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Abstract

This document describes agenericdata f low analyzer forper function (i.e.,
intraprocedural)b it vectordata f low analysis in GCC 4.3.0. We call this infras-
tructuregdfa. The analyzers implemented usinggdfa are calledpfbvdfa. gdfa has
been used to implement several bit vector data flow analyses.

1 Motivation

The design and implementation ofgdfa is motivated by the following objectives:

• Demonstrating the practical significance of the following important generaliza-
tion: Instead of implementing specific analyses directly, it is useful to implement
a generic driver that is based on a carefully chosen set of abstractions. The task
of implementing a particular analyzer then reduces to merely specifying the anal-
ysis by instantiating these abstractions to concrete values.

• Providing an easy to use and easy to extend data flow analysis infrastructure.
The goal is to facilitate experimentation in terms of studying existing analyses,
defining new analyses, and exploring different analysis algorithms.

Section 2 describes the specification mechanism ofgdfa and shows how the re-
sulting pass can be included in GCC 4.3.0. We illustrate it for the bit vector analyses
implemented usinggdfa. Section 3 describes the implementation ofgdfa. This section
also shows how local property computation can be driven by specifications. Finally
Section 4 suggests some possible enhancements togdfa.

In this document, we assume familiarity with data flow analysis and GCC internals.
Section 5 point to further readings.

The source code ofgdfa is available as a patch of thegcc directory for GCC-4.3.0
from the URL:
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Figure 1: Associating flow functions with nodes and edges separately.
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Patches for later versions will be made available on this page whenever possible.
The code presented in this document is a slightly edited version of the original

code. This was done to fit a page size constraints.

2 Specifying a Data Flow Analysis

In this section we look at how we can use the generic data flow analysis driver to
implement a data flow analysis pass in GCC. The implemented pass has to be registered
with the pass manager in GCC so that it can be executed by the compiler.

2.1 Generic Flow Functions and Data Flow Equations

Generic flow functions are defined in terms of flow functions illustrated in Figure 1.
−→
f denotes a forward flow function whereas

←−
f denotes a backward flow function. The

subscripts used in flow function notation distinguish node flow functions from edge
flow functions. Defining separate node and edge flow functionsrequires explicating
Inn and Outn rather than leaving one of them implicit. For forward unidirectional
data flows, the forward flow functions associated with edges are identity functions and
the backward node and edge flow functions compute⊤. Analogous remarks hold for
backward unidirectional data flows.

When separate flow functions are associated with nodes and edges, the generic data
flow equations can be written as shown below.
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whereBIEnd andBIStart denotes boundary information for intraprocedural data flow
analysis. These equations compute theMFP solution of an instance of a data flow
framework.

2.2 Registering a Pass With the Pass Manager in GCC

gdfa works on the gimple version of the intermediate representation used by GCC. We
have includedpfbvdfa passes such that they are invoked by default whengcc is used
for compiling a program. Whengcc is built, this causespfbvdfa passes to run on the
entire source ofgcc which consists of over a million lines of C code. This helps in
ensuring that these do not cause any exception in the compilation sequence.

After constructing the gimple representation,gcc views the rest of the compilation
as sequential execution of various passes. This is carried out by traversing a linked list
whose nodes contain pointers to the entry functions of thesepasses. A pass is registered
with the pass manager through the following steps:

• Instantiating a variable as an instance ofstruct tree_opt_pass in some file.

• Declaring this variable as anextern variable in header filetree-pass.h.

• Inserting this variable in the linked list of passes using the macroNEXT_PASS in
functioninit_optimization_passes in file passes.c.

• Listing new file names ingcc/Makefile.inand configuring and building GCC.

Here is the declaration ofstruct tree_opt_pass. For convenience comments
have been removed and are used in the explanation that follows.

