Workshop on Essential Abstractions in GCC

Introduction to RTL

GCC Resource Center

(www.cse.iitb.ac.in/grc)

Department of Computer Science and Engineering,
Indian Institute of Technology, Bombay

July 2009



July 09 RTL: Outline

1/19

Outline

e [ntroduction
e RTL Basics
e RTL Functions

Essential Abstrations in GCC

GCC Resource Center, IIT Bombay

—



Part 1

Introduction



July 09 RTL: Introduction 2/19

What is RTL ?

RTL = Register Transfer Language

Assembler for an abstract machine with infinite registers !

Essential Abstrations in GCC GCC Resource Center, IIT Bombay



July 09 RTL: Introduction 3/19

Why Should We Care About RTL ?

A lot of work in the back-end depends on RTL. Like,

e Low level optimizations like loop optimization, loop dependence,
common subexpression elimination, etc

e Instruction scheduling
e Register Allocation

e Register Movement

Essential Abstrations in GCC GCC Resource Center, IIT Bombay



July 09 RTL: Introduction 4/19

Why Should We Care About RTL ?

For tasks such as those, RTL supports many low level features, like,

o Register classes

e Memory addressing modes

Word sizes and types

e Compare and branch instructions

Calling Conventions

Bitfield operations

Essential Abstrations in GCC GCC Resource Center, IIT Bombay



July 09 RTL: Introduction 5/19

A Feel of RTL...

(jump_insn 15 14 16 4 pl.c:6 (set (pc)
(if_then_else (1t (reg:CCGC 17 flags)
(const_int 0 [0x0]))
(label_ref 12)
(pe))) (nil)
(nil)))

pc = r17 <0 ? label(12) : pc

e Nested parentheses form used in debugging dumps

e Internal representation has algebraic structure with pointers to
components which are themselves structures

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

He



Part 2

RTL Basics



July 09 RTL: RTL Basics 6/19

RTL Objects

RTL objects are of the following types:

e Expressions

e Integers

Wide Integers

Strings

Vectors

e Expressions in RTX are highly regular
e An expression is a C structure, usually referred to by a pointer

The typedef name of this pointer is rtx

Essential Abstrations in GCC GCC Resource Center, IIT Bombay



July 09 RTL: RTL Basics 7/19

RTX codes

RTL Expressions are classified into RTX codes :

e Expressions codes are names defined in rtl.def

e RTX codes are C enumeration constants

e Expression codes and their meanings are machine-independent
e Extract the code of a RTX with the macro GET_CODE (x)

Essential Abstrations in GCC GCC Resource Center, IIT Bombay



July 09 RTL: RTL Basics 8/19

RTX codes (contd..)

The RTX codes are defined in rtl.def using cpp macro call
DEF_RTL_EXPR, like :
e DEF_RTL_EXPR(INSN, "insn", "iuuBieie", RTX_INSN)
e DEF_RTL_EXPR(SET, "set", "ee", RTX_EXTRA)

e DEF RTL EXPR(IF_THEN ELSE, "if then else", "eee",
RTX_TERNARY)

The operands of the macro are :
e Internal name of the rtx used in C source. It's a tag in
enumeration ‘ ‘enum rtx_code"
e name of the rtx in the external ASCII format
e Format string of the rtx, defined in rtx_format []

e (Class of the rtx

5

Essential Abstrations in GCC GCC Resource Center, IIT Bombay ﬁl



July 09

RTL: RTL Basics 9/19

RTL Classes

RTL expressions are divided into few classes, like:

RTX_UNARY : NEG, NOT, ABS
RTX_BIN_ARITH : MINUS, DIV
RTX_COMM_ARITH : PLUS, MULT

RTX_0BJ : REG, MEM, SYMBOL REF
RTX_COMPARE : GE, LT

RTX_TERNARY : IF_THEN_ELSE

RTX_INSN : INSN, JUMP_INSN, CALL_INSN
RTX_EXTRA : SET, USE

He

Essential Abstrations in GCC GCC Resource Center, IIT Bombay



July 09 RTL: RTL Basics 10/19

RTX operands

e Type of an RTX operand depends on the context - on the type of
the containing expression

e DEF RTL EXPR(PLUS, ‘‘plus", ‘‘ee", RTX_COMM_ARITH)

e DEF RTL EXPR(SYMBOL REF, ¢°‘symbol_ref", ‘‘sO0",
RTX_CONST_0BJ)

e No operand iterators

e Useful macros are :

GET_RTX_LENGTH Number of operands

GET_RTX_FORMAT Format String describing operand types
XEXP/XINT/XSTR.. Operand accessors

GET_RTX_CLASS Extracting the class of a RTX code

vV vy VvYyy

5

Essential Abstrations in GCC GCC Resource Center, IIT Bombay ﬁl



RTL: RTL Basics 11/19

Examining RTL Dump

July 09

e ./gcc -da test.c
e RTL Expand Dump test.c.131r.expand

. ;5 if (a > b)
if(a > b) (insn 8 7 9 test.c:7 (set (reg:SI 61)
b=4; (mem/c/i:8I (plus:SI (reg/f:SI 54
else virtual-stack-vars)
b=5; (const_int -8 [Oxfffffff8])) [0 a+0 S4 A32])) -1
(nil))

GCC Resource Center, IIT Bombay

Essential Abstrations in GCC



RTL: RTL Basics 11/19

Examining RTL Dump

July 09

e ./gcc -da test.c
e RTL Expand Dump test.c.131r.expand

(insn 9 8 10 test.c:7 (set (reg:CCGC 17 flags)

if(a > b) (compare:CCGC (reg:SI 61)
b=4; (mem/c/1i:SI (plus:SI (reg/f:SI 54
else virtual-stack-vars)
b=5; (const_int -4 [Oxfffffffc]l)) [0 b+0 S4 A32])))
-1 (nil))

