 INT External interrupt4 ADDRL Address error exception (load or instruction fetch)5 ADDRS Address error exception (store)6 IBUS Bus error on instruction fetch7 DBUS Bus error on data load or store8 SYSCALL Syscall exception9 BKPT Breakpoint exception10 RI Reserved instruction exception12 OVF Arithmetic over
ow exception2.2 Byte OrderProcessors can number the bytes within a word to make the byte with the lowest number eitherthe leftmost or rightmost one. The convention used by a machine is its byte order . MIPSprocessors can operate with either big-endian byte order:Byte #0 1 2 3or little-endian byte order: Byte #3 2 1 0SPIM operates with both byte orders. SPIM's byte order is determined by the byte order ofthe underlying hardware running the simulator. On a DECstation 3100, SPIM is little-endian,while on a HP Bobcat, Sun 4 or PC/RT, SPIM is big-endian.2.3 Addressing ModesMIPS is a load/store architecture, which means that only load and store instructions accessmemory. Computation instructions operate only on values in registers. The bare machineprovides only one memory addressing mode: c(rx), which uses the sum of the immediate12

(integer) c and the contents of register rx as the address. The virtual machine provides thefollowing addressing modes for load and store instructions:Format Address Computation(register) contents of registerimm immediateimm (register) immediate + contents of registersymbol address of symbolsymbol � imm address of symbol + or � immediatesymbol � imm (register) address of symbol + or � (immediate + contents of register)Most load and store instructions operate only on aligned data. A quantity is aligned if itsmemory address is a multiple of its size in bytes. Therefore, a halfword object must be storedat even addresses and a full word object must be stored at addresses that are a multiple of 4.However, MIPS provides some instructions for manipulating unaligned data.2.4 Arithmetic and Logical InstructionsIn all instructions below, Src2 can either be a register or an immediate value (a 16 bit integer).The immediate forms of the instructions are only included for reference. The assembler willtranslate the more general form of an instruction (e.g., add) into the immediate form (e.g.,addi) if the second argument is constant.abs Rdest, Rsrc Absolute Value yPut the absolute value of the integer from register Rsrc in register Rdest.add Rdest, Rsrc1, Src2 Addition (with over
ow)addi Rdest, Rsrc1, Imm Addition Immediate (with over
ow)addu Rdest, Rsrc1, Src2 Addition (without over
ow)addiu Rdest, Rsrc1, Imm Addition Immediate (without over
ow)Put the sum of the integers from register Rsrc1 and Src2 (or Imm) into register Rdest.and Rdest, Rsrc1, Src2 ANDandi Rdest, Rsrc1, Imm AND ImmediatePut the logical AND of the integers from register Rsrc1 and Src2 (or Imm) into register Rdest.div Rsrc1, Rsrc2 Divide (signed)divu Rsrc1, Rsrc2 Divide (unsigned)Divide the contents of the two registers. divu treats is operands as unsigned values. Leave thequotient in register lo and the remainder in register hi. Note that if an operand is negative,the remainder is unspeci�ed by the MIPS architecture and depends on the conventions of themachine on which SPIM is run.div Rdest, Rsrc1, Src2 Divide (signed, with over
ow) ydivu Rdest, Rsrc1, Src2 Divide (unsigned, without over
ow) yPut the quotient of the integers from register Rsrc1 and Src2 into register Rdest. divu treatsis operands as unsigned values.mul Rdest, Rsrc1, Src2 Multiply (without over
ow) ymulo Rdest, Rsrc1, Src2 Multiply (with over
ow) y13