0 struct tree_opt_pass
1 {

2 const char *name;

3 bool (*gate) (void);
4 unsigned int (*execute) (void);

5 struct tree_opt_pass *sub;

6 struct tree_opt_pass *next;
7 int static_pass_number;

8 unsigned int tv_id;

9 unsigned int properties_required;
10 unsigned int properties_provided;

11 unsigned int properties_destroyed;

12 unsigned int todo_flags_start;
13 unsigned int todo_flags_finish;

14 char letter;

15 };

Thename of the pass (line 2) is used as a fragment of the dump file name. We have
used the names likegdfa_ave. Thegate function (line 3) is used to check whether
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this pass and all its sub-passes should be executed or not. They are executed only if
this function returnstrue. If no such checking is required, this function pointer can
beNULL. Theexecute function (line 4) is entry function of the pass. If this function
pointer isNULL, there should be sub-passes otherwise this pass does nothing. The
return value tellsgcc what more needs to be done. The variablesub (line 5) is a list
of sub-passes that should be executed depending upon thegate predicate. If there are
sub-passes that must be executed unconditionally, then they are listed innext (line 6).
The static pass number (line 7) is used as a fragment of the dump file name. If it is
specified as 0, the pass manager computes its value dependingon the position of the
pass. It is this that generated numbers 15, 16, 17, 18, and 19 for our data flow analyses.
Variabletv_id is the variable that can be used as a time variable. The rest ofthe
variables are self-explanatory. The last variableletter is used to annotate RTL code
that is emitted.

We have registered available expressions analysis by creating a structure variable
called pass_gimple_pfbv_ave_dfa as shown below.

struct tree_opt_pass pass_gimple_pfbv_ave_dfa =

{
"gdfa_ave", /* name */

NULL, /* gate */

gimple_pfbv_ave_dfa, /* execute */
NULL, /* sub */

NULL, /* next */

0, /* static_pass_number */
0, /* tv_id */

0, /* properties_required */

0, /* properties_provided */
0, /* properties_destroyed */

0, /* todo_flags_start */

0, /* todo_flags_finish */
0 /* letter */

};

This variable is declared as follows in filetree-pass.h

extern struct tree_opt_pass pass_gimple_pfbv_ave_dfa;

The next step in registering this pass is to include it in the list of passes. We show
below the relevant code fragment from functioninit optimization passes in file
passes.c:
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NEXT_PASS (pass_build_cfg);

/* Intraprocedural dfa passes begin */

NEXT_PASS (pass_init_gimple_pfbvdfa);
NEXT_PASS (pass_gimple_pfbv_ave_dfa);

NEXT_PASS (pass_gimple_pfbv_pav_dfa);

NEXT_PASS (pass_gimple_pfbv_ant_dfa);
NEXT_PASS (pass_gimple_pfbv_lv_dfa);

NEXT_PASS (pass_gimple_pfbv_pre_dfa);

/* Intraprocedural dfa passes end */

Finally, we need to include the new file names in the GCC build system. This is
done by including the object file names and their dependencies inMakefile.in in the
gcc-4.3.0/gcc directory.

2.3 Specifying Available Expressions Analysis

The specification mechanism supported bygdfa is simple and succinct. It follows the
GCC mechanism of specification by using astruct as a hook and by requiring the
user to create a variable by instantiating the members of thestruct defined for the
purpose.

For available expressions analysis, we define a variable called gdfa_ave which is
of the typestruct gimple_pfbv_dfa_spec gdfa_ave.

0 struct gimple_pfbv_dfa_spec gdfa_ave =

1 {

2 entity_expr, /* entity */
3 ONES, /* top_value */

4 ZEROS, /* entry_info */

5 ONES, /* exit_info */
6 FORWARD, /* traversal_order */

7 INTERSECTION, /* confluence */

8 entity_use, /* gen_effect */
9 down_exp, /* gen_exposition */

10 entity_mod, /* kill_effect */

11 any_where, /* kill_exposition */
12 global_only, /* preserved_dfi */

13 identity_forward_edge_flow, /* forward_edge_flow */

14 stop_flow_along_edge, /* backward_edge_flow */
15 forward_gen_kill_node_flow, /* forward_node_flow */

16 stop_flow_along_node /* backward_node_flow */

17 };

