
Workshop on Essential Abstractions in GCC

A Summary of Essential Abstractions

GCC Resource Center

(www.cse.iitb.ac.in/grc)

Department of Computer Science and Engineering,

Indian Institute of Technology, Bombay

3 July 2013

Part 2

Methodology

3 July 2013 Essential Abstractions: Methodology 1/30

Our Padagogy

Compiler
Specifications

Compiler
Generator

Generated
Compiler

External View Internal View

Machine descriptions Front end hooks

Configuration
and building

Retargetability
mechanism

Gray box probing

Pass structure and IR

Parallelization, Vectorization

Pass structure

Control flow

Static and dynamic
plugin mechanisms

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2013 Essential Abstractions: Methodology 2/30

Gray Box Probing

Phase 1 Phase 2 . . . Phase n

Black Box Probing

Observe Observe

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2013 Essential Abstractions: Methodology 2/30

Gray Box Probing

Phase 1 Phase 2 . . . Phase n

White Box Probing

Observe Observe

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2013 Essential Abstractions: Methodology 2/30

Gray Box Probing

Phase 1 Phase 2 . . . Phase n

Observe Observe

Gray Box Probing

Observe Observe

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2013 Essential Abstractions: Methodology 3/30

Systematic Development of Machine Descriptions

Other data types

Conditional control transfers

Function Calls

Arithmetic Expressions

Sequence of
Simple Assignments
involving integers

MD Level 1

MD Level 2

MD Level 3

MD Level 4

MD Level 5

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

Part 3

The Framework

3 July 2013 Essential Abstractions: The Framework 4/30

The GNU Tool Chain for C

gcc

Source Program

Target Program

cc1 cppcc1 cpp

as

ld

glibc/newlib

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2013 Essential Abstractions: The Framework 5/30

The Architecture of GCC

Language
Specific
Code

Language and
Machine

Independent
Generic Code

Machine
Dependent
Generator
Code

Machine
Descriptions

Compiler Generation Framework

Parser Gimplifier
Tree SSA
Optimizer

Expander Optimizer Recognizer

Generated Compiler (cc1)

Source Program Assembly Program

Input Language Target Name

Selected Copied

Copied

Generated

Generated

Development
Time

Build
Time

Use
Time

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

Part 4

The Generated Compiler

3 July 2013 Essential Abstractions: The Generated Compiler 6/30

Compilation Models
Aho Ullman

Model
Davidson Fraser

Model

Front End

AST

Optimizer

Target Indep. IR

Code
Generator

Target Program

Front End

AST

Expander

Register Transfers

Optimizer

Register Transfers

Recognizer

Target Program

Aho Ullman: Instruction selection

• over optimized IR using

• cost based tree pattern matching

Davidson Fraser: Instruction selection

• over AST using

• structural tree pattern matching

• naive code which is

◮ target dependent, and is
◮ optimized subsequently

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2013 Essential Abstractions: The Generated Compiler 7/30

Basic Transformations in GCC

Tranformation from a language to a different language

Target Independent Target Dependent

Parse Gimplify
Tree SSA
Optimize

Generate
RTL

Optimize RTL
Generate
ASM

GIMPLE → RTL RTL → ASM

RTL PassesGIMPLE Passes

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2013 Essential Abstractions: The Generated Compiler 8/30

Plugin Structure in cc1

toplev
main

front
end

pass
manager

For simplicity, we have included
all passes in a single list.
Actually passes are organized
into five lists and are invoked
as five different sequences

pass 1

pass 2

. . .

pass
expand

. . .

pass n

code for
pass 2

code for
pass 1

recognizer
code

expander
code

optab table

langhook
. . .

code for
language 1

code for
language 2

code for
language n

insn data

generated
code for
machine 1

MD 1

MD 2

MD n

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2013 Essential Abstractions: The Generated Compiler 9/30

The Mechanism of Dynamic Plugin

pass
manager

. . .