mulou Rdest, Rsrc1, Src2 Unsigned Multiply (with over
ow) yPut the product of the integers from register Rsrc1 and Src2 into register Rdest.mult Rsrc1, Rsrc2 Multiplymultu Rsrc1, Rsrc2 Unsigned MultiplyMultiply the contents of the two registers. Leave the low-order word of the product in registerlo and the high-word in register hi.neg Rdest, Rsrc Negate Value (with over
ow) ynegu Rdest, Rsrc Negate Value (without over
ow) yPut the negative of the integer from register Rsrc into register Rdest.nor Rdest, Rsrc1, Src2 NORPut the logical NOR of the integers from register Rsrc1 and Src2 into register Rdest.not Rdest, Rsrc NOT yPut the bitwise logical negation of the integer from register Rsrc into register Rdest.or Rdest, Rsrc1, Src2 ORori Rdest, Rsrc1, Imm OR ImmediatePut the logical OR of the integers from register Rsrc1 and Src2 (or Imm) into register Rdest.rem Rdest, Rsrc1, Src2 Remainder yremu Rdest, Rsrc1, Src2 Unsigned Remainder yPut the remainder from dividing the integer in register Rsrc1 by the integer in Src2 into registerRdest. Note that if an operand is negative, the remainder is unspeci�ed by the MIPS architectureand depends on the conventions of the machine on which SPIM is run.rol Rdest, Rsrc1, Src2 Rotate Left yror Rdest, Rsrc1, Src2 Rotate Right yRotate the contents of register Rsrc1 left (right) by the distance indicated by Src2 and put theresult in register Rdest.sll Rdest, Rsrc1, Src2 Shift Left Logicalsllv Rdest, Rsrc1, Rsrc2 Shift Left Logical Variablesra Rdest, Rsrc1, Src2 Shift Right Arithmeticsrav Rdest, Rsrc1, Rsrc2 Shift Right Arithmetic Variablesrl Rdest, Rsrc1, Src2 Shift Right Logicalsrlv Rdest, Rsrc1, Rsrc2 Shift Right Logical VariableShift the contents of register Rsrc1 left (right) by the distance indicated by Src2 (Rsrc2) andput the result in register Rdest.sub Rdest, Rsrc1, Src2 Subtract (with over
ow)subu Rdest, Rsrc1, Src2 Subtract (without over
ow)Put the di�erence of the integers from register Rsrc1 and Src2 into register Rdest.xor Rdest, Rsrc1, Src2 XORxori Rdest, Rsrc1, Imm XOR ImmediatePut the logical XOR of the integers from register Rsrc1 and Src2 (or Imm) into register Rdest.14

2.5 Constant-Manipulating Instructionsli Rdest, imm Load Immediate yMove the immediate imm into register Rdest.lui Rdest, imm Load Upper ImmediateLoad the lower halfword of the immediate imm into the upper halfword of register Rdest. Thelower bits of the register are set to 0.2.6 Comparison InstructionsIn all instructions below, Src2 can either be a register or an immediate value (a 16 bit integer).seq Rdest, Rsrc1, Src2 Set Equal ySet register Rdest to 1 if register Rsrc1 equals Src2 and to be 0 otherwise.sge Rdest, Rsrc1, Src2 Set Greater Than Equal ysgeu Rdest, Rsrc1, Src2 Set Greater Than Equal Unsigned ySet register Rdest to 1 if register Rsrc1 is greater than or equal to Src2 and to 0 otherwise.sgt Rdest, Rsrc1, Src2 Set Greater Than ysgtu Rdest, Rsrc1, Src2 Set Greater Than Unsigned ySet register Rdest to 1 if register Rsrc1 is greater than Src2 and to 0 otherwise.sle Rdest, Rsrc1, Src2 Set Less Than Equal ysleu Rdest, Rsrc1, Src2 Set Less Than Equal Unsigned ySet register Rdest to 1 if register Rsrc1 is less than or equal to Src2 and to 0 otherwise.slt Rdest, Rsrc1, Src2 Set Less Thanslti Rdest, Rsrc1, Imm Set Less Than Immediatesltu Rdest, Rsrc1, Src2 Set Less Than Unsignedsltiu Rdest, Rsrc1, Imm Set Less Than Unsigned ImmediateSet register Rdest to 1 if register Rsrc1 is less than Src2 (or Imm) and to 0 otherwise.sne Rdest, Rsrc1, Src2 Set Not Equal ySet register Rdest to 1 if register Rsrc1 is not equal to Src2 and to 0 otherwise.2.7 Branch and Jump InstructionsIn all instructions below, Src2 can either be a register or an immediate value (integer). Branchinstructions use a signed 16-bit o�set �eld; hence they can jump 215�1 instructions (not bytes)forward or 215 instructions backwards. The jump instruction contains a 26 bit address �eld.b label Branch instruction yUnconditionally branch to the instruction at the label.bczt label Branch Coprocessor z Truebczf label Branch Coprocessor z FalseConditionally branch to the instruction at the label if coprocessor z's condition
ag is true(false). 15

