Workshop on Essential Abstractions in GCC

Introduction to Gimple IR

GCC Resource Center

(www.cse.iitb.ac.in/grc)

Department of Computer Science and Engineering,
Indian Institute of Technology, Bombay

July 2009

July 09 Gimple IR: Outline 1/27

Outline

e Introduction to Gimple IR
e Adding a pass to GCC
e Working with the Gimple API

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

Part 1

Introduction to GIMPLE

July 09

Gimple IR: Introduction to GIMPLE

2/27

Recall GCC CGF

Compiler Generation Framework

Language and
Machine
Independent
Generic Code

Language

Specific
Code

Essential Abstrations in GCC

&=

GCC Resource Center, |IT Bombay ==y’

July 09 Gimple IR: Introduction to GIMPLE 2/27

Recall GCC CGF

Compiler Generation Framework

Language and
Langu.a'ge Machine
Spediie Independent
Code p.

Generic Code

[Parser | | Genericizer | | Gimplifierl Tree_ S.SA

Optimizer

Generated Compiler (cc1)

Source Assembly Program

Program

Essential Abstrations in GCC GCC Resource Center, ||IT Bombay “g==y

July 09 Gimple IR: Introduction to GIMPLE 2/27

Recall GCC CGF

Input Language Target Name

Compiler Generation Framework

Language and Machine (
Machine Dependent Machine
Independent Generator || Descriptions
Generic Code Code

vy,

Selected Copied

Copied
/ OPIIe Genlerated

A 4 A 4
— —— Tree SSA RTL C‘:I Code
[Parser | [Genericizer | | Glmphflerl Optimizer || Generator Optimizer Generator

Generated Compiler (cc1)

Language

Specific
Code

Generated

Source Assembly Program

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09

Gimple IR: Introduction to GIMPLE

2/27

Input Language

Recall GCC CGF

Compiler Generation Framework

Target Name

Language

Specific
Code

Language and

Machine Dependent
Independent Generator

Generic Code

Machine

v

Descriptions

Machine

Code

S

Selected Copied

-

/ Copied

Generated
]

Generated

Development
Time

Build
Time

(Parser) (Genericizer] [Gimplifier] | £°° >

Optimizer

Y
RTL
Generator

A
|Optimizer|

Code
Generator

Source
Program

Generated Compiler (cc1)

Assembly Program

Essential Abstrations in GCC

GCC Resource Center, IIT BombayQ

July 09 Gimple IR: Introduction to GIMPLE 3/27

Basics of GIMPLE

e GIMPLE is a language-independent IR for GCC.
e It is based on tree data structure.
e GIMPLE is simple.

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Introduction to GIMPLE 4/27

Motivation behind GIMPLE

e Previously, the only common IR was RTL (Register Transfer
Language)

e Drawbacks of RTL for performing high-level optimizations :

» RTL is a low-level IR, works well for optimizations close to machine
(e.g., register allocation)
» Some high level information is difficult to extract from RTL (e.g.

array references, data types etc.)
» Optimizations involving such higher level information are difficult to

do using RTL.
» Introduces stack too soon, even if later optimizations dont demand it.

Notice
Inlining at tree level could partially address the the last limitation of

RTL.

5

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

Gimple IR: Introduction to GIMPLE 5/27

July 09
Why not ASTs for optimization ?

e ASTs contain detailed function information but are not suitable for
optimization because

» Lack of a common representation

> No single AST shared by all front-ends
> So each language would have to have a different implementation of

the same optimizations
» Difficult to maintain and upgrade so many optimization frameworks

» Structural Complexity
> Lots of complexity due to the syntactic constructs of each language

GCC Resource Center, IIT Bombay

Essential Abstrations in GCC

July 09 Gimple IR: Introduction to GIMPLE 6/27

Need for a new IR

e In the past, compiler would only build up trees for a single
statement,and then lower them to RTL before moving on to the
next statement.

e For higher level optimizations, entire function needs to be
represented in trees in a language-independent way.

e Result of this effort - GENERIC and GIMPLE

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Introduction to GIMPLE 7/27

What is GENERIC ?