. . .

code for
pass

code for
pass

recognizer
code for

expander
code

optab table

code for
dynamic
plugin

Runtime initialization

of the appropriate

linked list of passes

Made possible by

dynamic linking

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2013 Essential Abstractions: The Generated Compiler 10/30

Execution Order in Intraprocedural Passes

Function 1 Function 2 Function 3 Function 4 Function 5

Pass 1

Pass 2

Pass 3

Pass 4

Pass 5

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2013 Essential Abstractions: The Generated Compiler 11/30

Execution Order in Interprocedural Passes

Function 1 Function 2 Function 3 Function 4 Function 5

Pass 1

Pass 2

Pass 3

Pass 4

Pass 5

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

Part 5

LTO

3 July 2013 Essential Abstractions: LTO 12/30

Partitioned and Non-Partitioned LTO
A
n
a
ly
si
s

Sequential
Analysis

T
ra
n
sf
o
rm

a
ti
o
n

Load complete call graph

Load function
summaries but
not bodies

Load
all function

bodies

Load
all function

bodies

Load function
bodies

one by one

Load groups
of function
bodies

All function
bodies already

loaded××
No need to load the entire program in memory
IPA possible (multiple function bodies)
Parallel transformations possible
Analysis and transformations in independent processes

Partitioned
Mode

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2013 Essential Abstractions: LTO 12/30

Partitioned and Non-Partitioned LTO
A
n
a
ly
si
s

Sequential
Analysis

T
ra
n
sf
o
rm

a
ti
o
n

Load complete call graph

Load function
summaries but
not bodies

Load
all function

bodies

Load
all function

bodies

Load function
bodies

one by one

Load groups
of function
bodies

All function
bodies already

loaded××
Partitioned

Mode

Balanced partitions -flto -flto-partitions=balanced

One Partition per file -flto -flto-partitions=1to1

Partitions by number -flto --params lto-partitions=n

Partitions by size -flto --params lto-min-partition=s

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2013 Essential Abstractions: LTO 12/30

Partitioned and Non-Partitioned LTO
A
n
a
ly
si
s

Sequential
Analysis

T
ra
n
sf
o
rm

a
ti
o
n

Load complete call graph

Load function
summaries but
not bodies

Load
all function

bodies

Load
all function

bodies

Load function
bodies

one by one

Load groups
of function
bodies

All function
bodies already

loaded××
Non-Partitioned

Mode

Entire program needs to be loaded in memory
No partitions -flto -flto-partitions=none

Strictly sequential transformations
Analysis and transformations in the same processes

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2013 Essential Abstractions: LTO 13/30

cc1 and Single Process lto1

toplev main

...

compile file

...

cgraph analyze function

cgraph optimize

...

ipa passes

...

cgraph expand all functions

...

tree rest of compilation

cc1

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2013 Essential Abstractions: LTO 13/30

cc1 and Single Process lto1

toplev main

...

compile file

...

cgraph analyze function

lto main

...

read cgraph and symbols

...

materialize cgraph

cgraph optimize

...

ipa passes

...

cgraph expand all functions

...

tree rest of compilation

lto1

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2013 Essential Abstractions: LTO 14/30

The GNU Tool Chain for Single Process LTO Support

gcc

cc1′ lto1′

common
cc1

“Fat” .s files

as as

“Fat” .o files

collect2
cc1′ lto1′

common
lto1

Single .s file

as as

Single .o file

collect2

+ glibc/newlib

ld ld

a.out file

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2013 Essential Abstractions: LTO 14/30

The GNU Tool Chain for Single Process LTO Support

gcc

cc1′ lto1′

common
cc1

“Fat” .s files

as as

“Fat” .o files

collect2
cc1′ lto1′

common
lto1

Single .s file

as as

Single .o file

collect2

+ glibc/newlib

ld ld

a.out file

Common Code (executed twice for each function in the input program for
single process LTO. Once during LGEN and then during WPA + LTRANS)

cgraph optimize

ipa passes

execute ipa pass list(all small ipa passes)/*!in lto*/

execute ipa summary passes(all regular ipa passes)

execute ipa summary passes(all lto gen passes)

ipa write summaries

execute ipa pass list(all late ipa passes)

cgraph expand all functions

cgraph expand function

/* Intraprocedural passes on GIMPLE, */

/* expansion pass, and passes on RTL. */

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2013 Essential Abstractions: LTO 15/30

