
GCC 4.0.2 – The Implementation
GCC Version 4.0.2

Abhijat Vichare (amvichare@iitb.ac.in)
Sameera Deshpande (sameera@cse.iitb.ac.in)

Indian Institute of Technology, Bombay
(http://www.iitb.ac.in)

This is edition 1.0 of “GCC 4.0.2 – The Implementation”, last updated on January 7, 2008.,
and is based on GCC version 4.0.2.

Copyright c© 2004-2008 Abhijat Vichare, I.I.T. Bombay.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with the Front-Cover Texts being “GCC 4.0.2 – The Implementation,” and with
the Back-Cover Texts as in (a) below. A copy of the license is included in the
section entitled “GNU Free Documentation License.”

(a) The FSF’s Back-Cover Text is: “You have freedom to copy and modify
this GNU Manual, like GNU software. Copies published by the Free Software
Foundation raise funds for GNU development.”

i

Short Contents

1 Introduction. 1

2 GCC Source Organization . 3

3 The Compilation Phases in GCC Source Code 5

4 AST Implementation . 14

5 Gimple Implementation . 22

6 RTL Implementation . 27

7 The GCC Build System Architecture 36

8 Conclusion . 44

References . 46

List of Figures. 47

List of Tables . 48

A Copyright. 49

ii

Table of Contents

1 Introduction . 1
1.1 Document Scope . 2
1.2 Document Layout . 2

2 GCC Source Organization 3

3 The Compilation Phases in GCC Source Code
. 5

3.1 Initializations . 5
3.1.1 The “Initializations” Call Graph . 6

3.2 The Parser . 6
3.3 The AST/Generic . 6

3.3.1 The Parser + AST/Generic Call Graph 6
3.4 The Gimple . 7

3.4.1 The Gimple Call Graph . 7
3.5 The RTL . 8

3.5.1 The IR-RTL Call Graph . 9
3.6 Optimizations . 9
3.7 Target assembly code emission . 13

3.7.1 The Assembly Emission Call Graph . 13

4 AST Implementation. 14
4.1 The AST/Generic Data Structures . 14
4.2 AST/Generic Node types . 16
4.3 Program Representation in AST/Generic . 21

5 Gimple Implementation 22
5.1 GIMPLE Node types . 22
5.2 Implementing the Gimple → IR-RTL Conversion 22

5.2.1 Gimple → IR-RTL at tdevelop . 22
5.2.2 Gimple → IR-RTL at tbuild . 23
5.2.3 Gimple → IR-RTL at trun . 24
5.2.4 A Few Remarks About Pattern Names 24

6 RTL Implementation . 27
6.1 The RTX Data Structure . 27
6.2 Lists of all RTL objects . 28
6.3 RTL at development time: Specifying MD (using MD-RTL) . . . 31

6.3.1 Illustrative Example of RTL at tdevelop : 32
6.4 RTL at build time: Build Time Processing of MD. 33

6.4.1 Illustrative Example of RTL at tbuild : 33

iii

6.5 RTL at trun : Representing Programs (using IR-RTL) 34
6.5.1 Illustrative Example of RTL at trun : . 34

7 The GCC Build System Architecture 36
7.1 GCC Build Overview . 36
7.2 The gcc Compilation Driver . 41

8 Conclusion . 44
8.1 Future Work . 44

References . 46

List of Figures . 47

List of Tables . 48

Appendix A Copyright . 49
A.1 GNU Free Documentation License . 49

Chapter 1: Introduction 1

1 Introduction

In this document we note the details of the GCC 4.0.2 implementation given the background
of the models in [The Conceptual Structure of GCC], page 46 and are succinctly captured
in Figure 1.1 which is taken from that description. The figure also marks three useful
time periods and introduces the notation for each. We also take support from the GCC
Internals documentation ([GCC Internals (by Richard Stallman)], page 46) available for a
few versions of GCC which describe in detail the uses of various macros and RTL objects
in detail. This document bridges the gap between a conceptual view of GCC in [The
Conceptual Structure of GCC], page 46 and the “programmer’s manual” view in [GCC
Internals (by Richard Stallman)], page 46. It uses the source layout structure described in
[GCC – An Introduction], page 46.

HLL Specific
Code, per

HLL

Language and
Machine

Independent
Generic Code

Machine
dependent
Generator

Code

Set of
Machine

Descriptions

GCC

Parser Genericizer Gimplifier
Tree SSA

Opti-
mizer

RTL
Genera-

tor

Optimizer
Code

Genera-
tor

cc1/gcc

Choose HLL

Selected Copied

Choose Target MD

Generated

Source Program Assembly Program

Figure 1.1: The GCC Compiler Generation Framework (CGF) and it’s use to gener-
ate the target specific compiler (cc1/gcc) components. Some components of the compiler
(cc1/gcc) are selected from the CGF, some are copied from the CGF and some are generated

from the framework.

In general, the GCC source base makes a intensive use of source code level abstractions
at tdevelop . Most data structure manipulations are expressed via preprocessor macros.
Repetitive coding is addressed by extracting the common patterns of code and data into
single source objects that are then used when required. For example, the tree AST has node
types common to both C and C++, node types of C, and a set of node types that augment
these when C++ is supported. Thus repetitive node typing for C++ given that they already
exist for C, has been avoided. To support retargetability, or multiple source languages, the
central core of the compiler makes extensive use of function pointers at tdevelop that are
“initialized” to the required function either at tbuild or trun . For instance, the central core
merely makes a call to the “parser” function pointer. Before this call the function pointer
is initialized to the parse function of the source language at input.

Chapter 1: Introduction 2

We avoid source code listings as it is available on the GNU web site. We recommend
reading the source code along with this document to see the contexts clearly.

1.1 Document Scope

GCC is an industry strength implementation. It complies to a number of standards since it
aims to support a few HLLs. Extensive error detection and reporting is implemented. As a
useful compiler it also has code to support features useful for programming like debugging
support (in various formats), timing of internal operations etc. All these aspects of GCC
code is not detailed here. We focus on the Gimple and RTL IRs and in particular, retar-
getability of the back end machines. Most of the ignored part is handled conceptually when
needed. A distinction must be made between a concept and the variety of ways in which it
can be implemented. Thus, for example, although we conceptually describe the “selection”
of the HLL specific parts, the implementation is actually in terms of defining HLL specific
data structures (lang_hooks) that contain the HLL specific data. The actual “selection”
thus occurs by chasing the information in these data structures.

1.2 Document Layout

In Chapter 2 [GCC Source Organization], page 3 we refresh some of the terms introduced
in [GCC – An Introduction], page 46 and connect the compiler generation framework in
Figure 1.1 to the source code structure. Chapter 3 [The Compilation Phases in GCC Source
Code], page 5 gives a conceptual overview of the implementation structure of each part of the
GCC phase sequence in Figure 1.1. The detailed description then begins. We have focused
mainly on the Gimple and RTL phases of the GCC system and the other components
are described in less detail and some have been skipped altogether as mentioned in [scope],
page 2. However, the basic overall structure of the compiler is briefly described in Chapter 3
[The Compilation Phases in GCC Source Code], page 5. The next three sections give the
implementation details of the three IRs of GCC: AST/Generic, Gimple and the RTL, at
tdevelop . Since most of Gimple is identical to the AST/Generic, we focus on the processing
required at tbuild time for Gimple in Chapter 5 [Gimple Implementation], page 22. The
RTL is used at tdevelop as well as at trun . We detail out the implementation issues of RTL
for use at tdevelop and trun including the transformations needed at tbuild in Chapter 6
[RTL Implementation], page 27. The appendices provide some additional details like the
phase sequence based file groups and the list of implemented targets as of GCC 4.0.2.

The AST/Generic is independent of the target machine but depends on the HLL selected
at tbuild . The Gimple is independent of the HLL as well the target. Hence the views at
tdevelop and trun match except for the Gimple → RTL translation. Further, in GCC 4.0.2
the Gimple is almost identical to the AST/Generic. Hence the Gimple details in Chapter 5
[Gimple Implementation], page 22 focus only on the differences relative to the AST.

Chapter 2: GCC Source Organization 3

2 GCC Source Organization

Arrange
call to
selected
parser

Genericizer Gimplifier
Tree SSA
Optimizer

Arrange call
to generated

RTL Gen

Optimizer
Arrange call
to generated
Code Gen

Language and Machine Independent Generic Code

Language Specific Code
C, C++, Java, Fortran, . . .

Machine dependent Generator Code
(C headers and Target .md files)

i386, mips, sparc, arm, . . .

At tbuild : Select
from above and in-
sert
below

At tbuild : Select from above,
generate and insert below

GCC (CGF)

Figure 2.1: The source organization of the GCC Compiler Generation Framework (CGF).
The arrows denote the points of insertion at tbuild .

Given that a build system that adapts the GCC sources at tdevelop for the specific source
language and the target system is required, we describe the organization of the source
tree. This again, is a conceptual description that strives to build the intuition behind the
structure that one obtains on unpacking the distribution. We emphasize that this is GCC
4.0.2 specific, and some variations exist across versions of GCC. We refer to the directory
within which the GCC sources are unpacked as $GCCHOME.

Figure 2.1 describes the needs of the source organization at development time, tdevelop

. The HLL specific components (box labeled “Language Specific Code” in Figure 2.1), the
back end components (box labeled “Machine dependent Generator Code” in Figure 2.1) and
the actual compiler logic (box labeled “Language and Machine Independent Generic Code”
in Figure 2.1) needs to be separated into distinct directories. A set of generator programs
operate on these at build time, tbuild to collect the components (e.g. parser, target specific
RTL IR generator and the target specific code generator) for the chosen HLL and target
pair. The the final HLL and target specific compiler sources (the lower half of Figure 1.1,
labeled “cc1/gcc”) are thus obtained and are subsequently compiled to obtain the binary
that compiles programs in the chosen HLL to the chosen target at run time trun . This
strategy allows creating various kinds of compilers like native, cross or canadian cross.

The source and target independent parts of the compiler are within the $GCCHOME/gcc

subdirectory of the main source trunk. It is in this directory that we find the code that

1. implements the complete generic compiler,

2. implements all the HLL and target independent manipulations, e.g. the optimization
passes,

3. implements the HLL specific routines housed in a separate sub directory in
$GCCHOME/gcc/<HLL> for each supported HLL, and

4. implements back end specific routines housed in a separate sub directory structure
$GCCHOME/gcc/config/<backend>.

Chapter 2: GCC Source Organization 4

The currently supported front ends are: C++, Ada, Java, Fortran, Objective C and
Treelang. Corresponding to each HLL, except C1, is a subdirectory in $GCCHOME/gcc which
all the code for processing that language exists. In particular this involves scanning the
tokens of that language and creating the ASTs. If necessary, the basic AST tree node
types need to be augmented with variations for this language. The main compiler calls
these routines to handle input of that language. To isolate itself from the details of the
source language, the main compiler uses a table of function pointers that are to be used to
perform each required task. A language implementation needs to fill in such data structures
of the main compiler code and build the language specific processing chain until the AST
is obtained.

The back end specific code is organized as a list of directories corresponding to each
supported back end system. This list of supported back ends is separately housed in
$GCCHOME/gcc/config directory of the main trunk. The details of describing the back
end target systems are in section Chapter 6 [RTL Implementation], page 27. Systematic
development of these machine descriptions is in [Systematic Development of GCC Machine
Descriptions], page 46.

Parts of the compiler that are common and find frequent usage have also been sepa-
rated into a separate library called the libiberty and placed in a distinct subdirectory of
$GCCHOME. This facilitates a one-time build of these common routines. We emphasize that
these routines are common to the main compiler, the front end code and the back end code
(e.g. regular expressions handling); the routines common to only the main compiler still
reside in the main compiler directory, i.e. $GCCHOME/gcc. GCC also implements a garbage
collection based memory management system for it’s use during a run. This code is placed
in the subdirectory $GCCHOME/boehm-gc. The main directory structure that results is shown
in [GCC – An Introduction], page 46.