Before we explain the above, we present the rest of the code required to complete
the specification.
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18 pfbv_dfi ** AV_pfbv_dfi = NULL;

19

20 static unsigned int
21 gimple_pfbv_ave_dfa(void)

22 {

23
24 AV_pfbv_dfi = gdfa_driver(gdfa_ave);

25

26 return 0;
27 }

Nothing more is required for specifying available expressions analysis apart from
registering it with the pass manager with functiongimple_pfbv_ave_dfa as its entry
point as described in Section 2.2. This function calls thegdfa driver passing the spec-
ification variablegdfa_ave as actual parameter. The data flow information computed
by the driver is stored in a pointer to an array calledAV_pfbv_dfi; each element of
this array the represents the data flow information for a basic block and is an instance
of the following type defined bygdfa.

typedef struct pfbv_dfi

{
dfvalue gen;

dfvalue kill;

dfvalue in;
dfvalue out;

} pfbv_dfi;

The semantics expressed bystruct gimple_pfbv_dfa_spec gdfa_ave is as
described below: Line 2 declares that the relevant entitiesfor this analysis are expres-
sions (entity_expr). Line 3 specifies that⊤ is “all ONES” implying the universal set
Expr. The specification “allZEROS” on line 4 initializes theBIStart to ∅ whereasONES
on line 5 rendersBIEnd irrelevant because it is same as⊤. Line 6 declares the direc-
tion of traversal to beFORWARD. Note that this is independent of the direction of flow
and only influences the number of iterations. If we choose thedirection of traversal
asBACKWARD, the resulting data flow information will remain same exceptthat it may
take a much larger number of iterations. Line 7 declares the⊓ to be∩. Line 12 directs
the driver to preserve only the global data flow information (In andOut ); the driver
can reclaim the space occupied by the local data flow information (Gen andKill).

The most interesting elements of the specification are the specifications of local
properties and flow functions:

• Local property specification.

Lines 8 to 11 define theGen andKill kill sets for a block. Observe that this
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mechanism closely follow the description in Section??.

– Lines 8 and 9 say that when a downwards exposed (down_exp) use of an
entity (entity_use) is found in a basic block, it is included in theGen set
of the block. From line 2 we know that the entity under consideration is an
expression (entity_expr).

– Lines 10 and 11 say that when a modification of an entity (entity_mod)
is found in a basic block, it is included in theKill set of the block. This
modification need not be upwards exposed or downwards exposed, it can
appearany_where.

This is possible because thegdfa driver is aware of the fact that the use of an
entity could be affected by its modification and hence the notion of exposition of
an entity is explicated in the specification.

• Flow function specification.

Lines 13 to 16 specify the flow functions for available expressions analysis as
required by the generic data flow Equations (1) and (2).

– The forward edge flow function
−→
fn→m in available expressions analysis is

identity (line 13).

– The forward node flow function
−→
fn is the conventionalGen-Kill function

f (X) =Gen ∪ (In −Kill). This is specified by line 15.

– There is no backward flow i.e.,
←−
fn and

←−
fn→m are⊤. This is specified by

lines 14 and 16.

All these functions are supported bygdfa and it is enough to associate the func-
tion pointers with appropriate functions.

When the nature of data flow is different from the default flows, it is also pos-
sible to write custom functions—we show how it is done for partial redundancy
elimination.

2.4 Specifying Other Bit Vector Data Flow Analyses

Given the specification of available expressions analysis,it is easy to visualize spec-
ifications for other bit vector frameworks. We describe the required changes in the
following:

• Partially available expressions analysis.

Confluence should beUNION,⊤ andBIEnd should beZEROS.

• Anticipable expressions analysis.

In this case it is desirable, though not necessary, to choosethe direction of traver-
sal asBACKWARD. The exposition forGen should be changed toup_exp. BIStart

should beONES andBIEnd should beZEROS. Flow functions would change as
follows:
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– forward edge flow function
−→
fn→m should bestop_flow_along_edge,

– forward node flow function
−→
fn should bestop_flow_along_node, and

– backward node flow function
←−
fn should be the defaultGen-Kill function

backward_gen_kill_node_flow.