GCC Resource Center, IIT Bombay

Essential Abstrations in GCC



RTL: RTL Basics 11/19

Examining RTL Dump

July 09

e ./gcc -da test.c
e RTL Expand Dump test.c.131r.expand

(jump_insn 10 9 O test.c:7 (set (pc)

if(a > b) (if_then_else (le (reg:CCGC 17 flags)
b=4; (const_int 0 [0x0]))
else (label_ref 0)

b=5; (pc))) -1 (nil))

GCC Resource Center, IIT Bombay

Essential Abstrations in GCC



July 09 RTL: RTL Basics 12/19

RTL passes

e RTL generated after pass_expand (cfgexpand.c)
e RTL passes are sub-passes of pass_rest_of _compilation :

» Optimization Passes pass_cse, pass_rtl_fwprop etc
Instruction Scheduling pass -1 (pass_sched)

Local Register Allocation (pass_local_alloc)

Global Register Allocation (pass_global_alloc)
Instruction Scheduling pass-2 (pass_sched?2)

v vy vYy

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

5



July 09 RTL: RTL Basics 13/19

RTL Dumps

gcc -fdump-rtl-all -da test.c
e pass_expand (test.c.131r.expand)
e pass_sched (test.c.173r.schedl)
e pass_local_alloc (test.c.175r.Ireg)
e pass_global_alloc (test.c.177r.greg)

Essential Abstrations in GCC GCC Resource Center, IIT Bombay | = I



July 09 RTL: RTL Basics 14/19
RTL statements

e RTL statements are instances of type rtx
e RTL insns contain embedded links
e Types of RTL insns :

INSN : Normal non-jumping instruction
JUMP_INSN : Conditional and unconditional jumps
CALL_INSN : Function calls

CODE_LABEL: Target label for JUMP_INSN
BARRIER : End of control Flow

NOTE : Debugging information

vV VvV vy VY

Essential Abstrations in GCC GCC Resource Center, IIT Bombay



Part 3

RTL Functions



July 09 RTL: RTL Functions 15/19
Basic RTL functions

e XEXP,XINT,XWINT,XSTR
» Example: XINT(x,2) accesses the 2nd operand of rtx x as an
integer
» Example: XEXP(x,2) accesses the same operand as an expression
e Any operand can be accessed as any type of RTX object
» So operand accessor to be chosen based on the format string of the
containing expression
e Special macros are available for Vector operands
» XVEC(exp,idx) : Access the vector-pointer which is operand
number idx in exp
» XVECLEN (exp, idx ) : Access the length (number of elements) in
the vector which is in operand number idx in exp. This value is an int
» XVECEXP (exp, idx, eltnum ) : Access element number
“eltnum” in the vector which is in operand number idx in exp. This
value is an RTX

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

5



July 09

RTL: RTL Functions

16/19

RTL insns

A function's code is a doubly linked chain of INSN objects
Insns are rtxs with special code
Each insn contains atleast 3 extra fields :

» Unique id of the insn , accessed by INSN_UID(i)

» PREV_INSN(i) accesses the chain pointer to the INSN
preceeding i

» NEXT_INSN(i) accesses the chain pointer to the INSN
succeeding i

The first insn is accessed by using get_insns ()

The last insn is accessed by using get last insn()

Essential Abstrations in GCC

GCC Resource Center, IIT Bombay

=

5



July 09 RTL: RTL Functions 17/19

Sample Demo Program

Problem statement : Counting the number of SET objects in a basic
block by adding a new RTL pass

e Add your new pass after pass_expand
e new rtl pass_main is the main function of the pass

e |terate through different instructions in the doubly linked list of
instructions and for each expression, call eval _rtx(insn) for that
expression which recurse in the expression tree to find the set
statements

Essential Abstrations in GCC GCC Resource Center, IIT Bombay



July 09 RTL: RTL Functions 18/19

int new_rtl_passmain(void){
basic_block bb;
rtx last,insn,opdl,opd?2;
int bbno,code,type;
count = 0;

for (insn=get_insns(), last=get_last_insn(),

{

3

last=NEXT_INSN(last); insn!=last; insn=NEXT_INSN(insn))

int is_insn;
is_insn = INSN_P (insn);
if (flag-dump new_rtl_pass)
print_rtl single(dump file,insn);
code = GET_CODE(insn);
if (code==NOTE){ ... }
if (is_insn)
{ rtx subexp = XEXP(insn,5);
eval_rtx(subexp) ;

}

Essential Abstrations in GCC

GCC Resource Center, IIT Bombay

=



July 09 RTL: RTL Functions 19/19

void eval rtx(rtx exp)
{ rtx temp;
int veclen,i,
int rt_code = GET_CODE(exp);
switch(rt_code)
{ case SET:
if (flag dump new rtl_pass){
fprintf (dumpfile,"\nSet statement %d : \t",count+1);
print_rtl_single(dump file,exp);}
count++; break;
case PARALLEL:
veclen = XVECLEN(exp, 0);
for(i = 0; i < veclen; i++)
{ temp = XVECEXP(exp, 0, 1i);

eval rtx(temp);
}
break;
default: break;

X
I

Essential Abstrations in GCC GCC Resource Center, IIT Bombay

5



	Outline
	Introduction
	RTL Basics
	RTL Functions

