
Workshop on Essential Abstractions in GCC

Introduction to RTL

GCC Resource Center

(www.cse.iitb.ac.in/grc)

Department of Computer Science and Engineering,

Indian Institute of Technology, Bombay

July 2009



July 09 RTL: Outline 1/19

Outline

• Introduction

• RTL Basics

• RTL Functions

Essential Abstrations in GCC GCC Resource Center, IIT Bombay



Part 1

Introduction



July 09 RTL: Introduction 2/19

What is RTL ?

RTL = Register Transfer Language

Assembler for an abstract machine with infinite registers !

Essential Abstrations in GCC GCC Resource Center, IIT Bombay



July 09 RTL: Introduction 3/19

Why Should We Care About RTL ?

A lot of work in the back-end depends on RTL. Like,

• Low level optimizations like loop optimization, loop dependence,
common subexpression elimination, etc

• Instruction scheduling

• Register Allocation

• Register Movement

Essential Abstrations in GCC GCC Resource Center, IIT Bombay



July 09 RTL: Introduction 4/19

Why Should We Care About RTL ?

For tasks such as those, RTL supports many low level features, like,

• Register classes

• Memory addressing modes

• Word sizes and types

• Compare and branch instructions

• Calling Conventions

• Bitfield operations

Essential Abstrations in GCC GCC Resource Center, IIT Bombay



July 09 RTL: Introduction 5/19

A Feel of RTL...

(jump insn 15 14 16 4 p1.c:6 (set (pc)

(if then else (lt (reg:CCGC 17 flags)

(const int 0 [0x0]))

(label ref 12)

(pc))) (nil)

(nil)))

pc = r17 <0 ? label(12) : pc

• Nested parentheses form used in debugging dumps

• Internal representation has algebraic structure with pointers to
components which are themselves structures

Essential Abstrations in GCC GCC Resource Center, IIT Bombay



Part 2

RTL Basics



July 09 RTL: RTL Basics 6/19

RTL Objects

RTL objects are of the following types:

• Expressions

• Integers

• Wide Integers

• Strings

• Vectors

• Expressions in RTX are highly regular

• An expression is a C structure, usually referred to by a pointer

• The typedef name of this pointer is rtx

Essential Abstrations in GCC GCC Resource Center, IIT Bombay



July 09 RTL: RTL Basics 7/19

RTX codes

RTL Expressions are classified into RTX codes :

• Expressions codes are names defined in rtl.def

• RTX codes are C enumeration constants

• Expression codes and their meanings are machine-independent

• Extract the code of a RTX with the macro GET CODE(x)

Essential Abstrations in GCC GCC Resource Center, IIT Bombay



July 09 RTL: RTL Basics 8/19

RTX codes (contd..)

The RTX codes are defined in rtl.def using cpp macro call
DEF RTL EXPR, like :

• DEF RTL EXPR(INSN, "insn", "iuuBieie", RTX INSN)

• DEF RTL EXPR(SET, "set", "ee", RTX EXTRA)

• DEF RTL EXPR(IF THEN ELSE, "if then else", "eee",

RTX TERNARY)

The operands of the macro are :

• Internal name of the rtx used in C source. It’s a tag in
enumeration ‘‘enum rtx code"

• name of the rtx in the external ASCII format

• Format string of the rtx, defined in rtx format[]

• Class of the rtx

Essential Abstrations in GCC GCC Resource Center, IIT Bombay



July 09 RTL: RTL Basics 9/19

RTL Classes

RTL expressions are divided into few classes, like:

• RTX UNARY : NEG, NOT, ABS

• RTX BIN ARITH : MINUS, DIV

• RTX COMM ARITH : PLUS, MULT

• RTX OBJ : REG, MEM, SYMBOL REF

• RTX COMPARE : GE, LT

• RTX TERNARY : IF THEN ELSE

• RTX INSN : INSN, JUMP INSN, CALL INSN

• RTX EXTRA : SET, USE

Essential Abstrations in GCC GCC Resource Center, IIT Bombay



July 09 RTL: RTL Basics 10/19

RTX operands

• Type of an RTX operand depends on the context - on the type of
the containing expression

• DEF RTL EXPR(PLUS, ‘‘plus", ‘‘ee", RTX COMM ARITH)

• DEF RTL EXPR(SYMBOL REF, ‘‘symbol ref", ‘‘s00",

RTX CONST OBJ)

• No operand iterators

• Useful macros are :

◮ GET RTX LENGTH Number of operands
◮ GET RTX FORMAT Format String describing operand types
◮ XEXP/XINT/XSTR.. Operand accessors
◮ GET RTX CLASS Extracting the class of a RTX code

Essential Abstrations in GCC GCC Resource Center, IIT Bombay



July 09 RTL: RTL Basics 11/19

Examining RTL Dump

• ./gcc -da test.c

• RTL Expand Dump test.c.131r.expand

if(a > b)

b=4;

else

b=5;

;; if (a > b)

(insn 8 7 9 test.c:7 (set (reg:SI 61)

(mem/c/i:SI (plus:SI (reg/f:SI 54

virtual-stack-vars)

(const int -8 [0xfffffff8])) [0 a+0 S4 A32])) -1

(nil))

Essential Abstrations in GCC GCC Resource Center, IIT Bombay



July 09 RTL: RTL Basics 11/19

Examining RTL Dump

• ./gcc -da test.c

• RTL Expand Dump test.c.131r.expand

if(a > b)

b=4;

else

b=5;

(insn 9 8 10 test.c:7 (set (reg:CCGC 17 flags)