• Live variables analysis.

This specification would be similar to that of anticipable expressions analysis
except that the entity should beentity_var, confluence should beUNION, ⊤
andBIEnd should beZEROS.

• Partial redundancy elimination.

Here it would useful to change thegate function to this pass to check that avail-
able expressions analysis and partially available expressions analysis has been
performed.

The data flow equations for partial redundancy elimination are given below.

Inn = PavInn∩ (AntGenn∪ (Outn−Killn))∩
⋂

p∈pred(n)

(

Out p∪AvOut p

)

(3)

Outn =



















BI n is End block
⋂

s∈succ(n)

Ins otherwise (4)

The specification of data flow analysis would be similar to that of anticipable
expressions analysis except that the node flow function in the equation forInn

would change. In particular, the forward edge flow function
−→
fn→m and the back-

ward node flow function
←−
fn cannot be chosen from the default functions sup-

ported bygdfa. We define the required functions as shown below.

dfvalue

forward_edge_flow_pre(basic_block src, basic_block dest)
{

dfvalue temp;

temp = union_dfvalues (OUT(AV_pfbv_dfi,src),

CURRENT_OUT(src));

return temp;

}
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In this function,src and dest indicate the source and destination of an edge.
Since this flow function is used in computingInn, dest representsn andsrc repre-
sents the given predecessor nodep. Under the assumption that the data flow infor-
mation of available expressions analysis is stored in the variable AV_pfbv_dfi, the
termOUT(AV_pfbv_dfi,src) representsAvOut p whereas theOut p is represented by
the termCURRENT_OUT(src). Thus this flow function computesAvOut p∪Out p for a
given predecessorp.

The definition of backward node flow is similar to that of the default node flow
except that we need to include the value ofPavInn. This is easily achieved by the
function defined below:

dfvalue

backward_node_flow_pre(basic_block bb)

{
dfvalue temp1, temp2;

temp1 = backward_gen_kill_node_flow(bb);

temp2 = intersect_dfvalues (IN(PAV_pfbv_dfi,bb),

temp1);

if (temp1)

free_dfvalue_space(temp1);

return temp2;

}

Herebb is the current noden. The default backward node flow function is uses
to compute the data flow information in the variabletemp1. Under the assumption
that the data flow information of partially available expressions analysis is stored in the
variablePAV_pfbv_dfi, the termIN(PAV_pfbv_dfi,bb) representsPavInn. All that
further needs to be done is to intersect them.

This completes the specification of partial redundancy elimination.

3 Implementing gdfa

We describe the implementation in terms of the specificationprimitives, interface with
GCC, the generic functions for global property computation, and generic functions for
local property computation.

3.1 Specification Primitives

The main data structure used for specification is:
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0 struct gimple_pfbv_dfa_spec

1 {

2 entity_name entity;
3 initial_value top_value_spec;

4 initial_value entry_info;

5 initial_value exit_info;
6 traversal_direction traversal_order;

7 meet_operation confluence;

8 entity_manipulation gen_effect;
9 entity_occurrence gen_exposition;

10 entity_manipulation kill_effect;

11 entity_occurrence kill_exposition;
12 dfi_to_be_preserved preserved_dfi;

13

14 dfvalue (*forward_edge_flow)(basic_block src,
15 basic_block dest);

16 dfvalue (*backward_edge_flow)(basic_block src,

17 basic_block dest);
18 dfvalue (*forward_node_flow)(basic_block bb);

19 dfvalue (*backward_node_flow)(basic_block bb);

20
21 };

The types appearing on lines 2 to 12 are defined as enumerated types with the
following possible values.

Enumerated Type Possible Values

entity_name entity_expr, entity_var, entity_defn
initial_value ONES, ZEROS
traversal_direction FORWARD, BACKWARD, BIDIRECTIONAL
meet_operation UNION, INTERSECTION
entity_manipulation entity_use, entity_mod
entity_occurrence up_exp, down_exp, any_where
dfi_to_be_preserved all, global_only, no_value

The typedfvalue is just another name for the typesbitmap supported by GCC.
We have used a different name to allow for the possibility of extendinggdfa to other
kinds of data flow values.