Language independent IR for a complete function in the form of
trees

Obtained by removing language specific constructs from ASTs
All tree codes defined in $ (SOURCE) /gcc/tree.def

Each language frontend may still have its own AST.

e Once parsing is complete they must emit GENERIC

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Introduction to GIMPLE 8/27

What is GIMPLE ?

GIMPLE is influenced by SIMPLE IR of McCat compiler

But GIMPLE is not same as SIMPLE (Gimple supports GOTO)
It is a simplified subset of GENERIC

» 3 address representation
» Control flow lowering
» Cleanups and simplification, restricted grammar

Benefit : Optimizations become easier

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Introduction to GIMPLE 9/27

GIMPLE Phase sequence in ccl1 and GCC

Converting GENERIC to GIMPLE

c_genericize() c-gimplify.c
gimplify_function_tree() gimplify.c
gimplify_body () gimplify.c
gimplify_stmt () gimplify.c
gimplify_expr () gimplify.c
lang_hooks.callgraph.expand_function()
tree_rest_of_compilation() tree-optimize.c
tree_register_cfg_hooks() cfghooks.c
execute_pass_list() passes.c

/* TO: Gimple Optimisations passes */

NEXT_PASS(pass_lower_cf)

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Introduction to GIMPLE 10/27

GIMPLE Goals

The Goals of GIMPLE are

e Lower control flow
Program = sequenced statements + unrestricted jump

e Simplify expressions
Typically: two operand assignments!

e Simplify scope
move local scope to block begin, including temporaries

Notice
Lowered control flow — nearer to register machines + Easier SSA!

GCC Resource Center, IIT Bombay

Essential Abstrations in GCC

July 09 Gimple IR: Introduction to GIMPLE 11/27

High GIMPLE

e GIMPLE that is not fully lowered.
e Consists of Intermediate Language before the pass pass_lower cf.

e Contains some container statements like lexical scopes and nested
expressions.

e High GIMPLE Instruction Set : GIMPLE_BIND, GIMPLE_CALL,
GIMPLE_CATCH, GIMPLE_GOTO, GIMPLE_EH_FILTER,
GIMPLE_RETURN, GIMPLE_SWITCH, GIMPLE_TRY,
GIMPLE_ASSIGN

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

He

July 09 Gimple IR: Introduction to GIMPLE 12/27

Low GIMPLE

e Gimple that is fully lowered after the pass pass_lower_cf.

e Exposes all of the implicit jumps for control and exception
expressions.

e Low GIMPLE Instruction Set : GIMPLE_CALL, GIMPLE_GOTO,
GIMPLE_RETURN, GIMPLE_SWITCH, GIMPLE_ASSIGN

e Lowered Instruction Set : GIMPLE_BIND, GIMPLE_CATCH,
GIMPLE_EH_FILTER, GIMPLE_TRY

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

He

July 09 Gimple IR: Introduction to GIMPLE 13/27

Some GIMPLE Node types

Binary Operator MAX_EXPR
Comparison EQ_EXPR, LT_EXPR

Constants INTEGER_CST, STRING_CST

Declaration FUNCTION_DECL, LABEL_DECL , VAR_DECL

Expression PLUS_EXPR, ADDR_EXPR

Reference COMPONENT _REF, ARRAY _RANGE_REF

Statement GIMPLE_MODIFY_STMT, RETURN_EXPR, COND_EXPR,
INIT_EXPR

Type BOOLEAN_TYPE, INTEGER_TYPE

Unary ABS_EXPR, NEGATE_EXPR

Tip :

All tree nodes (~ 152) in GCC are listed in: $(SOURCE) /gcc/tree.def,

o

==

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Introduction to GIMPLE 14/27

Journey through GIMPLE

Generic Code (gimple.c)

int main()