The details of the build process are in Chapter 7 [The GCC Build System Architecture],
page 36 and the generated files are listed in [The Phase wise File Groups of GCC], page 46.

1 GCC was originally aimed at being just a C compiler. Hence the C specific code is not well separated
from the rest of the compiler.

Chapter 3: The Compilation Phases in GCC Source Code 5

3 The Compilation Phases in GCC Source Code

The implementation of the compiler proper – cc1 for C – can be divided into the following
operation time (trun) phases:

1. Initialization.

2. Parsing and AST/Generic generation.

3. Gimplification, Gimple operations and Gimple → RTL conversion.

4. RTL expansion, RTL operations – in particular, operations that yield a strict RTL1.

5. Assembly code generation.

Of the five phases above, the fourth and the fifth are target specific. The conversion to
RTL part of the third phase is also target specific. For these parts and phases, the views
at tdevelop , tbuild and trun may differ and are so described in the rest of the document.

Start gcc/main.c, gcc/toplev.c
Source Parser gcc/c-parse.y

Parser–AST interface gcc/tree.def, gcc/c-tree.def, gcc/tree.h and gcc/tree.c

AST → Gimple gimplify.c

Gimple Optimizations gcc/tree-optimize.c

Gimple → RTL stmt.c, expr.c
RTL rtl.def, rtl.h, rtl.c, read-rtl.c, print-rtl.c, print-

rtl1.c, optabs.c

RTL Optimizations gcc/passes.c

RTL → Target ASM gcc/final.c

Table 3.1: Main GCC source files that implement main phases (all paths relative to
$GCCHOME).

Table 3.1 lists out the main source files corresponding to the passes listed above2. In
the following sections we describe the essential techniques used by GCC to implement each
phase.

3.1 Initializations

The GCC implementation starts by initializing it’s various subsystems. In particular the
internationalization support and error reporting subsystems are initialized before processing
the command line options. Initializations of the front end and the back end are done at
this point. One particular initialization is the initialization of the garbage collector used by
GCC in operation3. This phase may be considered to be over when the compiler calls the
parser that starts accepting the input program for compilation.

1 The RTL representation, when created from Gimple does not contain sufficient information to obtain the
assembly code. Such RTL is called as non strict or incomplete. When the RTL passes finish computing all
such information, the RTL can be converted to assembly code. Such RTL is called as strict or complete
RTL.

2 The passes are in currently gcc/tree-optimize.c and gcc/passes.c. In later versions, a full fledged
passes manager has been implemented that includes the compilation and optimization phase sequence
after parsing.

3 Memory allocation is, therefore, separately done using xmalloc() allocator functions and no explicit free
operations. Instead the garbage collector is used.

Chapter 3: The Compilation Phases in GCC Source Code 6

3.1.1 The “Initializations” Call Graph

The essential call graph is shown below along with the source file(s) that implement the
functionality. The call graph is partial in that it shows the essential structure rather than
the detail of every possible operation that needs to be done. Such detail is always available
in the source file itself.

main () main.c

toplev_main () toplev.c

general_init () toplev.c

decode_options () toplev.c

do_compile () toplev.c

compile_file() toplev.c

/* TO: Parsing */

3.2 The Parser

The bulk of the parsing code for C is in $GCCHOME/gcc/c-parse.in that gives
$GCCHOME/gcc/c-parse.y This is a specification that bison reads in and generates the
parser for C. The actions in some rules interface with the rest of the compiler. For
instance, the action for a complete tree of a valid C function calls code to compile the
generated tree based representation4. For other supported HLLs the parsers are in
$GCCHOME/gcc/<lang>/<lang-parse>.y5.

3.3 The AST/Generic

The AST/Generic is mainly composed of the passive data structure which is populated by
the parser and consumed by the later compilation phases. The actual AST that will be
formed at compilation time trun is composed of tree fragments defined at tdevelop that are
common across all the languages. The gcc/tree.def file defines the node types common
to all languages. The gcc/c-common.def file is one component that collects nodes common
to C and C++ into it. Any language specific addition to tree node types for languages other
than C are added into the gcc/<lang-dir>/<lang>-tree.def file.

Having defined the various node types, organizing them (and other information) into
tree structures is found in gcc/tree.h, while gcc/tree.c contains routines to use these
data structures. The parser, for instance, uses routines or macros to instantiate tree nodes
and populate them with the information extracted from the input. Chapter 4 [AST Imple-
mentation], page 14 describes all the details of the AST/Generic implementation.

3.3.1 The Parser + AST/Generic Call Graph

This continues from the initializations phase. Since the parse phase creates the AST repre-
sentation we include that as a part of this call graph.

/* FROM: Initialisations */

compile_file() toplev.c

4 Later versions of GCC also support the “(compilation-)unit-at-time” mode in which the parser consumes
the entire unit of compilation, i.e. a file, before calling the functions to perform the compilation.

5 Later versions of GCC have hand coded recursive descent parsers, e.g. $GCCHOME/gcc/c-parser.c is the
C parser code.

Chapter 3: The Compilation Phases in GCC Source Code 7

lang_hooks.parse_file () toplev.c

c_parse_file () c-parser.c

c_parser_translation_unit () c-parser.c

c_parser_external_declaration () c-parser.c

c_parser_declaration_or_fndef () c-parser.c

finish_function () c-decl.c

/* TO: Gimplification */

3.4 The Gimple

In GCC 4.0.2 the Gimple IR is a subset of the AST/Generic tree nodes. The difference is
that the Gimple uses only the sequencing and branching control flow constructs. All other
control flow constructs are reduced to these two. Thus, a Gimple node is an instance of the
struct tree_common (and other specialized tree structures) defined in gcc/tree.h ([The
Conceptual Structure of GCC], page 46), except that the code field of any instance of that
structure can have only the codes (in gcc/tree.def) for sequence and branch for control
flow. Gimple in this form is said to be unstructured. Additionally, the Gimple phase also
reduces complex expressions to simple ones by introducing any temporaries if required. This
form of Gimple is said to be structured. The code that reduces the control flow is mainly
in gcc/gimplify.c. The Gimple phase has three parts: conversion from AST/Generic to
Gimple, Gimple based optimizations, and Gimple to RTL conversion. The critical part is
the Gimple to RTL conversion. This is because while the Gimple part is target independent
that RTL part is target specific and the problem is that while the target is known at build
time tbuild the conversion has to be implemented at development time tdevelop .

The following insight is used to implement this translation. As described in [The Con-
ceptual Structure of GCC], page 46, the conversion table for Gimple to RTL is divided into
two parts: the target specific part and the target independent part. The target specific
part is constructed at tbuild and is not available at tdevelop . A system of SPNs is used to
semantically connect these two parts. The target independent part corresponds to associ-
ating the Gimple nodes (to be converted to target specific RTL) to corresponding SPNs.
However, since this is a static activity, it has been hard coded into the conversion phase.
The conversion code in gcc/gimplify.c (and the associated files), hence, implements the
target independent part of the conversion table through a case analysis over Gimple nodes
and arranges for invocation of the corresponding RTL routine indexed by the known SPN.
The code need not contain direct references to the SPNs since using the index suffices.
Thus, conceptually although the SPNs serve to separate the target specific and target inde-
pendent parts of the conversion table, the implementation of the target independent parts
is not required to directly refer to the SPNs.

3.4.1 The Gimple Call Graph

This continues from the AST/Generic phase.

/* FROM: Parsing */

c_genericize() c-gimplify.c

gimplify_function_tree() gimplify.c

gimplify_body() gimplify.c

gimplify_stmt() gimplify.c

gimplify_expr() gimplify.c

Chapter 3: The Compilation Phases in GCC Source Code 8

lang_hooks.callgraph.expand_function()

tree_rest_of_compilation() tree-optimize.c

tree_register_cfg_hooks() cfghooks.c

execute_pass_list() passes.c

/* TO: Gimple Optimizations passes */

The final call to the pass list runs the pass manager (see Section 3.6 [Optimizations],
page 9). One of the passes in the pass manager is the RTL expander and the RTL passes
sequencer.

3.5 The RTL

The RTL is used for two purposes in GCC: specifying target properties at tdevelop and
representing a compilation internally at trun . The RTL IR used at trun is created during
the build phase (tbuild) by gleaning out information from the target MD files. At tbuild the
target specific part of the Gimple to RTL conversion table is created, as indicated in [The
Conceptual Structure of GCC], page 46. C data structures for RTL are created in the build
phase. To “join” the Gimple → RTL translation table separated at development time two
main actions need to be taken at build time. First, the target independent part of the table
must be “informed” of the exact “location” of the corresponding RTL pattern within the
selected MD. This information is recorded in the struct optab data structure. Second,
the target dependent part of the translation table must be created from the selected MD.
Thus the actual RTL patterns must be recorded into a data structure, struct insn_data,
that represents the target specific part of the translation table. Each pattern is recorded
at that “location” in struct insn_data which corresponds to the information in struct

optab. Thus struct optab supplies the index of the RTL pattern from struct insn_data

that is to be used to represent the Gimple node in RTL. Note that the pattern names in
the MD thus serve to identify the correspondences of the “locations” within the optab and
insn_data arrays to be established. The optab table already “knows” the pattern names
to seek. It merely records the occurrence within the MD.

Conceptually, the GCC build process lists out the patterns available in the target MD
into a header file insn-flags.h by enumerating them via preprocessor defines that are
non-zero if the pattern exists6. It then indexes the expansion patterns into an enum in
insn-codes.h. These indexes are used to initialize the array of operations supported by
the target – the optabs array, initialized in the insn-opinit.c file. The optabs structure
is defined in optabs.h as:

struct optab

{

enum rtx_code code; /* enumerated from rtl.def */

struct optab_handlers {

enum insn_code insn_code; /* in insn-codes.h */

rtx libfunc;

} handlers [NUM_MACHINE_MODES];

};

6 C condition of patterns, if they exist, are used as the non-zero initializers, else the initialization value is
1.

Chapter 3: The Compilation Phases in GCC Source Code 9

typedef struct optab * optab;

Chapter 6 [RTL Implementation], page 27 describes all the details of implementing the
MD-RTL and IR-RTL languages – usually referred to as simply “RTL” in the GCC source
code.

3.5.1 The IR-RTL Call Graph

The call sequence for expanding Gimple IR to IR-RTL based IR is shown below. It is
initiated by the handler of the pass_expand and is duplicated here for clarity.

/* FROM: Gimple optimization passes */

/* non strict RTL expander pass */

pass_expand_cfg cfgexpand.c

expand_gimple_basic_block () cfgexpand.c

expand_expr_stmt () stmt.c

expand_expr () stmt.c

/* TO: non strict RTL passes: pass_rest_of_compilation */

3.6 Optimizations

GCC implements a large number of optimizations that are found in the literature. They
are implemented at suitable places in the phase sequence. The nature of the optimiza-
tion, e.g. control flow optimization, instruction scheduling etc., determines it’s placement
in the phase sequence. Since Gimple lowers control flow (see [The Conceptual Structure
of GCC], page 46), once a compilation is represented in Gimple form, control flow opti-
mizations can be implemented. Thus we find SSA being implemented after gimplification
and instruction scheduling implemented after IR-RTL based representation of the compi-
lation. Almost every optimization requires some analysis and corresponding computations
before implementation. The GCC phase sequence thus has optimizing passes following the
representation in a suitable IR.