The entry point of each data flow analysis invokes the driver with its specification.
The driver creates space for current data flow values in current data flow analysis in a
variablecurrent_pfbv_dfiwhich is declared as shown below:
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typedef struct pfbv_dfi

{

dfvalue gen;
dfvalue kill;

dfvalue in;

dfvalue out;
} pfbv_dfi;

pfbv_dfi ** current_pfbv_dfi ;

For a basic blockbb, different members of the data flow information are accessed
using the following macros:

Data flow variable current_pfbv_dfi Givendfi

Gen CURRENT_GEN(bb) GEN(dfi,bb)

Kill CURRENT_KILL(bb) KILL(dfi,bb)

In CURRENT_IN(bb) IN(dfi,bb)

Out CURRENT_OUT(bb) OUT(dfi,bb)

Now we can describe the default functions that can be assigned to the function
pointers on lines 14 to 19 instruct gimple_pfbv_dfa_spec. Alternatively, the
users can define their own functions which have the same interface. The default func-
tions supported bygdfa are:

Function Returned value

identity_forward_edge_flow(src, dest) CURRENT_OUT(src)

identity_backward_edge_flow(src, dest) CURRENT_IN(dest)

stop_flow_along_edge(src, dest) top_value

identity_forward_node_flow(bb) CURRENT_IN(bb)

identity_backward_node_flow(bb) CURRENT_OUT(bb)

stop_flow_along_node(bb) top_value

forward_gen_kill_node_flow(bb)

CURRENT_GEN(bb)∪

( CURRENT_IN(bb) -
CURRENT_KILL(bb) )

backward_gen_kill_node_flow(bb)

CURRENT_GEN(bb)∪

( CURRENT_OUT(bb) -
CURRENT_KILL(bb) )

wheretop_value is of the typeinitial_valueand is constructed based on the value
of top_value_spec (line 3 instruct gimple_pfbv_dfa_spec).

This completes the description of the specification primitives.

11



3.2 Interface with GCC

The top level interface ofgdfa with GCC is through the pass manager as described in
Section 2.2. At the lower level,gdfa uses the support provided by GCC for traversals
over CFGs, basic blocks etc.; discovering relevant features of statements, expressions,
variables etc.; constructing and manipulating data flow values; and printing entities
appearing in statements.

Traversal Over CFG and Basic Blocks

In a round robin iterative traversal, the basic blocks in a CFG are usually visited in the
order of along control flow or against the order of control flow. In GCC, this is achieved
as follows:

basic_block bb;

FOR_EACH_BB_FWD(ENTRY_BLOCK_PTR)

{ /* process bb */
}

FOR_EACH_BB_BKD(EXIT_BLOCK_PTR)

{ /* process bb */
}

In the above code,basic_block is a type supported by GCC.ENTRY_BLOCK_PTR
andEXIT_BLOCK_PTR point toENTRY andEXIT blocks of the current function being
compiled. These macros have been defined by GCC. The two othermacros used above
are defined as follows:

#define FOR_EACH_BB_FWD(entry_bb) \
for(bb=entry_bb->next_bb; \

bb->next_bb!=NULL; \

bb=bb->next_bb)
#define FOR_EACH_BB_BKD(exit_bb) \

for(bb=exit_bb->prev_bb; \

bb->prev_bb!=NULL; \
bb=bb->prev_bb)

Given a basic blockbb, its predecessor and successor blocks are traversed using
an edge_iterator variable, anedge variable, and the macroFOR_EACH_EDGE as
described below. All these are directly supported by GCC.
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edge_iterator ei ;

edge e ;

basic_block succ_bb, pred_bb;

FOR_EACH_EDGE(e,ei,bb->preds)

{ pred_bb = e->src;
/* process the predecessor pred_bb */

}

FOR_EACH_EDGE(e,ei,bb->succs)
{ succ_bb = e->dest;