Partitioned LTO (aka WHOPR LTO)

f1.c
cc1′ lto1′

common
f1.o

Option -flto -c

f2.c
cc1′ lto1′

common
f2.o

f3.c
cc1′ lto1′

common
f3.o

cc1′ lto1′

common

Option
-flto -o out

out

large call graph
without procedure bodies
(Interproc. analysis:

√

Tranformation: ×)

/tmp/ccdKEyVB.ltrans0.o
(possibly multiple files)

cc1′ lto1′

common

(possibly multiple files)

LGEN

WPA

LTRANS

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2013 Essential Abstractions: LTO 16/30

(Non-Partitioned LTO)

f1.c
cc1′ lto1′

common
f1.o

Option -flto -c

f2.c
cc1′ lto1′

common
f2.o

f3.c
cc1′ lto1′

common
f3.o

cc1′ lto1′

common

Option
-flto -o out
-flto-partition=none

out

large call graph
with procedure bodies
(Interproc. analysis:

√

Transformation:
√
)

LGEN

IPA + Transformations

This IPA can examine function bodies also

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

Part 6

The Build Process

3 July 2013 Essential Abstractions: The Build Process 17/30

Configuring GCC

configure

config.guess

configure.in config/*

config.sub

config.log config.cache config.status

config.h.in Makefile.in

Makefile config.h

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2013 Essential Abstractions: The Build Process 18/30

Bootstrapping: The Conventional View

Cn−1

Cn−2

m/c

Cn

Cn−1

m/c

input language output language

implementation language

Level n C

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2013 Essential Abstractions: The Build Process 19/30

A Native Build on i386

Requirement: BS = HS = TS = i386

• Stage 1 build compiled using cc

• Stage 2 build compiled using gcc

• Stage 3 build compiled using gcc

• Stage 2 and Stage 3 Builds must be
identical for a successful native build

GCC
Source

C

i386

i386

cc

C i386

C

i386

i386

gcc

Stage 1 Build

C

i386

i386

gcc

Stage 2 Build

C

i386

i386

gcc

Stage 3 Build

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2013 Essential Abstractions: The Build Process 20/30

Build for a Given Machine

This is what actually happens!

• Generation

◮ Generator sources
($(SOURCE D)/gcc/gen*.c) are read and
generator executables are created in
$(BUILD)/gcc/build

◮ MD files are read by the generator
executables and back end source code is
generated in $(BUILD)/gcc

• Compilation

Other source files are read from $(SOURCE D)

and executables created in corresponding
subdirectories of $(BUILD)

• Installation

Created executables and libraries are copied in
$(INSTALL)

genattr
gencheck
genconditions
genconstants
genflags
genopinit
genpreds
genattrtab
genchecksum
gencondmd
genemit
gengenrtl
genmddeps
genoutput
genrecog
genautomata
gencodes
genconfig
genextract
gengtype
genmodes
genpeep

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2013 Essential Abstractions: The Build Process 21/30

More Details of an Actual Stage 1 Build for C

native cc,
binutils,
libraries

GCC
sources

libraries

libiberty

fixincl

gen*

cc1

cpp

xgcc libgcc

target
binutils,
libraries

cc, binutils,
libraries
for stage 2

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2013 Essential Abstractions: The Build Process 22/30

Building a MIPS Cross Compiler on i386: A Closer Look

GCC
Source

C

i386

i386

cc

C mips

C

i386

mips.a

cc1

Stage 1 Build

mips assembly

C

mips

mips

gcc

Stage 2 Build×Requirement: BS = HS = i386, TS = mips

• Stage 1 cannot build gcc but can build only cc1

• Stage 1 build cannot create executables

• Library sources cannot be compiled for mips using
stage 1 build

• Stage 2 build is not possible

Stage 2 build is
infeasible for
cross build

we have
not built libraries

for mips

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2013 Essential Abstractions: The Build Process 23/30

Difficulty in Building a Cross Compiler

gcc for
target

libgcc

requires

target
libraries

uses

require

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2013 Essential Abstractions: The Build Process 24/30