beq Rsrc1, Src2, label Branch on EqualConditionally branch to the instruction at the label if the contents of register Rsrc1 equals Src2.beqz Rsrc, label Branch on Equal Zero yConditionally branch to the instruction at the label if the contents of Rsrc equals 0.bge Rsrc1, Src2, label Branch on Greater Than Equal ybgeu Rsrc1, Src2, label Branch on GTE Unsigned yConditionally branch to the instruction at the label if the contents of register Rsrc1 are greaterthan or equal to Src2.bgez Rsrc, label Branch on Greater Than Equal ZeroConditionally branch to the instruction at the label if the contents of Rsrc are greater than orequal to 0.bgezal Rsrc, label Branch on Greater Than Equal Zero And LinkConditionally branch to the instruction at the label if the contents of Rsrc are greater than orequal to 0. Save the address of the next instruction in register 31.bgt Rsrc1, Src2, label Branch on Greater Than ybgtu Rsrc1, Src2, label Branch on Greater Than Unsigned yConditionally branch to the instruction at the label if the contents of register Rsrc1 are greaterthan Src2.bgtz Rsrc, label Branch on Greater Than ZeroConditionally branch to the instruction at the label if the contents of Rsrc are greater than 0.ble Rsrc1, Src2, label Branch on Less Than Equal ybleu Rsrc1, Src2, label Branch on LTE Unsigned yConditionally branch to the instruction at the label if the contents of register Rsrc1 are lessthan or equal to Src2.blez Rsrc, label Branch on Less Than Equal ZeroConditionally branch to the instruction at the label if the contents of Rsrc are less than or equalto 0.bgezal Rsrc, label Branch on Greater Than Equal Zero And Linkbltzal Rsrc, label Branch on Less Than And LinkConditionally branch to the instruction at the label if the contents of Rsrc are greater or equalto 0 or less than 0, respectively. Save the address of the next instruction in register 31.blt Rsrc1, Src2, label Branch on Less Than ybltu Rsrc1, Src2, label Branch on Less Than Unsigned yConditionally branch to the instruction at the label if the contents of register Rsrc1 are lessthan Src2.bltz Rsrc, label Branch on Less Than ZeroConditionally branch to the instruction at the label if the contents of Rsrc are less than 0.16

bne Rsrc1, Src2, label Branch on Not EqualConditionally branch to the instruction at the label if the contents of register Rsrc1 are notequal to Src2.bnez Rsrc, label Branch on Not Equal Zero yConditionally branch to the instruction at the label if the contents of Rsrc are not equal to 0.j label JumpUnconditionally jump to the instruction at the label.jal label Jump and Linkjalr Rsrc Jump and Link RegisterUnconditionally jump to the instruction at the label or whose address is in register Rsrc. Savethe address of the next instruction in register 31.jr Rsrc Jump RegisterUnconditionally jump to the instruction whose address is in register Rsrc.2.8 Load Instructionsla Rdest, address Load Address yLoad computed address, not the contents of the location, into register Rdest.lb Rdest, address Load Bytelbu Rdest, address Load Unsigned ByteLoad the byte at address into register Rdest. The byte is sign-extended by the lb, but not thelbu, instruction.ld Rdest, address Load Double-Word yLoad the 64-bit quantity at address into registers Rdest and Rdest + 1.lh Rdest, address Load Halfwordlhu Rdest, address Load Unsigned HalfwordLoad the 16-bit quantity (halfword) at address into register Rdest. The halfword is sign-extendedby the lh, but not the lhu, instructionlw Rdest, address Load WordLoad the 32-bit quantity (word) at address into register Rdest.lwcz Rdest, address Load Word CoprocessorLoad the word at address into register Rdest of coprocessor z (0{3).lwl Rdest, address Load Word Leftlwr Rdest, address Load Word RightLoad the left (right) bytes from the word at the possibly-unaligned address into register Rdest.ulh Rdest, address Unaligned Load Halfword yulhu Rdest, address Unaligned Load Halfword Unsigned y17