{
int a;
if (a)
{
int b;
b=2+a+ b;
}
return O;
}

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Introduction to GIMPLE 15/27

Journey through GIMPLE
High GIMPLE (gimple.c.004t.gimple)

main () else
{ {

int D.1195;

int D.1196; }

int a; D.1196 = 0;

return D.1196;
if (a !=0) }
{
{
int b;

D.1195 = a + 2;
b = D.1195 + b;
¥
}

Essential Abstrations in GCC GCC Resource Center, IIT Bombay I&Q I

=

July 09

Gimple IR: Introduction to GIMPLE 16/27

Journey through GIMPLE
Low GIMPLE (gimple.c.013t.cfg) :

main ()

{

int b;
int a;
int D.1196;
int D.1195;

BLOCK 2
PRED: ENTRY (fallthru)
if (a !'= 0)
goto <bb 3>;
else
goto <bb 4>;
SUCC: 3 (true) 4 (false)

}

Lexical scopes removed

o O #

O H#

#
#

BLOCK 3
PRED: 2 (true)

.1195 = a + 2;

= D.1195 + b;
SUCC: 4 (fallthru)

BLOCK 4
PRED: 2 (false) 3 (fallthru)

.1196 = 0;

SUCC: 5 (fallthru)

BLOCK 5
PRED: 4 (fallthru)

return D.1196;

#

SUCC: EXIT

Essential Abstrations in GCC

GCC Resource Center, IIT Bombayn

=

He

July 09 Gimple IR: Introduction to GIMPLE 17/27

Important Dump Files

e Compile using ./gcc -fdump-tree-all <file-name >.c

e Examine <file-name >.c.013t.cfg

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

Gimple IR: Introduction to GIMPLE 18/27

Resolving doubts by inspecting GIMPLE

July 09

Inspect GIMPLE when in doubt

int main(void)

{
int x=2,y=3;
X= y++ + ++x + ++y ;
printf ("\nx = %d", x);
printf("\ny = %d", y);
return O;

GCC Resource Center, IIT Bombay

Essential Abstrations in GCC

July 09 Gimple IR: Introduction to GIMPLE

18/27

Resolving doubts by inspecting GIMPLE

Inspect GIMPLE when in doubt

int main(void)

{
int x=2,y=3;
X= y++ + ++x + ++y 5
printf ("\nx = %d", x);
printf("\ny = %d", y);
return O;

}

= 2;
= 3;

=x + 1;

L1572 = y + x;

=y +1;

D.1572 + y;

y+ 1

printf (&"\mx = %d"[0], x)
printf (&"\y = %d"[0], y);

<M< OMXM< M

Essential Abstrations in GCC

GCC Resource Center, IIT Bombay

>

July 09 Gimple IR: Introduction to GIMPLE 18/27

Resolving doubts by inspecting GIMPLE

Inspect GIMPLE when in doubt

int main(void) x =2
{ y =3
int x=2,y=3; x=x+1;
X= yH+ + HHX + ++y D.1572 =y + x;
printf ("\nx = %d", x); y=y+1
printf("\ny = %d", y); x = D.1572 + y;
return O; y=y+t L
} printf (&"\nx = %d"[0], x);
printf (&"\y = %d"[0], y);

x =10 , y =5

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

Part 2

Adding a Pass to GCC

July 09

Gimple IR: Adding a Pass to GCC 19/27

Adding a Pass on Gimple IR

e Step 0. Write function gccwk09 main() in file gccwk09.c.
e Step 1. Create the following data structure in file gccwk09. c.