Generated Compiler Executable for All Languages

• Main driver $BUILD/gcc/xgcc

• C compiler $BUILD/gcc/cc1

• C++ compiler $BUILD/gcc/cc1plus

• Fortran compiler $BUILD/gcc/f951

• Ada compiler $BUILD/gcc/gnat1

• Java compiler $BUILD/gcc/jcl

• Java compiler for generating main class $BUILD/gcc/jvgenmain

• LTO driver $BUILD/gcc/lto1

• Objective C $BUILD/gcc/cc1obj

• Objective C++ $BUILD/gcc/cc1objplus

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

Part 7

Retargetability

3 July 2013 Essential Abstractions: Retargetability 25/30

Examples of Influences on the Machine Descriptions

Machine
Description

Source Language

• INT TYPE SIZE

• Activation Record

<target>.h

GCC Architecture
• Generation of nop
• tree covers for
instruction selection

• define predicate

<target>.h

Build System Host System

hwint.h

Target System

• Instruction Set
Architecture

• Assembly and
executable
formats

{

<target>.md

<target>.h

{

<target>.h

other headers

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2013 Essential Abstractions: Retargetability 26/30

Redundancy in MIPS Machine Descriptions: Example 3

[(set (match_operand:m 0 "register_operand" "c0") (plus:m

(mult:m (match_operand:m 1 "register_operand" "c1")

(match_operand:m 2 "register_operand" "c2")))]

(match_operand:m 3 "register_operand" "c3")))]

RTL Template =

+

∗
Structure

Details

Pattern name m c0 c1 c2 c3

mul acc si SI =l?*?,d? d,d d,d 0,d

mul acc si r3900 SI =l?*?,d*?,d? d,d,d d,d,d 0,1,d

*macc SI =l,d d,d d,d 0,1

*madd4<mode> ANYF =f f f f

*madd3<mode> ANYF =f f f 0

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2013 Essential Abstractions: Retargetability 27/30

Instruction Specification and Translation: A Recap

Target Independent Target Dependent

Parse Gimplify
Tree SSA
Optimize

Generate
RTL

Optimize RTL Generate
ASM

GIMPLE → RTL RTL → ASM
• GIMPLE: target independent
• RTL: target dependent
• Need: associate the semantics

⇒GCC Solution: Standard Pattern Names

GIMPLE ASSIGN

RTL Template ASM

(define_insn "movsi"
[(set (match_operand 0 "register_operand" "r")

(match_operand 1 "const_int_operand" "k"))]
"" /* C boolean expression, if required */

"li %0, %1"

)

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2013 Essential Abstractions: Retargetability 28/30

Translation Sequence in GCC

(define_insn

"movsi"

[(set

(match_operand 0 "register_operand" "r")

(match_operand 1 "const_int_operand" "k")

)]

"" /* C boolean expression, if required */

"li %0, %1"

)

D.1283 = 10;

(set
(reg:SI 58 [D.1283])
(const int 10: [0xa])

)

li $t0, 10

D
e
v
e
lo
p
m
e
n
t

U
se

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2013 Essential Abstractions: Retargetability 29/30

Retargetability Mechanism of GCC

Language
Specific
Code

Language and
Machine

Independent
Generic Code

Machine
Dependent
Generator
Code

Machine
Descriptions

Compiler Generation Framework

Input Language Target Name

Parser Gimplifier
Tree SSA
Optimizer

RTL
Generator

Optimizer
Code

Generator

Selected Copied

Copied

Generated

Generated

Generated Compiler

Development
Time

Build
Time

Use
Time

GIMPLE → PN
+

PN → IR-RTL
+

IR-RTL → ASM

GIMPLE → IR-RTL
+

IR-RTL → ASM

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

3 July 2013 Essential Abstractions: Retargetability 30/30

Hooking up Back End Details

optab table

.

OTI mov

mov optab

handler

SI
insn code

CODE FOR movsi

SF
insn code

CODE FOR nothing

$(SOURCE)/gcc/optabs.h
$(SOURCE)/gcc/optabs.c $(BUILD)/gcc/insn-output.c

insn data

.

1280

"movsi"

. . .
gen movsi

. . .

$BUILD/gcc/insn-codes.h

CODE FOR movsi=1280
CODE FOR movsf=CODE FOR nothing

$BUILD/gcc/insn-opinit.c

...

Runtime
initialization of

data structure in cc1

through function
init all optabs

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

	Summary
	Methodology
	The Framework
	The Generated Compiler
	LTO
	The Build Process
	Retargetability