GCC 4.0.2 implements a “pass manager” partially7. The pass manager resides in
$GCCHOME/gcc/tree-optimize.c. Each pass is an instance of the struct tree_opt_pass

(in $GCCHOME/gcc/tree-pass.h). One of the fields of this structure is the pass entry point
function pointer. The instances of the implemented passes, i.e. the variables of type struct
tree_opt_pass, are organized into a linear list in $GCCHOME/gcc/tree-optimize.c. Sub
passes of a given pass in this list are organized as sub lists. The current implementation
in GCC 4.0.2 organizes the Gimple based optimizations and IR-RTL conversion as a list
of passes in a pass manager and the later versions also include the IR-RTL based passes.
This list thus also represents the call structure. The complete pass list, with the sub passes
indented and shown using the actual 72 struct tree_opt_pass variables, is:

pass_gimple

pass_remove_useless_stmts /* Remove useless statements */

pass_mudflap_1 /* Mudflap pass 1 */

pass_lower_cf /* Control flow lowering */

pass_lower_eh /* Exception handling lowering */

pass_build_cfg /* Build control flow graph */

7 It has been completed in the later versions.

Chapter 3: The Compilation Phases in GCC Source Code 10

pass_pre_expand /* Vector and Complex number expander */

pass_tree_profile /* Tree profiler */

pass_init_datastructures /* Initialize data structures */

pass_all_optimizations /* List of all optimizations */

pass_referenced_vars

pass_build_ssa

pass_may_alias

pass_rename_ssa_copies

pass_early_warn_uninitialized

pass_dce /* Dead code elimination */

pass_dominator

pass_redundant_phi

pass_dce

pass_merge_phi

pass_forwprop /* Forward propagation */

pass_phiopt

pass_may_alias

pass_tail_recursion

pass_ch /* Loop header copying */

pass_profile

pass_sra

pass_may_alias

pass_rename_ssa_copies

pass_dominator

pass_redundant_phi

pass_dce

pass_dse /* Dead store elimination */

pass_may_alias

pass_forwprop

pass_phiopt

pass_ccp /* Conditional constant propagation */

pass_redundant_phi

pass_fold_builtins

pass_may_alias

pass_split_crit_edges

pass_pre /* Partial redundancy elimination */

pass_loop

pass_loop_init

pass_lim /* Loop invariant motion */

pass_unswitch

pass_record_bounds

pass_linear_transform

pass_iv_canon /* Canonical induction variable creation */

pass_if_conversion

pass_vectorize

pass_complete_unroll

pass_iv_optimize

Chapter 3: The Compilation Phases in GCC Source Code 11

pass_loop_done

pass_dominator

pass_redundant_phi

pass_late_warn_uninitialized

pass_cd_dce

pass_dse

pass_forwprop

pass_phiopt

pass_tail_calls

pass_rename_ssa_copies

pass_del_ssa

pass_nrv /* HLL independent return value optimization */

pass_remove_useless_vars

pass_mark_used_blocks

pass_cleanup_cfg_post_optimizing

pass_warn_function_return

pass_mudflap_2

pass_free_datastructures

pass_expand /* Expand to (incomplete) IR-RTL IR */

pass_rest_of_compilation /* Do IR-RTL passes */

Once the compilation is in the IR-RTL based IR, the following functions may make
passes over the IR depending on the conditionals that control the flow, and not shown
here. Most of these functions are in $GCCHOME/gcc/passes.c and are entry points into the
actual passes. The entire list is just the function calls in the body of the pass function of
the pass_rest_of_compilation pass – the last pass – in the pass manager above.

remove_unnecessary_notes ()

init_function_for_compilation ()

rest_of_handle_jump ()

rest_of_handle_eh ()

emit_initial_value_sets ()

unshare_all_rtl ()

instantiate_virtual_regs ()

rest_of_handle_jump2 ()

rest_of_handle_cse ()

rest_of_handle_gcse ()

rest_of_handle_loop_optimize ()

rest_of_handle_jump_bypass ()

rest_of_handle_cfg ()

rtl_register_profile_hooks ()

rtl_register_value_prof_hooks ()

rest_of_handle_branch_prob ()

rest_of_handle_value_profile_transformations ()

count_or_remove_death_notes (NULL, 1)

rest_of_handle_if_conversion ()

rest_of_handle_tracer ()

rest_of_handle_loop2 ()

Chapter 3: The Compilation Phases in GCC Source Code 12

rest_of_handle_web ()

rest_of_handle_cse2 ()

rest_of_handle_life ()

rest_of_handle_combine ()

rest_of_handle_if_after_combine ()

rest_of_handle_partition_blocks ()

rest_of_handle_regmove ()

split_all_insns (1)

rest_of_handle_mode_switching ()

recompute_reg_usage ()

rest_of_handle_sms ()

rest_of_handle_sched ()

rest_of_handle_old_regalloc ()

rest_of_handle_postreload ()

rest_of_handle_gcse2 ()

rest_of_handle_flow2 ()

rest_of_handle_peephole2 ()

rest_of_handle_if_after_reload ()

rest_of_handle_regrename ()

rest_of_handle_reorder_blocks ()

rest_of_handle_branch_target_load_optimize ()

rest_of_handle_sched2 ()

rest_of_handle_stack_regs ()

compute_alignments ()

duplicate_computed_gotos ()

rest_of_handle_variable_tracking ()

free_bb_for_insn ()

rest_of_handle_machine_reorg ()

purge_line_number_notes (get_insns ())

cleanup_barriers ()

rest_of_handle_delay_slots ()

split_all_insns_noflow ()

convert_to_eh_region_ranges ()

rest_of_handle_shorten_branches ()

set_nothrow_function_flags ()

rest_of_handle_final ()

rest_of_clean_state ()

Perhaps the most critical and hairy function in this sequence is the register allocation
pass. This pass computes the target specific hard registers to be used for the pseudo
registers in the IR-RTL IR. The purpose of this pass is essentially to ensure that the IR-
RTL representation of the compilation is complete enough so that each RTX corresponds to
a unique target assembly string in the MD. It uses the so called reload pass that introduces
the necessary load and store operations for instruction patterns that require hard registers.
These register reloads are performed while satisfying the allocation constraints specified
in the MD. This pass depends critically on sufficiently detailed specification of the data
movement operations supported by the target.

Chapter 3: The Compilation Phases in GCC Source Code 13

3.7 Target assembly code emission

The register allocator pass in rest_of_compilation () makes the assembly code generation
by the rest_of_handle_final () function a conceptually simple affair of substituting the
concrete assembly syntax for the RTXs. At this point, the IR-RTL IR is to the assembly
code as the AST is to the HLL code, and we regard the RTXs at this point as the “abstract
syntax” of the final assembly code. The list of RTXs that represents the compilation as
IR-RTL IR is simply traversed. For each RTX pattern encountered, the assembly string
to be output is determined and emitted. The insn-recog.c file is generated from the
machine description and contains a decision tree that compares a given instruction pattern
in the IR-RTL IR of a program to the pattern specifications in the MD and determines the
matching pattern, if any. If a match is found, then the corresponding assembly string is
emitted. The basic algorithm is:

preprocess the MD to obtain the recognizer

for each instruction pattern in the IR-RTL IR of input program

obtain the index from the recognizer

use it to locate the assembly output in insn_data[]

Preprocessing the MD: At tbuild the genrecog process scans the selected MD for oc-
currences of instruction patterns. The occurrence of the pattern expression in the MD file
serves as the indexing integer into target specific arrays like insn_data that hold the actual
detailed information. A given pattern is scanned for the various pieces of information that
can be used for matching purposes. For instance, the machine mode of the operators and
operands, or the “nature” of the operand (register, memory etc.). Corresponding match
predicate expressions in C are constructed and emitted into the insn-recog.c file. This
file yields the recognizer on compilation and contains the main entry point, recog(), of the
recognizer.

3.7.1 The Assembly Emission Call Graph

The call sequence for emitting the assembly code from completed IR-RTL representation
is shown below. It is initiated by the rest_of_handle_final () function from the RTL
passes in handler of the pass_rest_of_compilation.

/* FROM: RTL passes */

assemble_start_function (); varasm.c

final_start_function (); final.c

final (); final.c

final_end_function (); final.c

assemble_end_function (); varasm.c

Chapter 4: AST Implementation 14

4 AST Implementation

We describe the implementation of the AST IR in GCC. In general, this appears to be
different from the conceptual presentation of the AST abstract machine. We first give the
AST data structure that GCC actually uses. A list all the AST objects into their classes
as defined by the GCC sources then follows. Conceptually, the AST/Generic views at
development time and operation time are identical. Hence the trun view is presented in
terms of a partial call graph of the compiler.

4.1 The AST/Generic Data Structures

The AST is composed of a set of nodes. Some information is common to all nodes, and is
collected in the struct tree_common structure in tree.h. The flags in this structure are
documented in detail in tree.h. The “code” of the node, i.e. the kind of information that
it contains, is expressed through a set of codes (documented in tree.def), is a field of the
structure that is masked behind an accessor macro TREE_CODE(NODE) which simply returns
this field. The TREE_SET_CODE(NODE) macro is the assignment macro that sets this field.
This structure is included as a field of all nodes. The various tree nodes are:

Data Structure Information that the node contains

struct tree_int_cst integer constants.
struct tree_real_cst real constants.
struct tree_string string constants.
struct tree_complex complex constants.
struct tree_vector vector constants.
struct tree_identifier Identifiers.
struct tree_list Lists of tree nodes.
struct tree_vec Vectors of tree nodes.
struct tree_exp Expression node.
struct tree_block Block definition node.
struct tree_type Data type nodes.
struct tree_decl Function Declaration.

The overall tree node is a union of all the various kinds of node structures listed above.
It is given by the data structure (in tree.h) as:

union tree_node

{

struct tree_common common;

struct tree_int_cst int_cst;

struct tree_real_cst real_cst;

struct tree_vector vector;

struct tree_string string;

struct tree_complex complex;

struct tree_identifier identifier;

struct tree_decl decl;

struct tree_type type;

struct tree_list list;

Chapter 4: AST Implementation 15

struct tree_vec vec;

struct tree_exp exp;

struct tree_block block;

};

Every member of this structure, except the tree_common structure has a field that points
to the IR-RTL representation whose structure is presented in section, Section 6.1 [The RTX
Data Structure], page 27. The compiler enumerates a number of data types corresponding
explicitly to the source language types (for C, in our examples), and implicitly for internal
purposes (e.g. mark errors, identify the main entry point etc.). The varieties of integers
that the source (C) can represent and the corresponding integer type codes are exhaustively
enumerated.

A retargetable architecture implies the possibility of a Canadian cross (see Chapter 7
[The GCC Build System Architecture], page 36). The differences in the characteristics of
the build system, the host system and the target system have a few unusual consequences.
Consider the situation when the word sizes on these three systems differ. The build system
compiler has to build the compiler using the host system word size. The host system,
further, has to build the target code using the target word size. Calculations involving
word sizes, for instance pointer increment values, have to be calculated in the compiler
sources depending on the run time faced by the object being built. A tree object is built
on the host system while producing code for the target system, i.e. when the compiler runs
to compile a file.

The tree.def file contains various node names defined using a C preprocessor macro –
DEFTREECODE. The macro is used in different ways depending on the information required.
We illustrate the use with an example. Consider the following macro that is represents the
C void type:

DEFTREECODE (VOID_TYPE, "void_type", ’t’, 0)

Defining the DEFTREECODE macro as:

#define DEFTREECODE(arg1, arg2, arg3, arg4) arg2

yields the second argument which gives the name as a string. The definitions of the
DEFTREECODE are changed as needed in the GCC sources. For instance, the various nodes
are enumerated simply as:

#define DEFTREECODE(arg1, arg2, arg3, arg4) arg1

enum tree_node_list {

#include "tree.def"

};

#undef DEFTREECODE

The technique is used at many places in the source, for example for the RTL definitions
too.