struct tree_opt_pass pass_gccwk09 =

{ "gccwk09", /*
NULL, /*

name */
gate, for conditional entry to this pass */

gccwk09_main, /* execute, main entry point */

NULL, /*
) /*
/*
/*
/*
/*
/*
/*
/*
/*

=
=)
=
=

O O O O OO OO

[u}

sub-passes, depending on the gate predicate */
next sub-passes, independ of the gate predicate */
static_pass_number , used for dump file namex/
tv_id */

properties_required, indicated by bit position */
properties_provided , indicated by bit position*/
properties_destroyed , indicated by bit positionx*/
todo_flags_start */

todo_flags_finish */

letter for RTL dump */

Essential Abstrations in GCC

GCC Resource Center, IIT Bombay

5

July 09 Gimple IR: Adding a Pass to GCC 20/27

Adding a Pass on Gimple IR

e Step 2. Add the following line to tree-pass.h
extern struct tree_opt_pass pass_gccwk09;

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Adding a Pass to GCC 20/27

Adding a Pass on Gimple IR

e Step 2. Add the following line to tree-pass.h
extern struct tree_opt_pass pass_gccwk09;

e Step 3. Include the following call at an appropriate place in the
function init_optimization passes() in the file passes.c
NEXT_PASS (pass_gccwk09) ;

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Adding a Pass to GCC 20/27

Adding a Pass on Gimple IR

e Step 2. Add the following line to tree-pass.h
extern struct tree_opt_pass pass_gccwk09;

e Step 3. Include the following call at an appropriate place in the
function init_optimization passes() in the file passes.c
NEXT_PASS (pass_gccwk09) ;

e Step 4. Add the file name in the Makefile

» Either in $SOURCE/gcc/Makefile.in
Reconfigure and remake

> Or in $BUILD/gcc/Makefile
Remake

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Adding a Pass to GCC 20/27

Adding a Pass on Gimple IR

e Step 2. Add the following line to tree-pass.h
extern struct tree_opt_pass pass_gccwk09;

e Step 3. Include the following call at an appropriate place in the
function init_optimization passes() in the file passes.c
NEXT_PASS (pass_gccwk09) ;

e Step 4. Add the file name in the Makefile

» Either in $SOURCE/gcc/Makefile.in
Reconfigure and remake

> Or in $BUILD/gcc/Makefile
Remake

e Step 5. Build the compiler

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Adding a Pass to GCC 20/27

Adding a Pass on Gimple IR

e Step 2. Add the following line to tree-pass.h
extern struct tree_opt_pass pass_gccwk09;

e Step 3. Include the following call at an appropriate place in the
function init_optimization passes() in the file passes.c
NEXT_PASS (pass_gccwk09) ;

e Step 4. Add the file name in the Makefile

» Either in $SOURCE/gcc/Makefile.in
Reconfigure and remake

> Or in $BUILD/gcc/Makefile
Remake

e Step 5. Build the compiler
e Step 6. Debug using gdb if need arises

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

He

Part 3

Working with the GIMPLE API

July 09 Gimple IR: Working with the GIMPLE API 21/27

GIMPLE Statements

e GIMPLE Statements are nodes of type tree
e Every basic block contains a doubly linked-list of statements

e Processing of statements can be done through iterators

July 09 Gimple IR: Working with the GIMPLE API 21/27

GIMPLE Statements

e GIMPLE Statements are nodes of type tree
e Every basic block contains a doubly linked-list of statements

e Processing of statements can be done through iterators

block_statement_iterator bsi;
basic_block bb;

GCC Resource Center, IIT Bombay

Essential Abstrations in GCC

July 09 Gimple IR: Working with the GIMPLE API 21/27

GIMPLE Statements

e GIMPLE Statements are nodes of type tree
e Every basic block contains a doubly linked-list of statements

e Processing of statements can be done through iterators
block_statement_iterator bsi;

basic_block bb;
FOR_EACH_BB (bb)

Basic Block Iterator

GCC Resource Center, IIT Bombay

Essential Abstrations in GCC

July 09 Gimple IR: Working with the GIMPLE API 21/27

GIMPLE Statements

e GIMPLE Statements are nodes of type tree
e Every basic block contains a doubly linked-list of statements

e Processing of statements can be done through iterators

block_statement_iterator bsi;
basic_block bb;
FOR_EACH_BB (bb)
for (bsi =bsi_start(bb); !bsi_end_p(bsi); bsi_next(&bsi))