/* process successor succ_bb */

}

A statement is of the typetree. Further, all entities appearing in a statement
are also of the typetree. All statements in a basic block can be traversed using a
block_statement_iterator variable.

basic_block bb;

block_stmt_iterator bsi;
tree stmt;

FOR_EACH_STMT_FWD
{ stmt = bsi_stmt(bsi);

/* process stmt */

}
FOR_EACH_STMT_BKD

{ stmt = bsi_stmt(bsi);

/* process stmt */
}

The macros used in the above code are defined as follows:

#define FOR_EACH_STMT_FWD \
for(bsi=bsi_start(bb); \

!bsi_end_p(bsi); \

bsi_next(&bsi))

#define FOR_EACH_STMT_BKD \

for(bsi=bsi_last(bb); \
bsi.tsi.ptr!=NULL; \

bsi_prev(&bsi))
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Discovering the Entities in a Statement

Statements can be of many types but only a few types are of relevant to local data flow
analysis. The lvalue and rvalue of a given statementstmt are of the typetree and are
extracted as shown below:

tree expr=NULL, lval=NULL;

switch(TREE_CODE(stmt))

{ case COND_EXPR:
expr = TREE_OPERAND(stmt,0);

break;

case MODIFY_EXPR:
lval = TREE_OPERAND(stmt,0);

expr = TREE_OPERAND(stmt,1);

case GIMPLE_MODIFY_STMT:
lval = GIMPLE_STMT_OPERAND(stmt,0);

expr = GIMPLE_STMT_OPERAND(stmt,1);

break;
default:

break;

}

The operands of relevant expressions are extracted as shownbelow:

tree op0=NULL, op1=NULL;

switch(TREE_CODE(expr))
{ case MULT_EXPR:

case PLUS_EXPR:

case MINUS_EXPR:
case LT_EXPR:

case LE_EXPR:

case GT_EXPR:
case GE_EXPR:

case NE_EXPR:

case EQ_EXPR:
op1 = TREE_OPERAND(stmt,1);

op0 = TREE_OPERAND(stmt,0);

break;
default:

break;

}

Observe that this covers the set of expressions that is currently supported bygdfa.
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Clearly, extending this set is easy.
Local variables are discovered by traversingcfun->unexpanded_var_listusing

TREE_VALUE andTREE_CHAIN macros supported by GCC. Herecfun represents the
current function being compiled.

tree var,list;

list = cfun->unexpanded_var_list;

while (list)
{ var = TREE_VALUE (list);

/* process variables *
list = TREE_CHAIN(list);

}

Constructing and Manipulating Data Flow Values

We define the typedfvalue as follows:

typedef sibtmap dfvalue;

sbitmap is a type supported by GCC to represent sets. We use the following
sbitmap functions to construct and manipulate bitmaps. Note that these functions are
not directly used ingdfa. Instead,gdfa code callsdfvalue functions that are defined
in terms of these functions.

Name of the Function Action

sbitmap_equal(v_a,v_2) is v_a equal tov_b?
sbitmap_a_and_b(t, v_a, v_2) t = v_a ∩ v_b

sbitmap_union_of_diff(t, v_a, v_b, v_c) t = v_a ∪ ( v_b − v_c)
sbitmap_a_or_b(t, v_a, v_b) t = v_a ∪ v_b

sbitmap_ones(v) set every bit inv to 1
sbitmap_zero(v) set every bit inv to 0
sbitmap_alloc(n) allocate a bitmap ofn bits
sbitmap_free(v) free the space occupied byv

Facilities for Printing Entities

We use the functiondump_sbitmap to print bitmaps. For printing a statement, the
functionprint_generic_stmt is used whereas functionprint_generic_exprprints
an expressionexpr.
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3.3 Preparatory Pass

Before thegdfa driver is invoked, some preparatory work has to be performedby an
earlier pass. The top level function of this pass is:

static unsigned int

init_gimple_pfbvdfa_execute (void)
{

local_var_count=0;

local_expr_count=0;
number_of_nodes = n_basic_blocks+2;

assign_indices_to_local_var();
assign_indices_to_exprs();

dfs_ordered_basic_blocks = NULL;
dfs_numbering_of_bb();

return 0;
}

Functionassign_indices_to_local_var assigns a unique index to each local
variable by traversingcfun->unexpanded_var_list as explained in Section 3.2.
These indices represent the bit position of a local variable. This requires adding an
integer field to thetree data structure. The variables which are not interesting are
assigned index-1.