Load the 16-bit quantity (halfword) at the possibly-unaligned address into register Rdest. Thehalfword is sign-extended by the ulh, but not the ulhu, instructionulw Rdest, address Unaligned Load Word yLoad the 32-bit quantity (word) at the possibly-unaligned address into register Rdest.2.9 Store Instructionssb Rsrc, address Store ByteStore the low byte from register Rsrc at address.sd Rsrc, address Store Double-Word yStore the 64-bit quantity in registers Rsrc and Rsrc + 1 at address.sh Rsrc, address Store HalfwordStore the low halfword from register Rsrc at address.sw Rsrc, address Store WordStore the word from register Rsrc at address.swcz Rsrc, address Store Word CoprocessorStore the word from register Rsrc of coprocessor z at address.swl Rsrc, address Store Word Leftswr Rsrc, address Store Word RightStore the left (right) bytes from register Rsrc at the possibly-unaligned address.ush Rsrc, address Unaligned Store Halfword yStore the low halfword from register Rsrc at the possibly-unaligned address.usw Rsrc, address Unaligned Store Word yStore the word from register Rsrc at the possibly-unaligned address.2.10 Data Movement Instructionsmove Rdest, Rsrc Move yMove the contents of Rsrc to Rdest.The multiply and divide unit produces its result in two additional registers, hi and lo. Theseinstructions move values to and from these registers. The multiply, divide, and remainderinstructions described above are pseudoinstructions that make it appear as if this unit operateson the general registers and detect error conditions such as divide by zero or over
ow.mfhi Rdest Move From himflo Rdest Move From loMove the contents of the hi (lo) register to register Rdest.18

mthi Rdest Move To himtlo Rdest Move To loMove the contents register Rdest to the hi (lo) register.Coprocessors have their own register sets. These instructions move values between theseregisters and the CPU's registers.mfcz Rdest, CPsrc Move From Coprocessor zMove the contents of coprocessor z's register CPsrc to CPU register Rdest.mfc1.d Rdest, FRsrc1 Move Double From Coprocessor 1 yMove the contents of
oating point registers FRsrc1 and FRsrc1 + 1 to CPU registers Rdestand Rdest + 1.mtcz Rsrc, CPdest Move To Coprocessor zMove the contents of CPU register Rsrc to coprocessor z's register CPdest.2.11 Floating Point InstructionsThe MIPS has a
oating point coprocessor (numbered 1) that operates on single precision (32-bit) and double precision (64-bit)
oating point numbers. This coprocessor has its own registers,which are numbered $f0{$f31. Because these registers are only 32-bits wide, two of them arerequired to hold doubles. To simplify matters,
oating point operations only use even-numberedregisters|including instructions that operate on single
oats.Values are moved in or out of these registers a word (32-bits) at a time by lwc1, swc1, mtc1,and mfc1 instructions described above or by the l.s, l.d, s.s, and s.d pseudoinstructionsdescribed below. The
ag set by
oating point comparison operations is read by the CPU withits bc1t and bc1f instructions.In all instructions below, FRdest, FRsrc1, FRsrc2, and FRsrc are
oating point registers(e.g., $f2).abs.d FRdest, FRsrc Floating Point Absolute Value Doubleabs.s FRdest, FRsrc Floating Point Absolute Value SingleCompute the absolute value of the
oating
oat double (single) in register FRsrc and put it inregister FRdest.add.d FRdest, FRsrc1, FRsrc2 Floating Point Addition Doubleadd.s FRdest, FRsrc1, FRsrc2 Floating Point Addition SingleCompute the sum of the
oating
oat doubles (singles) in registers FRsrc1 and FRsrc2 and putit in register FRdest.c.eq.d FRsrc1, FRsrc2 Compare Equal Doublec.eq.s FRsrc1, FRsrc2 Compare Equal SingleCompare the
oating point double in register FRsrc1 against the one in FRsrc2 and set the
oating point condition
ag true if they are equal.c.le.d FRsrc1, FRsrc2 Compare Less Than Equal Doublec.le.s FRsrc1, FRsrc2 Compare Less Than Equal SingleCompare the
oating point double in register FRsrc1 against the one in FRsrc2 and set the
oating point condition
ag true if the �rst is less than or equal to the second.19