Block Statement Iterator

GCC Resource Center, IIT Bombay

Essential Abstrations in GCC

July 09 Gimple IR: Working with the GIMPLE API 21/27

GIMPLE Statements

e GIMPLE Statements are nodes of type tree
e Every basic block contains a doubly linked-list of statements

e Processing of statements can be done through iterators

block_statement_iterator bsi;
basic_block bb;
FOR_EACH_BB (bb)
for (bsi =bsi_start(bb); !bsi_end_p(bsi); bsi_next(&bsi))
print_generic_stmt (stderr, bsi_stmt(bsi), 0);

GCC Resource Center, IIT Bombay

Essential Abstrations in GCC

July 09 Gimple IR: Working with the GIMPLE API 22/27

A simple application

Counting the number of assignment statements in GIMPLE

#include <stdio.h> z ; y ;5;

int m,q,p; '_ ’ .

int main(void) z =x*m0;

{ m.1 = m;
int x,y,z,w; q.2 =q;
‘= v 5 D.1580 = m.1 + q.2;
z=§*mf p.3 = D.1580 + w;
P 156 = 0
return O; : R

3 return D.1582;

The statements in blue are the assignments corresponding to the source.

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Working with the GIMPLE API 23/27
A simple application

Counting the number of assignment statements in GIMPLE

struct tree_opt_pass pass_gccwk09 =
{

"gccwk09",

NULL,

gccwk09_main,

NULL,

H

=
[
=
[

[

-

. .

-

O O OO OO oo

"
Essential Abstrations in GCC

GCC Resource Center, IIT Bombay

July 09 Gimple IR: Working with the GIMPLE API 24/27
A simple application

Counting the number of assignment statements in GIMPLE

static unsigned int gccwk09_main(void)
{ basic_block bb;
block_stmt_iterator si;

initialize_stats();

FOR_EACH_BB (bb)

{
for (si=bsi_start(bb); !bsi_end_p(si); bsi_next(&si))
{
tree stmt = bsi_stmt(si);
process_statement (stmt) ;
}
}
return O;

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Working with the GIMPLE API 25/27

A simple application
Counting the number of assignment statements in GIMPLE

void process_statement(tree stmt)
{ tree lval,rval;

switch (TREE_CODE(stmt))

{ case GIMPLE_MODIFY_STMT:
1val=GIMPLE_STMT_OPERAND(stmt,0) ;
rval=GIMPLE_STMT_OPERAND (stmt,1) ;
if (TREE_CODE(1lval) == VAR_DECL)

{ if (!\DECL_ARTIFICIAL(1val))
{ print_generic_stmt(stderr,stmt,0);

numassigns++;
¥
totalassigns++;
}
break;
default :
break;

}

}

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

July 09 Gimple IR: Working with the GIMPLE API 26/27
A simple application

Counting the number of assignment statements in GIMPLE

e Add the following in $ (SOURCE) /gcc/common. opt :
e fpass_gccwk09

e Common Report Var (flag_pass_gccwk09)

e Enable pass named pass_gccwk09

Compile using ./gcc -fdump-tree-all -fpass_gccwk09 test.c

Essential Abstrations in GCC GCC Resource Center, IIT Bombay I&Q I

July 09 Gimple IR: Working with the GIMPLE API 27/27

Assignment and Reference

API Reference

e http://gcc.gnu.org/onlinedocs/gecint.pdf Pg- 233-235
e Refere the same document for some detailed documentation

Assignments (by traversing the GIMPLE IR)

e Count the number of copy statements in a program
e Count the number of variables declared "const” in the program

e Count the number of occurances of arithmatic operators in the
program

e Count the number of references to global variables in the program

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

He

	Outline
	Introduction to GIMPLE
	Adding a Pass to GCC
	Working with the GIMPLE API