The first argument of the DEFTREECODE macro is the symbolic name of the node typically
used to create an enumerated data type of nodes. The second argument is the identifier used
to refer to that node. The nodes in the GCC AST are of different kinds as listed in [kinds of
AST nodes in GCC], page 16. These kinds are encoded via a set of character codes which
are listed in tree.def. These codes are the third argument of the DEFTREECODE macro.
The fourth argument in most node definitions is the number of operands of that node. For
other nodes, the use of the fourth argument is dependent on the node being described. The

Chapter 4: AST Implementation 16

collection of the DEFTREECODE macros define the database of nodes that GCC uses for it’s
AST.

4.2 AST/Generic Node types

Table 4.1–Table 4.12 list out all the node types for any C program. The list has been
obtained by the common GCC tree node definitions data base in tree.def, and the node
definitions for languages of the C family (C, objective C) in c-common.def. As is evident,
the nodes listed below are a superset of the nodes required to represent any C program.
Nodes for objects in other languages like Pascal or C++ also are a part of the tree.def file.
The GCC code base classifies them into types as given by the ‘code’ value in the GCC tree
node definition data bases. Codes have been defined for the following1:

1. Comparison expressions:

2. Unary arithmetic expressions:

3. Binary arithmetic expressions:

4. Lexical block:

A symbol binding block. This captures the scoping rules into the intermediate repre-
sentation of the program.

5. Constants:

These node types represent constants of various types that can occur in the input
program.

6. Declarations:

All references to names are represented by nodes of this type.

7. Other kinds of expressions:

8. Storage referencing:

Memory may be referenced in many ways in the source. It may be directly named, or
may be referenced via a pointer, or an “offset” from a base of arrays or structures or
unions, or bit fields

9. Expressions with inherent side effects:

10. Object types:

These node types are used to represent each data type in the source language. Most C
data types are represented. The integer_type also includes char in C. The char_type
node denotes Pascal character type.

11. Miscellaneous:

1 The GCC sources (tree.def etc.) describe each node type in great detail. We summarize.

Chapter 4: AST Implementation 17

lt_expr < operation, 2 operand
le_expr ≤ operation, 2 operand
gt_expr > operation, 2 operand
ge_expr ≥ operation, 2 operand
eq_expr = operation, 2 operand
ne_expr 6= operation, 2 operand
unordered_expr Floating point unordered operations, 2 operand
ordered_expr Floating point ordered operations, 2 operand
unlt_expr Unordered < operation, 2 operand
unle_expr Unordered ≤ operation, 2 operand
ungt_expr Unordered > operation, 2 operand
unge_expr Unordered ≥ operation, 2 operand
uneq_expr Unordered = operation, 2 operand

Table 4.1: GCC tree node types – Comparison operators.

fix_trunc_expr Conversion of real to fixed point – truncate
fix_ceil_expr Conversion of real to fixed point – ceil
fix_floor_expr Conversion of real to fixed point – floor
fix_round_expr Conversion of real to fixed point – round
float_expr Conversion of integer to real
negate_expr Unary negation
abs_expr Absolute value
ffs_expr ?
bit_not_expr Bit wise NOT
convert_expr Conversion of a type of a value
nop_expr Conversion does not require code to be generated
non_lvalue_expr Guaranteed not an lvalue
view_convert_expr View a thing of one type as being of other type
sizeof_expr C sizeof operation
alignof_expr ?

Table 4.2: GCC tree node types – Unary arithmetic operators.

Chapter 4: AST Implementation 18

plus_expr Addition
minus_expr Subtraction
mult_expr Multiplication
trunc_div_expr Integer division (quotient rounded towards zero)
ceil_div_expr Integer division (quotient rounded towards +∞)
floor_div_expr Integer division (quotient rounded towards −∞)
round_div_expr Integer division (quotient rounded towards nearest int)
trunc_mod_expr Remainder – truncate
ceil_mod_expr Remainder – ceil
floor_mod_expr Remainder – floor
round_mod_expr Remainder – round
rdiv_expr Division for real result
exact_div_expr Division not supposed to need rounding (C pointers)
min_expr Minimum
max_expr Maximum
lshift_expr Shift left (logical on unsigned, arithmetic on signed)
rshift_expr Shift right (logical on unsigned, arithmetic on signed)
lrotate_expr Rotate left
rrotate_expr Rotate right
bit_ior_expr Bit wise inclusive OR
bit_xor_expr Bit wise exclusive OR
bit_and_expr Bit wise AND
bit_andtc_expr Bit wise AND ? TC ?

Table 4.3: GCC tree node types – Binary arithmetic operators.

block Symbol binding Lexical Block

Table 4.4: GCC tree node types – Lexical Block.

integer_cst Integer constants
real_cst Real constants
string_cst String constants

Table 4.5: GCC tree node types – Constants.

function_decl Function declaration
label_decl Label declaration
const_decl Constant declaration
type_decl Type declaration
var_decl Variable declaration
parm_decl Parameters declaration
result_decl Return value declaration
field_decl Structure/Union field declaration

Table 4.6: GCC tree node types – Declarations.

Chapter 4: AST Implementation 19

compound_expr Compute two expressions
modify_expr Assignment expression
init_expr Initialization expression (2 operand)
target_expr Initialization (4 operand, with cleanup)
cond_expr C ternary expression (? :)
bind_expr Local variables (See GCC source code)
call_expr Function call
with_cleanup_expr Specify a value to compute, & it’s cleanup
cleanup_point_expr Specify a cleanup point
with_record_expr Provide an expression referencing a record
truth_andif_expr Logical short circuited AND
truth_orif_expr Logical short circuited OR
truth_and_expr Logical AND
truth_or_expr Logical OR
truth_xor_expr Logical XOR
truth_not_expr Logical NOT
save_expr Flag compute-once-use-many expressions
unsave_expr Permit future re-evaluations of argument
rtl_expr RTL already expanded expressions
addr_expr C address-of operation
reference_expr Non lvalue reference or pointer
entry_value_expr ?
fdesc_expr ?
predecrement_expr Node type for -- in C
preincrement_expr Node type for ++ in C
postdecrement_expr Node type for -- in C
postincrement_expr Node type for ++ in C
va_arg_expr Used to implement va_arg
goto_subroutine Used internally for cleanups
labeled_block_expr A labeled block
exit_block_expr Exit a labeled block
expr_with_file_

location

Annotate node with source location info

switch_expr Switch expression
exc_ptr_expr Exception object from the run time

Table 4.7: GCC tree node types – Statements I.

Chapter 4: AST Implementation 20

arrow_expr Arrow expression ?
expr_stmt An expression statement
compound_stmt A brace enclosed block
decl_stmt Local declaration
if_stmt ‘if’ statement
for_stmt ‘for’ statement
while_stmt ‘while’ statement
do_stmt ‘do’ statement
return_stmt ‘return’ statement
break_stmt ‘break’ statement
continue_stmt ‘continue’ statement
switch_stmt ‘switch’ statement
goto_stmt ‘goto’ statement
label_stmt ‘label’ statement
asm_stmt ‘asm’ (inline assembly) statement
scope_stmt Mark the beginning or end of a scope
file_stmt Mark where a function changes files
case_label ‘case’ labels
stmt_expr Statement expression
compound_literal_

expr

C99 compound literal

cleanup_stmt Mark the full construction of a declaration

Table 4.8: GCC tree node types – Statements II.

component_ref Node is a structure or union component
bit_field_ref Reference to a group of bits
indirect_ref C unary ‘*’
array_ref Array indexing, single index
array_range_ref Array slicing, range of indices

Table 4.9: GCC tree node types – References to storage.

label_expr Label definition encapsulated as a statement
goto_expr GOTO expression
return_expr RETURN expression
exit_expr Conditional exit from innermost loop
loop_expr A loop

Table 4.10: GCC tree node types – Expressions with inherent side effects.

Chapter 4: AST Implementation 21

void_type C ‘void’ type
integer_type Integer types (includes C ‘char’ type)
real_type ‘float’ and ‘double’ in C
enumeral_type C ‘enum’
pointer_type Pointer type
offset_type Pointer relative to an object
reference_type Pointer automatically coerced to the type of pointed object
method_type Function that takes extra ’self’ argument
array_type Types of arrays
record_type ‘struct’ in C or ‘record’ in Pascal
union_type ‘union’ in C
qual_union_type Similar to ‘union’ (See GCC source code)
function_type Type of functions
lang_type Language specific type, determined by front end

Table 4.11: GCC tree node types – Type Object code.

error_mark Mark an erroneous construct
identifier_node Represent a name
tree_list List of tree nodes
tree_vec Array of tree nodes
placeholder_expr Record to be supplied later
srcloc Remember source position

Table 4.12: GCC tree node types – Exceptional code.

4.3 Program Representation in AST/Generic

At trun the AST/Generic representation of some sample C program is shown in Figure 4.1.

int f(char *a)

{

int n = 10; int i, g;

i = 0;

while (i < n) {

a[i] = g * i + 3;

i = i + 1;

}

return i;

}

FnDecl

RetType Body Args

Decl StmtList

Stmt1 modify expr

i 0

Stmt2 while stmt

bool expr Body

Figure 4.1: A simplified and partial AST/Generic representation of a C program.

Chapter 5: Gimple Implementation 22

5 Gimple Implementation

In GCC 4.0.2, the Gimple representation uses the same tree data structure as the
AST/Generic. The only difference is that the AST/Generic control flow nodes listed
in Table 5.1 must not exist in Gimple representation since Gimple lowers control flow.
Following the creation of a Gimple representation, the pass manager (see Section 3.6
[Optimizations], page 9) runs a series of passes that eventually convert the Gimple
representation to IR-RTL and run the IR-RTL passes. The Gimple → IR-RTL conversion
is tricky to implement. With the concepts from [The Conceptual Structure of GCC],
page 46 and implementation ideas of Section 3.4 [The Gimple], page 7 the details of are
discussed below in Section 5.2 [Implementing the Gimple to IR-RTL Conversion], page 22.

5.1 GIMPLE Node types

do_stmt while_stmt for_stmt

break_stmt switch_stmt continue_stmt

Table 5.1: AST/Generic node types for C that are lowered during gimplification and
hence cannot occur in a Gimple representation.

The AST/Generic node types listed above in Table 5.1 are lowered during the gimplifi-
cation process and will not occur in a Gimple representation of a program being compiled.
These nodes represent complex control flow constructs.

The nodes do, while, for, break, switch, continue from the AST/Generic represen-
tation are re-expressed using the if and goto statements during gimplification. Thus the
Gimple node types are the same as AST/Generic node types (see Table 4.1–Table 4.12)
except for those listed above in Table 5.1.

5.2 Implementing the Gimple → IR-RTL Conversion

5.2.1 Gimple → IR-RTL at tdevelop

The Gimple → IR-RTL expander routine, expand_expr() in expr.c, contains a huge
switch-case code. Corresponding to every Gimple node type case, the code switches
to expand the standard pattern. In this way, the Gimple → IR-RTL conversion hard codes
the standard names into the compiler. The IR-RTL expansion starts from the function
declaration node at the top. A depth first (post order) traversal of the tree expands the
child nodes (which contain operands, for example) before the root node of a given subtree.
To “implement” expansion to IR-RTL of the root node, we use the following pseudo code:

INPUT: Gimple node type

ALGORITHM:

switch (Gimple node type) {

...

case NODE_TYPE_X: {

get node operands, if any, from the tree structure

use relevant information from the node, e.g. byte operation

invoke RTX generator code for node and any sub nodes

}

Chapter 5: Gimple Implementation 23

case NEXT_NODE_TYPE:

...