c.lt.d FRsrc1, FRsrc2 Compare Less Than Doublec.lt.s FRsrc1, FRsrc2 Compare Less Than SingleCompare the
oating point double in register FRsrc1 against the one in FRsrc2 and set thecondition
ag true if the �rst is less than the second.cvt.d.s FRdest, FRsrc Convert Single to Doublecvt.d.w FRdest, FRsrc Convert Integer to DoubleConvert the single precision
oating point number or integer in register FRsrc to a doubleprecision number and put it in register FRdest.cvt.s.d FRdest, FRsrc Convert Double to Singlecvt.s.w FRdest, FRsrc Convert Integer to SingleConvert the double precision
oating point number or integer in register FRsrc to a singleprecision number and put it in register FRdest.cvt.w.d FRdest, FRsrc Convert Double to Integercvt.w.s FRdest, FRsrc Convert Single to IntegerConvert the double or single precision
oating point number in register FRsrc to an integer andput it in register FRdest.div.d FRdest, FRsrc1, FRsrc2 Floating Point Divide Doublediv.s FRdest, FRsrc1, FRsrc2 Floating Point Divide SingleCompute the quotient of the
oating
oat doubles (singles) in registers FRsrc1 and FRsrc2 andput it in register FRdest.l.d FRdest, address Load Floating Point Double yl.s FRdest, address Load Floating Point Single yLoad the
oating
oat double (single) at address into register FRdest.mov.d FRdest, FRsrc Move Floating Point Doublemov.s FRdest, FRsrc Move Floating Point SingleMove the
oating
oat double (single) from register FRsrc to register FRdest.mul.d FRdest, FRsrc1, FRsrc2 Floating Point Multiply Doublemul.s FRdest, FRsrc1, FRsrc2 Floating Point Multiply SingleCompute the product of the
oating
oat doubles (singles) in registers FRsrc1 and FRsrc2 andput it in register FRdest.neg.d FRdest, FRsrc Negate Doubleneg.s FRdest, FRsrc Negate SingleNegate the
oating point double (single) in register FRsrc and put it in register FRdest.s.d FRdest, address Store Floating Point Double ys.s FRdest, address Store Floating Point Single yStore the
oating
oat double (single) in register FRdest at address.sub.d FRdest, FRsrc1, FRsrc2 Floating Point Subtract Doublesub.s FRdest, FRsrc1, FRsrc2 Floating Point Subtract SingleCompute the di�erence of the
oating
oat doubles (singles) in registers FRsrc1 and FRsrc2and put it in register FRdest. 20

Reserved

Text Segment

Data Segment

Stack Segment

0x400000

0x7fffffff

Figure 5: Layout of memory.2.12 Exception and Trap Instructionsrfe Return From ExceptionRestore the Status register.syscall System CallRegister $v0 contains the number of the system call (see Table 1) provided by SPIM.break n BreakCause exception n. Exception 1 is reserved for the debugger.nop No operationDo nothing.3 Memory UsageThe organization of memory in MIPS systems is conventional. A program's address space iscomposed of three parts (see Figure 5).At the bottom of the user address space (0x400000) is the text segment, which holds theinstructions for a program.Above the text segment is the data segment (starting at 0x10000000), which is divided intotwo parts. The static data portion contains objects whose size and address are known to the21

 .
 .
 .
local variables
 .
 .
 .

 .
 .
 .
dynamic area
 .
 .
 .

memory
addresses

$fp

$sp

argument 5

argument 6

...

arguments 1−4
 .
 .
saved registers
 .
 .
 .

Figure 6: Layout of a stack frame. The frame pointer points just below the last argument passedon the stack. The stack pointer points to the last word in the frame.compiler and linker. Immediately above these objects is dynamic data. As a program allocatesspace dynamically (i.e., by malloc), the sbrk system call moves the top of the data segment up.The program stack resides at the top of the address space (0x7���f). It grows down, towardsthe data segment.4 Calling ConventionThe calling convention described in this section is the one used by gcc, not the native MIPScompiler, which uses a more complex convention that is slightly faster.Figure 6 shows a diagram of a stack frame. A frame consists of the memory between theframe pointer ($fp), which points to the word immediately after the last argument passed onthe stack, and the stack pointer ($sp), which points to the last word in the frame. As typicalof Unix systems, the stack grows down from higher memory addresses, so the frame pointer isabove stack pointer.The following steps are necessary to e�ect a call:1. Pass the arguments. By convention, the �rst four arguments are passed in registers $a0{$a3 (though simpler compilers may choose to ignore this convention and pass all argumentsvia the stack). The remaining arguments are pushed on the stack.2. Save the caller-saved registers. This includes registers $t0{$t9, if they contain live valuesat the call site. 22