(compare:CCGC (reg:SI 61)

(mem/c/i:SI (plus:SI (reg/f:SI 54

virtual-stack-vars)

(const int -4 [0xfffffffc])) [0 b+0 S4 A32])))

-1 (nil))

Essential Abstrations in GCC GCC Resource Center, IIT Bombay



July 09 RTL: RTL Basics 11/19

Examining RTL Dump

• ./gcc -da test.c

• RTL Expand Dump test.c.131r.expand

if(a > b)

b=4;

else

b=5;

(jump insn 10 9 0 test.c:7 (set (pc)

(if then else (le (reg:CCGC 17 flags)

(const int 0 [0x0]))

(label ref 0)

(pc))) -1 (nil)) (const int -4

[0xfffffffc]))

Essential Abstrations in GCC GCC Resource Center, IIT Bombay



July 09 RTL: RTL Basics 12/19

RTL passes

• RTL generated after pass expand (cfgexpand.c)

• RTL passes are sub-passes of pass rest of compilation :

◮ Optimization Passes pass cse, pass rtl fwprop etc
◮ Instruction Scheduling pass -1 (pass sched)
◮ Local Register Allocation (pass local alloc)
◮ Global Register Allocation (pass global alloc)
◮ Instruction Scheduling pass-2 (pass sched2)

Essential Abstrations in GCC GCC Resource Center, IIT Bombay



July 09 RTL: RTL Basics 13/19

RTL Dumps

gcc -fdump-rtl-all -da test.c

• pass expand (test.c.131r.expand)

• pass sched (test.c.173r.sched1)

• pass local alloc (test.c.175r.lreg)

• pass global alloc (test.c.177r.greg)

Essential Abstrations in GCC GCC Resource Center, IIT Bombay



July 09 RTL: RTL Basics 14/19

RTL statements

• RTL statements are instances of type rtx

• RTL insns contain embedded links

• Types of RTL insns :

◮ INSN : Normal non-jumping instruction
◮ JUMP INSN : Conditional and unconditional jumps
◮ CALL INSN : Function calls
◮ CODE LABEL: Target label for JUMP INSN
◮ BARRIER : End of control Flow
◮ NOTE : Debugging information

Essential Abstrations in GCC GCC Resource Center, IIT Bombay



Part 3

RTL Functions



July 09 RTL: RTL Functions 15/19

Basic RTL functions

• XEXP,XINT,XWINT,XSTR
◮ Example: XINT(x,2) accesses the 2nd operand of rtx x as an

integer
◮ Example: XEXP(x,2) accesses the same operand as an expression

• Any operand can be accessed as any type of RTX object
◮ So operand accessor to be chosen based on the format string of the

containing expression

• Special macros are available for Vector operands
◮ XVEC(exp,idx) : Access the vector-pointer which is operand

number idx in exp
◮ XVECLEN (exp, idx ) : Access the length (number of elements) in

the vector which is in operand number idx in exp. This value is an int
◮ XVECEXP (exp, idx, eltnum ) : Access element number

“eltnum” in the vector which is in operand number idx in exp. This
value is an RTX

Essential Abstrations in GCC GCC Resource Center, IIT Bombay



July 09 RTL: RTL Functions 16/19

RTL insns

• A function’s code is a doubly linked chain of INSN objects

• Insns are rtxs with special code

• Each insn contains atleast 3 extra fields :

◮ Unique id of the insn , accessed by INSN UID(i)
◮ PREV INSN(i) accesses the chain pointer to the INSN

preceeding i
◮ NEXT INSN(i) accesses the chain pointer to the INSN

succeeding i

• The first insn is accessed by using get insns()

• The last insn is accessed by using get last insn()

Essential Abstrations in GCC GCC Resource Center, IIT Bombay



July 09 RTL: RTL Functions 17/19

Sample Demo Program

Problem statement : Counting the number of SET objects in a basic
block by adding a new RTL pass

• Add your new pass after pass expand

• new rtl pass main is the main function of the pass

• Iterate through different instructions in the doubly linked list of
instructions and for each expression, call eval rtx(insn) for that
expression which recurse in the expression tree to find the set
statements

Essential Abstrations in GCC GCC Resource Center, IIT Bombay



July 09 RTL: RTL Functions 18/19

int new rtl pass main(void){

basic block bb;

rtx last,insn,opd1,opd2;

int bbno,code,type;

count = 0;

for (insn=get insns(), last=get last insn(),

last=NEXT INSN(last); insn!=last; insn=NEXT INSN(insn))

{ int is insn;

is insn = INSN P (insn);

if(flag dump new rtl pass)

print rtl single(dump file,insn);

code = GET CODE(insn);

if(code==NOTE){ ... }

if(is insn)

{ rtx subexp = XEXP(insn,5);

eval rtx(subexp);

}

}

...

}

Essential Abstrations in GCC GCC Resource Center, IIT Bombay



July 09 RTL: RTL Functions 19/19

void eval rtx(rtx exp)

{ rtx temp;

int veclen,i,

int rt code = GET CODE(exp);

switch(rt code)

{ case SET:

if(flag dump new rtl pass){

fprintf(dump file,"\nSet statement %d : \t",count+1);

print rtl single(dump file,exp);}

count++; break;

case PARALLEL:

veclen = XVECLEN(exp, 0);

for(i = 0; i < veclen; i++)

{ temp = XVECEXP(exp, 0, i);

eval rtx(temp);

}

break;

default: break;

}

}

Essential Abstrations in GCC GCC Resource Center, IIT Bombay


	Outline
	Introduction
	RTL Basics
	RTL Functions