}

It is possible that a given Gimple node expands to a sequence of IR-RTL expressions
(RTXs). This depends on the RTX generator code, which in turn results from the specifica-
tions in the MD. If any child nodes, e.g. operands, are to be expanded, they are expanded
in place, or via a recursive call to the main expander routine with the new node argument.

The “invoke RTX generator code” part of the expansion algorithm at tdevelop can only
be realized at tbuild since the actual target specific IR-RTL to use is determined at that
time. Hence the idea of separating the Gimple and IR-RTL parts of the translation ta-
ble is implemented at tdevelop . The pattern names that can occur are enumerated in
$GCCHOME/gcc/optabs.h and are used as indices into the array of optab structures defined
in the same file. The contents of the array will conceptually be the occurrence of the cor-

responding pattern in the MD. The integer value of this occurrence will be generated at
tbuild by processing the MD. The program to scan the MD for occurrences of patterns and
generate the indices is gencodes.c and is implemented at tdevelop . This completes the im-
plementation of the Gimple part of the translation table at development time. The IR-RTL
part of the translation table is constructed at build time. However, the required processing
of the MD is implemented at development time. The program genoutput.c implements
this processing. Assuming that the build time processing and generation of the complete
table is correct, the “invoke RTX generator code” can be implemented at tdevelop as:

INPUT: Gimple node type

KNOWN: pattern name corresponding to each node type

ALGORITHM:

use the pattern name to index into the ‘‘optab’’ array

get the contents at the index, which is another integer

use the integer obtained to index the ‘‘insn_data’’ array

the ‘‘genfun’’ field of the information stored in

‘‘insn_data’’ is the RTX generator

5.2.2 Gimple → IR-RTL at tbuild

The program genoutput.c extracts the patterns from the MD at tbuild and stores them
in a data structure, insn_data array. Each pattern is stored in the sequence it occurs in
the MD. As a result, the occurrence index stored corresponding to the pattern name in the
optabs array can be used to locate the RTX generator code for the pattern that is stored
in the insn_data array.

Figure 5.1 captures the separation of the Gimple → IR-RTL translation table at tdevelop

and joining it back at tbuild . The “movsi” pattern name is the semantic glue that connects
the two separated tables at tdevelop . Machine descriptions specify their own patterns for
each pattern name (shown for the “movsi” pattern in the figure) at tdevelop . At tbuild the
gencodes and genoutput programs operate on the selected MD and populate the optab

and insn_data arrays respectively.

Chapter 5: Gimple Implementation 24

MODIFY EXPR "movsi"

The CGF
"movsi",(set (<dest>) (<src>))

MD1

"movsi",(set (<dest>) (<src>))

MDn

Basic Approach: Tabulate

GIMPLE – IR-RTL Selected MD

struct optab [] struct insn data []

Convert SPNs to indices

Figure 5.1: Joining the Gimple to IR-RTL translation finite function target independent
LHS (optab[]) and target dependent RHS (insn_data[]) at build time, tbuild . The con-
tents of insn_data[] are from the selected machine description. Above the dashed line we
have the GCC system as developed during tdevelop . Below the dashed lines we have the
situation at tbuild .

5.2.3 Gimple → IR-RTL at trun

Consider a concrete example of expanding a PLUS_EXPR (“+” expression) Gimple node to
IR-RTL at trun . Given that the expression tree in the input is located using a variable
called exp, we extract the first operand using the macro call TREE_OPERAND(exp, 0) and
the second operand using TREE_OPERAND(exp, 1) call. We need to analyze if the operands
are pure constants or variables. In case they are variables, they are available either locally
or globally, and either as pointers or actual variables. An activation record has been (at
least conceptually) created since an expression is expected to occur within the context of
some function, and the current PLUS_EXPR has been reached while expanding a FUNCTION_

EXPR! Therefore, RTXs that locate the operand object are available. If the operands are
not constants, the code recursively calls the main expansion routine to expand the operand
node at hand. Eventually, we have an IR-RTL expansion that locates the memory area
to be used for the addition operation. Skipping the details, we find that the actual RTX
corresponding to the PLUS_EXPR Gimple node is done by a routine called gen_rtx_PLUS().
This expander of the “+” operation is constructed at build time from the target machine
description as detailed in Section 6.4 [RTL at build time], page 33.

5.2.4 A Few Remarks About Pattern Names

Conventions have been evolved regarding the syntactic structure of pattern names. A
pattern name may be an empty string “""” or may be a string of alphanumeric characters,
or may begin with the “\star” character followed by an alphanumeric string. If the name
is non empty and does not begin with the \star character, then it is used during the
Gimple → IR-RTL translation. The pattern name encodes two, and an optional third,
pieces of information: the first substring denotes the actual operation, the second denotes
the machine mode and the third optional one may be used to denote the number of operands

Chapter 5: Gimple Implementation 25

or other purposes. Thus the “movsi” pattern name denotes the “mov” operation in “si”
(Single Integer – SI) machine mode and there is no other information.

Some operations denoted by pattern names are designated as “standard” and include
the machine mode. The optab array is actually a two dimensional array indexed using the
operation part and the machine mode part of the pattern name. The “standard” operations
are enumerated in $GCCHOME/gcc/optabs.h. The 37 “standard pattern names” are listed
below. Giving one of the following names to an insn specification in the MD tells the
IR-RTL generation pass that it can use the pattern to accomplish a certain task [GCC
Internals (by Richard Stallman)], page 46.

movm moves data from operand 1 to operand 0, m is the machine mode.
reload_inm Like movm, but used when a scratch register is required to move the

data from operand 0 to operand 1. Operand 2 describes the scratch
register to be used.

reload_outm Like movm, but used when a scratch register is required to move the
data from operand 0 to operand 1. Operand 2 describes the scratch
register to be used.

movstrictm Like movm, but if the size of the destination of the assignment (i.e.
operand 0) is smaller, i.e. it uses a part of the destination register,
then this RTL instruction guarantees that the part of the register that
is “outside” the destination is not altered.

load_multiple Load consecutive memory locations starting from ope-rand 1 to a set of
consecutive registers starting from operand 0, with operand 2 giving
the number of consecutive registers – a constant.

store_multiple Store to consecutive memory locations starting from ope-rand 0 a set
of consecutive registers starting from operand 1, with operand 2 giving
the number of consecutive registers – a constant.

pushm Output a push instruction. Operand 0 is the value to push.
addm3 Add operand 2 and operand 1 and store the result in operand 0; all

operands of mode m.

subm3 Subtract; rest similar to add.
mulm3 Multiply; rest similar to add.
divm3 Divide; rest similar to add.
modm3 Modulo; rest similar to add.
andm3 Logical AND; rest similar to add.
iorm3 Logical Inclusive OR; rest similar to add.
xorm3 Logical Exclusive OR; rest similar to add.
udivm3 unsigned Division; rest similar to add.
umodm3 Unsigned Modulo; rest similar to add.
minm3 Floating point minimum_of operation. If either both the ope-rands are

zero or at least one of the operands is NaN, then which of them will
be returned is unspecified.

maxm3 Floating point maximum_of operation. If either both the ope-rands are
zero or at least one of the operands is NaN, then which of them will
be returned is unspecified.

Chapter 5: Gimple Implementation 26

mulhisi3 Multiplication of two HI (Half Integer) mode operands, operands 1
and 2. The SI mode result is in operand 0. Since the HI (Half Integer)
mode operands become SI (Single Integer) mode operands after the
operation, the multiplication is characterized as widening.

mulqihi3 Similar to mulhisi3 except that two QI mode (Quarter Integer) mode
operands yield a HI mode product.

mulsidi3 Similar to mulhisi3 except that two SI mode (Single Integer) mode
operands yield a DI mode (Double Integer) product.

umulhisi3 Unsigned Multiplication of two HI (Half Integer) mode ope-rands,
operands 1 and 2. The SI mode result is in operand 0. Since the
HI (Half Integer) mode operands become SI (Single Integer) mode
operands after the operation, the multiplication is characterized as
widening.

umulqihi3 Similar to umulhisi3 except that two QI mode (Quarter Integer) mode
operands yield a HI mode product.

umulsidi3 Similar to umulhisi3 except that two SI mode (Single Integer) mode
operands yield a DI mode (Double Integer) product.

smulm3_

highpart

Perform a signed multiplication of operands 1 and 2, which are of mode
m, store the most significant half in operand 0, and discard the least
significant half.

umulm3_

highpart

Perform an unsigned multiplication of operands 1 and 2, which are of
mode m, store the most significant half in operand 0, and discard the
least significant half.

divmodm4 Signed division that produces the quotient and the remainder.
Operand 1 is divided by operand 2 and the quotient is stored in operand
0 while the remainder goes in operand 3.

udivmodm4 Unsigned division that produces the quotient and the remainder.
Operand 1 is divided by operand 2 and the quotient is stored in operand
0 while the remainder goes in operand 3.

ashlm3 Arithmetic Shift Left of operand 1 by the number of bits specified in
operand 2 and store the result in operand 0.

ashrm3 Arithmetic Shift Right of operand 1 by the number of bits specified in
operand 2 and store the result in operand 0.

lshlm3 Logical Shift Left of operand 1 by the number of bits specified in
operand 2 and store the result in operand 0.

lshrm3 Logical Shift Right of operand 1 by the number of bits specified in
operand 2 and store the result in operand 0.

rotlm3 Rotate Left of operand 1 by the number of bits specified in operand 2
and store the result in operand 0.

rotrm3 Rotate Right of operand 1 by the number of bits specified in operand
2 and store the result in operand 0.

negm2 Negate operand 1 and store the result in operand 0.
absm2 Store the absolute value of operand 1 in operand 0.

Chapter 6: RTL Implementation 27

6 RTL Implementation

RTL is used for two purposes in GCC: to specify target instruction semantics in MD at
tdevelop and as an IR to represent a program being compiled. As pointed out in [The
Conceptual Structure of GCC], page 46, these two uses of RTL are better described as two
distinct languages: MD-RTL is a language used to specify target instruction semantics and
IR-RTL is a language used to represent a program being compiled. The MD-RTL language
is made up of MD constructs and (RTL) operators. The IR-RTL language is made up of IR
constructs and (RTL) operators. The three objects – MD constructs, (RTL) operators and
IR constructs – are together referred to as RTL objects. Thinking in terms of two distinct
languages each suited for it’s purpose helps in a more clear description of the processes that
occur at tdevelop , tbuild and trun . By definition, MD-RTL would be used at tdevelop , and
IR-RTL would be used at trun ! At tbuild , we would “generate” the IR-RTL version of the
MD-RTL based specifications of the chosen target.

We first give the RTL data structure that GCC actually uses to represent any RTL
object. We follow the GCC source code convention and list all the RTL objects according
to their kinds and then further into their classes as defined by the GCC sources. The
GCC code and documentation (see [GCC Internals (by Richard Stallman)], page 46) does
not distinguish between MD-RTL and IR-RTL. Every RTL object is simply referred to
as “RTL”. As an aid to understand those documents, we have at times used the GCC
terminology when the context makes it clear about which RTL language – MD-RTL or
IR-RTL – is being discussed.

6.1 The RTX Data Structure

The rtl.h file contains the main data structure used to internally represent an RTL object.
The file also contains preprocessor macros that access various fields for reading or writing
values, and conditionally check the contents.

/* RTL expression ("rtx"). */

struct rtx_def

{

ENUM_BITFIELD(rtx_code) code : 16;

ENUM_BITFIELD(machine_mode) mode : 8;

unsigned int jump : 1;

unsigned int call : 1;

unsigned int unchanging : 1;

unsigned int volatil : 1;

unsigned int in_struct : 1;

unsigned int used : 1;

unsigned integrated : 1;

unsigned frame_related : 1;

rtunion fld[1];

};

The generated file config.h defines rtx object as\\ typedef struct rtx_def *rtx;.