3. Execute a jal instruction.Within the called routine, the following steps are necessary:1. Establish the stack frame by subtracting the frame size from the stack pointer.2. Save the callee-saved registers in the frame. Register $fp is always saved. Register $raneeds to be saved if the routine itself makes calls. Any of the registers $s0{$s7 that areused by the callee need to be saved.3. Establish the frame pointer by adding the stack frame size - 4 to the address in $sp.Finally, to return from a call, a function places the returned value into $v0 and executes thefollowing steps:1. Restore any callee-saved registers that were saved upon entry (including the frame pointer$fp).2. Pop the stack frame by adding the frame size to $sp.3. Return by jumping to the address in register $ra.5 Input and OutputIn addition to simulating the basic operation of the CPU and operating system, SPIM alsosimulates a memory-mapped terminal connected to the machine. When a program is \running,"SPIM connects its own terminal (or a separate console window in xspim) to the processor. Theprogram can read characters that you type while the processor is running. Similarly, if SPIMexecutes instructions to write characters to the terminal, the characters will appear on SPIM'sterminal or console window. One exception to this rule is control-C: it is not passed to theprocessor, but instead causes SPIM to stop simulating and return to command mode. When theprocessor stops executing (for example, because you typed control-C or because the machine hita breakpoint), the terminal is reconnected to SPIM so you can type SPIM commands. To usememory-mapped IO, spim or xspim must be started with the -mapped io
ag.The terminal device consists of two independent units: a receiver and a transmitter . Thereceiver unit reads characters from the keyboard as they are typed. The transmitter unit writescharacters to the terminal's display. The two units are completely independent. This means, forexample, that characters typed at the keyboard are not automatically \echoed" on the display.Instead, the processor must get an input character from the receiver and re-transmit it to echoit. The processor accesses the terminal using four memory-mapped device registers, as shownin Figure 7. \Memory-mapped" means that each register appears as a special memory location.The Receiver Control Register is at location 0x��0000; only two of its bits are actually used.Bit 0 is called \ready": if it is one it means that a character has arrived from the keyboard buthas not yet been read from the receiver data register. The ready bit is read-only: attempts towrite it are ignored. The ready bit changes automatically from zero to one when a characteris typed at the keyboard, and it changes automatically from one to zero when the character isread from the receiver data register.Bit one of the Receiver Control Register is \interrupt enable". This bit may be both readand written by the processor. The interrupt enable is initially zero. If it is set to one by the23

1 1

Interrupt
Enable

Ready

Receiver Control
(0xffff0000)

1 1

Interrupt
Enable

Ready

Transmitter Control
(0xffff0008)

Receiver Data
(0xffff0004)

8

Received Byte

Transmitter Data
(0xffff000c)

8

Transmitted Byte

Unused

Unused

Unused

Unused

Figure 7: The terminal is controlled by four device registers, each of which appears as a specialmemory location at the given address. Only a few bits of the registers are actually used: theothers always read as zeroes and are ignored on writes.

24

processor, an interrupt is requested by the terminal on level zero whenever the ready bit is one.For the interrupt actually to be received by the processor, interrupts must be enabled in thestatus register of the system coprocessor (see Section 2).Other bits of the Receiver Control Register are unused: they always read as zeroes and areignored in writes.The second terminal device register is the Receiver Data Register (at address 0x��0004).The low-order eight bits of this register contain the last character typed on the keyboard, andall the other bits contain zeroes. This register is read-only and only changes value when a newcharacter is typed on the keyboard. Reading the Receiver Data Register causes the ready bit inthe Receiver Control Register to be reset to zero.The third terminal device register is the Transmitter Control Register (at address 0x��0008).Only the low-order two bits of this register are used, and they behave much like the correspondingbits of the Receiver Control Register. Bit 0 is called \ready" and is read-only. If it is one itmeans the transmitter is ready to accept a new character for output. If it is zero it means thetransmitter is still busy outputting the previous character given to it. Bit one is \interruptenable"; it is readable and writable. If it is set to one, then an interrupt will be requested onlevel one whenever the ready bit is one.The �nal device register is the Transmitter Data Register (at address 0x��000c). When it iswritten, the low-order eight bits are taken as an ASCII character to output to the display. Whenthe Transmitter Data Register is written, the ready bit in the Transmitter Control Register willbe reset to zero. The bit will stay zero until enough time has elapsed to transmit the characterto the terminal; then the ready bit will be set back to one again. The Transmitter Data Registershould only be written when the ready bit of the Transmitter Control Register is one; if thetransmitter isn't ready then writes to the Transmitter Data Register are ignored (the writeappears to succeed but the character will not be output).In real computers it takes time to send characters over the serial lines that connect terminalsto computers. These time lags are simulated by SPIM. For example, after the transmitter startstransmitting a character, the transmitter's ready bit will become zero for a while. SPIMmeasuresthis time in instructions executed, not in real clock time. This means that the transmitter willnot become ready again until the processor has executed a certain number of instructions. Ifyou stop the machine and look at the ready bit using SPIM, it will not change. However, if youlet the machine run then the bit will eventually change back to one.

25