The rtunion is a union as below.

/* Common union for an element of an rtx. */

Chapter 6: RTL Implementation 28

union rtunion_def

{

HOST_WIDE_INT rtwint;

int rtint;

unsigned int rtuint;

const char *rtstr;

rtx rtx;

rtvec rtvec;

enum machine_mode rttype;

addr_diff_vec_flags rt_addr_diff_vec_flags;

struct cselib_val_struct *rt_cselib; /* in cselib.h */

struct bitmap_head_def *rtbit; /* in bitmap.h */

tree rttree;

struct basic_block_def *bb; /* in basic-block.h */

mem_attrs *rtmem;

};

typedef union rtunion_def rtunion;

The rtunion union contains two typedef’d structures addr_diff_vec_flags and mem_

attrs which are also defined in rtl.h as below:

typedef struct

{

unsigned min_align : 8;

unsigned base_after_vec : 1;

unsigned min_after_vec : 1;

unsigned max_after_vec : 1;

unsigned min_after_base : 1;

unsigned max_after_base : 1;

unsigned offset_unsigned : 1;

unsigned : 2;

unsigned scale : 8;

} addr_diff_vec_flags;

typedef struct mem_attrs

{

HOST_WIDE_INT alias;

tree expr;

rtx offset;

rtx size;

unsigned int align;

} mem_attrs;

The rtx is the data structure into which the information from machine descriptions is
scanned into.

6.2 Lists of all RTL objects

Chapter 6: RTL Implementation 29

RTL Objects

const_int const_double const_string const

pc value reg scratch

concat mem label_ref symbol_ref

cc addressof high lo_sum

address

Comparison operators

ne eq ge gt

le lt geu gtu

leu ltu unordered ordered

uneq unge ungt unle

unlt ltgt

Unary arithmetic

neg not sign_extend zero_extend

truncate float_extend float_truncate float

fix unsigned_float unsigned_fix abs

sqrt ffs vec_duplicate ss_truncate

us_truncate

Commutative binary

operation

plus mult and ior

xor smin smax umin

umax ss_plus us_plus

Non-bitfield three in-

put operation

if_then_else vec_merge

Non-commutative bi-

nary operation

compare minus div mod

udiv umod ashift rotate

ashiftrt lshiftrt rotatert vec_select

vec_concat ss_minus us_minus

Bit-field operation

sign_extract zero_extract

Autoincrement

addressing modes

pre_dec pre_inc post_dec post_inc

pre_modify post_modify

Table 6.1: RTL Operators I (with finer classification).

Chapter 6: RTL Implementation 30

Side effects and misc.

parallel asm_input asm_operands addr_vec

addr_diff_vec prefetch set use

clobber call return trap_if

resx const_vector subreg strict_low_part

queued cond range_info range_reg

range_var range_live constant_p_rtx call_placeholder

phi nil UnKnown

Table 6.2: RTL Operators II (with finer classification).

insn jump_insn call_insn

code_label barrier note

Table 6.3: IR RTL types.

Pattern specification

define_insn define_peephole define_split

define_insn_and_split define_peephole define_combine

define_expand define_asm_attributes define_cond_exec

Pipeline specification

define_function_unit define_delay define_cpu_unit

define_query_cpu_unit define_bypass define_automaton

define_reservation define_insn_

reservation

Match specification

match_operand match_scratch match_dup

match_operator match_parallel match_op_dup

match_par_dup match_insn

Attribute specification

define_attr attr set_attr

set_attr_alternative eq_attr attr_flag

Miscellaneous

include expr_list insn_list

automata_option exclusion_set presence_set

absence_set cond_exec sequence

unspec unspec_volatile

Table 6.4: MD RTL with finer classification.

Table 6.1 and Table 6.2 list the (RTL) operators from the set of all RTL objects listed
in the rtl.def database. Table 6.3 lists the IR constructs and Table 6.4 lists the MD
constructs. The MD constructs have further been separated according to functionality. For
some RTL objects this corresponds to the class as given by the fourth argument of the
DEF_RTL_EXPR macro.

All RTL objects have a Lisp like external syntax. We will refer to an expression made up
of (RTL) operators as an RTX. Expressions that specify target semantics will be referred to

Chapter 6: RTL Implementation 31

as MD-RTXs.1 Expressions that represent program (fragments) during a compilation will
be referred to as IR-RTXs.2 GCC refers to any RTL expression as “RTX” which we use
when the context makes it clear as to which kind of expression is being referred to.

6.3 RTL at development time: Specifying MD (using MD-
RTL)

Specifying target properties in GCC is extensive enough and two separate document [Writ-
ing GCC Machine Descriptions], page 46 and [Systematic Development of GCC Machine
Descriptions], page 46 are fully devoted to their writing and systematic development. In this
section we pose the basic problem and illustrate the technique of capturing target instruc-
tion semantics into an instruction pattern in MD. The example is demonstration oriented
than being factual and continues to serve the illustrations for RTL operations at tbuild and
trun .

Target CPUs for which assembly code is to be emitted vary in the number, complexity
and detail semantics of instruction sets. RISC style architectures have lesser and simpler
instructions than CISC style CPUs. Details can vary depending on a number of factors,
some arbitrary. For instance, an architecture may insist on a certain constant value for an
instruction and another architecture may insist on a quite different constant value for it’s
corresponding instruction3.

There are three main kinds of information within a MD. The first kind concerns the
introduction and various manipulations of instructions, the second concerns the specification
of other details of the semantics like the modes for the operands, and lastly the template
of the concrete assembly code for the instruction. Other information like processor pipeline
structure, instruction attributes like length may additionally be needed and specified.

Every instruction of the target that GCC may emit must be introduced to the compiler
through an entry in the corresponding machine description. Additionally, a target may have
more instructions that can be used to substitute an instruction for a sequence of instructions,
or a expand an instruction into a sequence. The define family of MD constructs are used
for such purposes. Target instructions may impose constraints of various kinds, size being
a typical one, on the operands. MD constructs of the match family are used to suggest
such constraints to GCC. Additional information about target properties is dependent on
the target. Hence a given implementation may need an ability to define a target specific
property, specify a range of it’s values and then characterize each instruction in terms of
the defined attribute. MD constructs like define_attr and set_attr are used to define
target instruction attributes. Finally, there are MD constructs that help implementation of
the MD itself (e.g. include or define_unspec).

Armed with these MD structuring concepts, a new target machine is supported by
implementing it’s MD. The basic approach is to specify instruction semantics using the
RTL operators in tables Table 6.1 and Table 6.2. As described in Section 5.2 [Implementing
the Gimple to IR-RTL Conversion], page 22 and illustrated in Figure 5.1, although the
table columns are physically separated they are semantically connected by pattern names.
A MD then uses pattern names and describes the target instruction that can implement

1 MD-RTXs are made up of MD constructs and RTXs.
2 IR-RTXs are made up of IR constructs and RTXs.
3 The trap operation takes a constant value “5” on the i386 and a constant value “0” on the mips!

Chapter 6: RTL Implementation 32

the semantics of the pattern name using the MD-RTL language. The RTL operators are
used to construct the expression (RTX) that captures the semantics and the MD constructs
are used to give various specification details – introduction of a new pattern, the operand
matching criteria etc.

The $GCCHOME/gcc/config/<target>/<target>.md file implements the specification
of instruction set semantics for the target “<target>”. It is a collection of specification
definitions of each target instruction that GCC supports (i.e. can emit) with optional
constructs that ease the implementation.

6.3.1 Illustrative Example of RTL at tdevelop :

Let a fictitious machine have a data movement operation which moves an integer argu-
ment into a register. The target syntax of the instruction is “fictmove <source integer>

<destination register>”. We use the “movsi” pattern to introduce this instruction to
GCC via a MD-RTX as follows:

(define_insn "movsi"

(set (match_operand 0 "register_operand" "")

(match_operand 1 "const_int_operand" ""))

""

"fictmove %1, %0"

)

The define_insn MD construct is used to introduce a new pattern to GCC. The first
argument is the pattern name. It’s second argument is the RTL expression (RTX) that
captures the target instruction semantics. Here the RTL operator “set” captures the
operational part of the target instruction – an assignment operation. The arguments of
the “set” operator describe the nature of the operands. The first operand, operand 0, is
the destination of the set and is required to be a register for this particular target. The
second operand, operand 1, is the source of the set operation and is required to be a
constant integer. Notice that the specification of the operand matching criteria are target
specific, and the RTX captures the semantics of the target. Finally, the fourth argument
of define_insn is the concrete assembly syntax of the target instruction with %0 and %1

being the place holders for the actual values of the operands during compilation.

The requirements of the operands that this particular target demands are specified as
a match criteria using the match_operand MD construct. The match_operand expressions
are the operands of the set operator. The third argument of match_operand is the name
of a C boolean function that must be satisfied by the operand instance during compila-
tion. This function implements the test. There are two functions, register_operand ()

and const_int_operand (), that are used here. The first one checks of the operand is a
register and the second checks if the operand is a constant integer. Some test functions
are provided by GCC, and the MD author may also write target specific ones (usually in
$GCCHOME/gcc/config/<target>/<target>.c).

The RTX, i.e. the second operand of the define_insn, is written in a Lisp like form
in the MD system. At build time, it is converted to C functions and data structures that
would yield the internal representation at trun . The rtx data structure in Section 6.1 [The
RTX Data Structure], page 27 is used to represent RTL objects in internal form.

Chapter 6: RTL Implementation 33

6.4 RTL at build time: Build Time Processing of MD

The program gengenrtl.c is the generator of the file genrtl.c. genrtl.c is a set of C
functions that create IR-RTXs. These functions are invoked when the compiler is running
to compile an input program. C preprocessor macros that are used in genrtl.c are found
in rtl.h. The central data structure for RTL expressions is struct rtx_def in rtl.h that
gets typedef’d to the pointer named rtx. The code field of this structure contains the
RTX operation code. RTX emission code involves the following generic steps:

INPUT: RTX operation code to be instantiated

allocate compiler memory to instantiate an RTX

initialise it

set the ‘code’ field of the rtx struct to the input RTX code

set other fields if required

return the instantiated rtx

The available RTX codes are created by enumerating the RTL objects in
$GCCHOME/gcc/rtl.def.

6.4.1 Illustrative Example of RTL at tbuild :

The MD-RTX at tdevelop

(define_insn "movsi"

(set (match_operand 0 "register_operand" "")

(match_operand 1 "const_int_operand" ""))

""

"fictmove %1, %0"

)

is converted to a C function at tbuild

rtx

gen_movsi (rtx operand0, rtx operand1)

{

...

emit_insn (gen_rtx_SET (VOIDmode, op0, op1));

...

}

The pattern name string “movsi” in the specification forms the suffix of the function
name that starts with “gen_”. The C function that implements the pattern is thus named
“gen_movsi”. Suppose this specification is the 23rd MD-RTX in the MD file. Then the
function gen_movsi() is stored as the 23rd entry in the insn_data array. The “gen_rtx_
SET ()” function will instantiate an instance at run time, trun , of the rtx data structure (see
Section 6.1 [The RTX Data Structure], page 27) whose “code” field has the integer code of
the “SET” RTL operator and whose operand pointers will be set to “op0” and “op1”. The
operands would already be instantiated at run time since the Gimple → IR-RTL conversion
would be performed by a depth first traversal at run time. The “emit_insn” function will
chain the generated rtx into the linked list of RTXs at trun that will represent the program
being compiled as the RTL IR. It thus creates the IR-RTX by “embedding” the generated

Chapter 6: RTL Implementation 34

RTX in suitable IR constructs. The ellipses denote the rest of the steps of the RTX emission
algorithm.

6.5 RTL at trun : Representing Programs (using IR-RTL)

Once the IR-RTX emission code generated at tbuild is compiled, it can be used to emit
IR-RTL representation at run time. Assuming that the input program requires a data
movement operation that corresponds to the “movsi” pattern, we illustrate the instantiation
of the RTL specification. The program in IR-RTL is a linear list of IR-RTXs. The RTL
operators are used to construct the instance of the RTX that captures the instruction
semantics in the MD at tdevelop . The IR constructs usually encapsulate this particular
instance with other information. Some such information is structural; for example the
previous and the next IR-RTXs. Some other information is computed at various passes and
propagated to later passes.

6.5.1 Illustrative Example of RTL at trun :

The run time instance of the RTX in the illustrative example of sections Section 6.3 [RTL
at development time], page 31 and Section 6.4 [RTL at build time], page 33 looks as:

(insn 24 22 25 1

(set (reg:SI 58 [D.1283])

(const_int 0 [0x0])

)

-1

(nil)

(nil)

)

The IR construct “insn” has many operands. The fifth operand in the above example
is the RTX that is an instance of the RTX specified in the MD. Note that the first operand
of the instantiated RTX is a register (number 58, in the example) and will satisfy the
corresponding match criteria specified in the MD. Similarly the second operand is a constant
integer 0 and will also satisfy the corresponding match criteria. The first three operands of
the insn IR constrcut are mandatory. The complete syntax details may be ignored at the
moment.4

The register number 58 in the run time instance of the RTX is a pseudoregister and the
RTX as given is an incomplete (i.e. non strict) RTL. It cannot be used to generate the
assembly code since the hardware register to be used is unknown! In general, an IR-RTX
is incomplete if it lacks some information that is needed to emit the assembly code. The
register allocator RTL pass would compute the actual hardware register to use for this
pseudoregister. Suppose the register allocator determines that the pseudoregister 58 should
correspond to hardware register named “eax” (a very i386 like name, but illustrative). Then
the IR-RTX representing the program looks like:

(insn 24 22 25 1

(set (reg:SI eax [D.1283])

(const_int 0 [0x0])

4 The exact syntax details of each RTL construct – MD RTL, RTL operators and IR RTL – are described
in [GCC Internals (by Richard Stallman)], page 46

Chapter 6: RTL Implementation 35

)

-1

(nil)

(nil)

)

The IR representation can now be converted to assembly code. The string to be used is
specified in the corresponding MD-RTX (at tdevelop) to be: “fictmove %1, %0”. The value
of “(reg:SI eax ...)” is “eax” and is used for “%0”. The value of “(const_int 0 ...)”
is “0” and is used for “%1”. Hence the generated assembly instruction is:

fictmove 0, eax

Chapter 7: The GCC Build System Architecture 36

7 The GCC Build System Architecture

GCC is a generative architecture in the sense that the build process first generates the
source code of the target compiler and then builds this generated source into the target
compilation system. This is a consequence of the retargetability feature of GCC. The
motivations of such an architecture are discussed in [Writing GCC Machine Descriptions],
page 46. Retargetability means the decision of target to be used to generate the assembly
code for is decided at tbuild . This means that at development time the target specific
issues are specified for every target to be supported, and at build time a target from these
set of specified targets is chosen and the information is incorporated into the compiler.
Retargetabilty also facilitates generating various types of cross compilation systems [Cross
Compilation and GCC], page 46.

To generate the target compiler, GCC uses a number of C programs typically prefixed
by “gen”. These programs scan the target machine descriptions (Section 6.3 [RTL at
development time], page 31) and emit the data structures and code fragments that are
required to obtain a complete target compilation system. The output files are collected into
the build directory (see [GCC – An Introduction], page 46). Most of the source language
specific parts are directly handled via suitable Makefiles or shell scripts. The build of the
compiler is thus spread over source files generated in the build directory and the rest of the
compiler in the original sources directory.

Retargetability makes it possible to create cross compilers which are a part of cross
development tool chains. A cross compiler runs on a computer system but generates code
for another system. In general, a cross compiler would be built on a build system, be hosted

and run on a host system, and would generate code for a target system. These systems
may have their own particular needs for proper operation; a target system may need to
use it’s own particular tools for correct operation of the compiler. These particulars must
be known at build time tbuild . However they must be specified on a per target basis at
development time tdevelop ! The GCC build system must be designed so that these target
specific fragments of information is collected at build time and used. Since the make program
is used to build gcc, the ‘Makefile’ to be used must be composed at tbuild from ‘Makefile’
fragments that contain such system specific information. Target specific files like ‘t-TARGET’
and ‘x-HOST’ contain such information, and are used by the configure script to create a
complete ‘Makefile’.

7.1 GCC Build Overview

Chapter 7: The GCC Build System Architecture 37

Machine
dependent
Generator

Code

Set of
Machine

Descriptions

GCC (tdevelop)

Generated
Code

gcc (tbuild)
Generated

libiberty.a

gensupport.c

rtl.c

print-rtl.c

errors.c

print-rtl1.c

bitmap.c

read-rtl.c

ggc-none.c

genconditions

genconstants

genflags

genconfig

gencodes

genattr

genemit

genextract

genopinit

genpeep

insn-conditions.c

insn-constants.c

insn-flags.c

insn-config.c

insn-codes.c

insn-attr.c

insn-emit.c

insn-extract.c

insn-opinit.c

insn-peep.c

Chosen MD

Figure 7.1: Generating target specific parts of the compiler. The solid horizontal line
separates the conceptual view above from the implementation details below. The dashed
vertical line separates the generators from the generated code.

Figure 7.1 details the generation part of Figure 1.1 (boxes labeled “Machine dependent
Generator Code” and “Set of Machine Descriptions”) of the target specific instance of the
GCC sources. The figure re-orients the top-down view of Figure 1.1 to a left-right view
and presents the operational details. The desired target is specified via the configure

command (see [GCC – An Introduction], page 46). Once the desired target is known, a set
of generators1 operate on the chosen machine description and generate the target specific
components of the compiler. The common functionalities like those required to read and
print RTL code in machine descriptions, are compiled and archived into libiberty.a. Each
generator uses these files and it’s own main code to extract information from the target
specific machine description. The figure shows a few generators and the target specific
files they generate. The GCC sources at tdevelop are parametrised with “place holders” for
target specific information (Figure 2.1). We emphasise that at this point we have generated
a target specific version of the GCC sources which are yet to be compiled into a binary.

1 The generator programs are obtained from the corresponding C source files at tbuild .

Chapter 7: The GCC Build System Architecture 38

insn-conditions.c

insn-constants.c

insn-flags.c

insn-config.c

insn-codes.c

insn-attr.c

insn-emit.c

insn-extract.c

insn-opinit.c

insn-peep.c

struct c test insn conditions[],
size t n insn conditions

GCC INSN CONSTANTS H

HAVE (md instructions)

enum insn code {
CODE FOR (md inst)= ...

...

};

HAVE ATTR (md inst attribs)

RTX exmission functions for every insn
in MD file

Extract operands of RTL instructions in
MD file

Writes a function that initialises an ar-
ray with the code for each insn/expand
in MD file

Extract peephole optimisation informa-
tion in MD files

Figure 7.2: Target specific information in the generated files

The leftmost part of Figure 7.2 shows the target specific information contained in the
generated files. This consists of the data structures used to represent target specific infor-
mation.

The basic target specific source code generators are:

Chapter 7: The GCC Build System Architecture 39

gensupport.c Support routines for the various generation passes.
genconditions.c Calculate constant conditions.
genconstants.c Generate a series of #define statements, one for each constant

named in a (define constants ...) pattern.

genflags.c Generate flags HAVE_... saying which instructions are avail-
able for this machine.

genconfig.c Generate some #define configuration flags.
gencodes.c Generate CODE_FOR_... macros giving the index value for

each of the defined standard insn names.

genpreds.c Generate prototype declarations for operand preds, and pro-
cess new style predicate definitions2

genattr.c Generate attribute information (insn-attr.h).
genattrtab.c Generate code to compute values of attributes.
genemit.c Generate code to emit insns as IR-RTL IR.
genextract.c Generate code to operands extractor.
genopinit.c Generate optab initializer code.
genoutput.c Generate code to output assembler insns as recognized from

IR-RTL.

genpeep.c Generate code to perform peephole optimizations.
genrecog.c Generate code to recognize rtl as insns.
gencheck.c Generate check macros for tree codes.
gengenrtl.c Generate code to allocate RTL structures.
genrtl.c Generated automatically by gengenrtl from rtl.def.

gengtype.c Process source files and output type information.
genautomata.c Pipeline hazard description translator.
gengtype-lex.c A lexical scanner generated by flex
gengtype-yacc.c A Bison parser, made from gengtype-yacc.y.
gen-protos.c Massages a list of prototypes, for use by fixproto.

The exact sequence of the generation and build of the target compiler can be obtained
by looking at the sequence of the commands that are executed by a make on the sources
after their configuration. The commands can be redirected to a file for such a study. An
examination of these commands permits us to assign concpetual boundaries in the build
process so that one can identify the initially the support routines are built and collected
into the libiberty.a library, the generators are converted into process that extract the
information from the machine descriptions and finally the compiler for the desired language
is built. This technique captures the build for a given version of the compiler and cannot
insulate us from architectural variations in future build techniques of the compiler. However,
the idea is to try identifying the various logical components of a compiler build to create a
foundation for understanding any future variations in the architecture.

A study of the make of the compiler roughly gives the following structure of compilations:

2 This file changed in response to the introduction of new predicate definition syntax.

Chapter 7: The GCC Build System Architecture 40

1. libiberty/ Generates libiberty.a.
2. libiberty/testsuite/ Nothing occurs here by default!
3. zlib/ Generates libz.a.
4. fastjar/ Generates a few JAR tools.
5. gcc/ Generate some target files
6. gcc/intl/ Internationalisation, if requested
7. gcc/ Generate remaining target files
8. gcc/fixinc/ Fix vendor include files, if needed.
9. gcc/ Compiler compilation

The libiberty library contains general, multipurpose routines which are used in the
other programs that build the final compiler. The common tasks handled are regular ex-
pressions manipulations, reading and printing RTLs, error handling and garbage collection
used internally by GCC during operation.

The “gen*.c” files are compiled using the native compiler on the build system. This
binary operates on the machine description, if necessary, to obtain the corresponding target
compiler component source code. Once the target specific parts are generated, the build
process continues to build the actual compiler. This is done in two phases. First, the front
end independent parts are compiled and archived into the libbackend.a library. This is
common to every front end, and multiple front ends may be requested by the user. The
build system then builds a separate compiler for each desired front end.

A compiler for a given language, say C, is built using the front end processor files in the
respective directories, a few common routines from libiberty.a and the backend library
libbackend.a.

Chapter 7: The GCC Build System Architecture 41

Source File Use

c-parse.c A bison parser made from c-parse.y
c-lang.c Language Specific Hook implementations for C
c-pretty-print.c Common C/C++ pretty printing routines
attribs.c Functions dealing with attribute handling
c-errors.c Various diagnostic routines
c-lex.c Mainly the interface between cpplib and the C front ends
c-pragma.c Handle #pragma SVR4 style
c-decl.c Processes declarations and variables for C
c-typeck.c Build expresions with type checking for C
c-convert.c Language level data type conversion for C
c-aux-info.c Generate information regarding function declarations

and definitions based on information stored in GCC’s tree
structure

c-common.c Routines common to all C variants
c-opts.c C/C++/ObjC command line options processing
c-format.c Check calls to formatted I/O functions (?)
c-semantics.c Definitions and documentation for the common tree codes
c-objc-common.c Some common code to C and ObjC front ends
c-dump.c Tree dumping functionality for the C family
libcpp.a
main.c Defines main() for cc1, cc1plus etc.
libbackend.a GNU CC internal collection of backend code
libiberty.a GNU CC internal collection of useful routines

Table 7.1: Compiler files and their contents for cc1

For C, the files used are shown in table Table 7.1 and are used to generate the compiler
cc1.

Finally, the compiler driver gcc can be, and is built (Section 7.2 [The Compilation Driver
– gcc], page 41). This is actually built as xgcc to avoid possible name clash if gcc is available
on the build system. This insulation from the possible availability of a gcc command is
required during the boot strapping phases. For a native compiler, the build is performed in
at least three boot strap stages. In the first stages the native gcc or the vendor C compiler
is used to generate the compiler. The compiler xgcc generated in this stage is then used
to build the complete compiler again in stage 2. To check the success of the second stage
build, the xgcc from stage 2 is used to build the compiler again into stage 3. It is then
expected that stages 2 and 3 give identical results. GCC, therefore, always builds the driver
as xgcc and renames it as gcc during compiler installation time. This driver can be built
once the compiler proper, namely cc1 is built.

7.2 The gcc Compilation Driver

Conceptually, when a user requests the compilation of a file, say myprog.c, the system does
the following:

• The shell forks (and execs) the GNU Compiler driver gcc.

Chapter 7: The GCC Build System Architecture 42

• gcc “studies” the command line as discussed below. In particular, gcc sets up the
commands with suitable options and invokes the desired compiler, assembler and linker
in sequence.

• The compiler proper – cc1 for C sources – compiles the given input, a single file, into
an equivalent target assembly code.

• The assembler proper – as for assembler sources emitted by the compiler cc1 – assem-
bles, i.e. “compiles” the assembly source into object code.

• The linker – ld – is given the objects compiled along with suitable libraries to link into
executable code.

The structure of the gcc driver code is as follows:

• Setup the program name.

• Do initialisation for internationalisation.

• Install signal handlers.

• Build multilib selection /* Libraries compiled multiple times */

• Setup options for collect.

• Setup machine specific environment variables.

• Make a table of what switches there are (switches, n switches). Make a table of specified
input files (infiles, n infiles). Decode switches that are handled locally.

• Process driver self spec (?).

• The default_compilers array contains the command line specifications for invoking
the compiler to be invoked based on the extension in the given input source.

• Read the specs file3, if any, else fall to default.

• Now locate the required executables, i.e. the pre processor, the compiler, the assembler
and the linker. Native system compilers have a standard location. Any standard
libraries, e.g. libc for C programs, are added around this time.

• Locate the other support files, e.g. the startup and end code.

• Switches and specs done. Now set up the subdirectory based options.

• Unrecognised options, if any, are now responded to.

• Print out any user requested details of the information found until now.

• Bail out if no input file is given!

• Setup output file names. In particular, it appears that the file names of the entire tools
chain are created here and setup in the array of input files. It is over this array that
the next step operates. As a result of the lookup phase, the “compiler” that is found,
is actually the binary that transforms the input file to the desired output. Thus a “.c”
file has the cc1 binary as the “compiler” that emits the “.s” assembly. This “.s” is also
a part of the input files array. Hence in the next iteration, the lookup phase finds as as
the “compiler” that emits a “.o” file. A “.o” file is not a part of the set of extensions
recognised by the lookup phase and hence by default is passed on to the linker!

• Now start processing each input file:

• Look up the compiler for the input file,

3 The syntactic details of the spec file are detailed in the header comment of the gcc.c file.

Chapter 7: The GCC Build System Architecture 43

• Find it’s spec (assuming the compiler is found),

• If compiler not found, assume the input to be file for explicit linking (e.g. .o file),

• On errors, delete the delete-on-failure queue. If compilation successful, delete
temporaries.

• We now have a set of files ready for linking. The linker is either collect2 or ld.
See info gcc for the similarities and differences between collect2 and ld.

• Run the linkage processing phase.

• Delete temporaries. Cleanup based on any errors encountered or as specified on
the command line by the user.

The central idea of the gcc driver architecture is a table driven approach to looking up
the “compiler” binary based on the input file name extension and an associated standard
command line which can be augmented with user specified command line. The architecture
simply creates a sequence of intermediate file names that are the output of the current
stage and then input of the next stage, and iterates through them. For each input file, the
“compiler” is looked up, the actual command line created (this involves some parsing and
instantiation of the corresponding specification from the specs file), and then a fork () is
issued. At the point of fork (), the activation stack looks like (the stack grows upwards in
the figure below):

1. fork()

2. pexecute("cc1 path", "parent proc (gcc)", "input file", ...)

3. execute()

4. a sequence of calls to do_spec_1() which ultimately instantiate the specification from
the specs file

5. do_spec(): A point that is reached when the driver has found all the necessary infor-
mation to initiate the execution sequence. That is the driver has found that an input file
exists, it’s “compiler” exists and the “standard” command line for the “compilation”
exists

6. main()

Chapter 8: Conclusion 44

8 Conclusion

We have described some of the implementation details of GCC 4.0.2 with the conceptual
background of [The Conceptual Structure of GCC], page 46. The focus has been the imple-
mentation of the compilation concepts and not on the work required to extend it to being an
industry strength compiler. Details like the implementation of standards adherence, error
detection and reporting etc. have been omitted in this work. However, these details are nec-
essary to help understanding the GCC source code. Some details were voluminous enough
to merit a separate document. For instance the development of a machine description is
separated and can be found in [Systematic Development of GCC Machine Descriptions],
page 46. The syntactic details of almost all the concepts discussed can be found in [GCC
Internals (by Richard Stallman)], page 46 and we include only the necessary parts (see, for
example, Section 6.5 [RTL at run time], page 34).

The RTL is an interesting feature of GCC. It is a language that can capture the semantics
of target instructions as well as represent the program internally during compilation. The
use of RTL as an IR can be viewed as a “abstract syntax representation” of target assembly
language; i.e. the concrete assembly syntax has been discarded and only the semantics
captured. The (implicit, unstated) rule in GCC RTL phase is to ensure that the RTL IR is
complete enough so that every RTX in the IR (ideally) maps to a unique assembly string.
This suggests an attempt to perform compilation as much independent of the target syntax
but with target as much target semantics as possible. This enables some traditionally target
specific techniques like peephole optimization to be generically implemented.

8.1 Future Work

A number of possibilities exist for future work. The conceptual directions are already ex-
plored in [The Conceptual Structure of GCC], page 46. As far as implementation needs
go, the official GCC site (http://gcc.gnu.org/projects) lists a number of projects that
may be pursued, better documentation being one of them. Here we present our own addi-
tions/changes to that list.

• The present description of the internals of GCC need to be augmented with descriptions
about issues that have been left out. A partial list is:

• Regression testing

• List of standards complied to

• Standards implementation and compliance testing methods

• Front end architecture1

• Support libraries: concepts and implementation. Emulation libraries implement
functionality that might not be available on a target, for example software floating
point emulation. Some of these are part of libgcc.a. Compression libraries, HLL
standard libraries (e.g. Java, but not C since the C standard library implementa-
tions – glibc or newlib – are separate GNU packages).

• autoconf and automake details of the configuration and build process in GCC.

• Garbage collection: concepts and implementation as used in GCC.

1 Some descriptions are available on the Internet.

Chapter 8: Conclusion 45

• The GCC machine description system can be improved. The current parameterisation
is implemented using C preprocessor macros and RTL based target instruction seman-
tics system. The conceptual components of machine descriptions are not well separated
at the present. Given the current technology emphasis on embedded systems, mobile
computing, DSP and SoC the processor architectures are changing fast and often in-
clude domain specific instructions as well as instruction level parallelism and complex
addressing modes. The GCC machine description technology may need to be enhanced
to support such systems.

• Improving the abstract machines to open up formal verification efforts of the architec-
ture and implementation. This is a gargantuan task given the size and scale of the
implementation.

References 46

References

(Note: In the URLs below: $GCCINTDOCSHOME is
http://www.cfdvs.iitb.ac.in/~amv/gcc-int-docs)

1. Richard. M. Stallman.
GCC Internals.

(http://gcc.gnu.org/onlinedocs/gccint)
2007.

2. Abhijat Vichare.
GCC – An Introduction.

($GCCINTDOCSHOME/html/gcc-basic-info.html)
2007.

3. Abhijat Vichare.
Cross Compilation and GCC.

($GCCINTDOCSHOME/html/gcc-cross-compilation.html)
2007.

4. Abhijat Vichare.
Writing GCC Machine Descriptions.

($GCCINTDOCSHOME/html/gcc-writing-md.html)
2007.

5. Abhijat Vichare.
The Conceptual Structure of GCC.

($GCCINTDOCSHOME/html/gcc-conceptual-structure.html)
2007.

6. Abhijat Vichare.
The Phasewise File Groups of GCC.

($GCCINTDOCSHOME/html/gcc-source-blocks.html)
2007.

7. Uday Khedker and Sameera Deshpande.
Systematic Development of GCC Machine Descriptions.

(http://www.cse.iitb.ac.in/~uday/soft-copies/incrementalMD.pdf)
2007.

List of Figures 47

List of Figures

Figure 1.1: The GCC Compiler Generation Framework (CGF). 1
Figure 2.1: The GCC source organization . 3
Figure 4.1: AST/Generic representation . 21
Figure 5.1: Joining the Gimple to IR-RTL translation finite function. 24
Figure 7.1: Generating target specific parts . 37
Figure 7.2: Target specific information in the generated files . 38

List of Tables 48

List of Tables

Table 3.1: Main GCC source files . 5
Table 4.1: GCC tree node types – Comparison operators. 17
Table 4.2: GCC tree node types – Unary arithmetic operators. 17
Table 4.3: GCC tree node types – Binary arithmetic operators. 18
Table 4.4: GCC tree node types – Lexical Block. 18
Table 4.5: GCC tree node types – Constants. 18
Table 4.6: GCC tree node types – Declarations. 18
Table 4.7: GCC tree node types – Statements I. 19
Table 4.8: GCC tree node types – Statements II. 20
Table 4.9: GCC tree node types – References to storage. 20
Table 4.10: GCC tree node types – Expressions with inherent side effects. 20
Table 4.11: GCC tree node types – Type Object code. 21
Table 4.12: GCC tree node types – Exceptional code. 21
Table 5.1: AST/Generic nodes that do not occur in Gimple . 22
Table 6.1: RTL Operators I (with finer classification). 29
Table 6.2: RTL Operators II (with finer classification). 30
Table 6.3: IR RTL types. 30
Table 6.4: MD RTL with finer classification. 30
Table 7.1: Compiler files and their contents for cc1 . 41

Appendix A: Copyright 49

Appendix A Copyright

This is edition 1.0 of “GCC 4.0.2 – The Implementation”, last updated on January 7, 2008.,
and is based on GCC version 4.0.2.

Copyright c© 2004-2008 Abhijat Vichare, I.I.T. Bombay.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with the Front-Cover Texts being “GCC 4.0.2 – The Implementation,” and with
the Back-Cover Texts as in (a) below. A copy of the license is included in the
section entitled “GNU Free Documentation License.”

(a) The FSF’s Back-Cover Text is: “You have freedom to copy and modify
this GNU Manual, like GNU software. Copies published by the Free Software
Foundation raise funds for GNU development.”

A.1 GNU Free Documentation License
Version 1.2, November 2002

Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and

Appendix A: Copyright 50

is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF

and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

Appendix A: Copyright 51

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time

Appendix A: Copyright 52

you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

Appendix A: Copyright 53

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

Appendix A: Copyright 54

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this

Appendix A: Copyright 55

License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

Appendix A: Copyright 56

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