Functionassign_indices_to_local_exprs assigns a unique index to each ex-
pression whose operands are restricted to constants and variables that have been as-
signed a valid index. These indices represent the bit position of relevant expressions.
Other expressions are assigned index-1.

Unlike local variables, there is no ready list of expressions. Hence the function
assign_indices_to_local_exprs traverses the CFG visiting each statement and
examining the expressions appearing in relevant statements. If the expression used in a
statement qualifies as a local expression, it is first checkedwhether an index has already
been assigned to it. This could happen because an expressioncould appear multiple
times in a program.

Finally, functiondfs_numbering_of_bb performs depth first numbering of the
blocks in a CFG.

3.4 Local Data Flow Analysis

In production compilers, implementing global data flow analyzers is much easier com-
pared to implementing local data flow analyzers. This is because local data flow anal-
ysis has to deal with the lower level intricate details of theintermediate representation
and intermediate representation are the most complex data structures in practical com-
pilers. Global data flow analyzer are insulated from these lower level details; they just
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need to know CFGs in terms of basic blocks. Thus most data flow analysis engines
require the local property computation to be implemented bythe user of the engine.

This situation can change considerably if we view local dataflow analysis as a
special case of global data flow analysis. The objective of local data flow analysis
is to computeGenn andKilln of a blockn. This computation can be performed by
traversing statements in blockn in a manner similar to traversing blocks in a CFG.
The only difference is that statements in a block cannot have multiple predecessors of
successors.

The wayInStart (or OutEnd ) is computed by incorporating the effect of blocks in a
CFG,Genn andKilln can also be computed by incorporating the effects of individual
statements in blockn. The effect of statements can be defined in terms ofGens and
Kills. However, we need to overcome the following conceptual difficulty: When we
computeGenn for block n, Gens of a statements must be added to the cumulative
effect of the statements processed so far. However, when we compute Killn, Kills of
statements should beaddedto the cumulative effect instead of being removed. This
deviates from the normal meaning ofKill which represents the entities to be removed.

We overcome this conceptual difficulty by renamingGens andKills asAdds and
Removes respectively. Now local data flow analysis does not depend onknowing
whether the data flow property being computed isGenn or Killn. Given a local property
specification such as below:

typedef struct lop_specs
{

entity_name entity;

entity_manipulation stmt_effect;
entity_occurrence exposition;

} lp_specs;

Local data flow analysis searches for the effect of a given statement specified
throughstmt_effect and stores it inadd_entities. If the specifiedstmt_effect
is entity_use, the entities that qualify forentity_mod are stored in the variable
remove_entities. Depending upon theexposition, the final decision of removal
is taken.

Thus computation ofGenn andKilln depends upon setting up a variable of the type
lp_specs and the solving the following recurrence

accumulated_entities = (accumulated_entities − remove_entities)

∪ add_entities

Functioneffect_of_a_statement performs the above computation for a given
statement. It is called by the top level functionlocal_dfa_of_bb. The relevant code
fragment for downwards exposed entities is:
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FOR_EACH_STMT_FWD

{ stmt = bsi_stmt(bsi);

accumulated_entities = effect_of_a_statement(lps_given,
stmt, accumulated_entities);

}

For upwards exposed entities, the accumulation is against the control flow and the
above traversal is performed using the macroFOR_EACH_STMT_BKD.

The main limitation of this approach is that it requires independent traversal of a
basic block for computingGen andKill . However, by using a slightly more compli-
cated data structure that passes bothGen andKill to functionlocal_dfa_of_bb, will
solve this problem. The other limitation is that due to the generality, there are many
checks that are done in the underlying functions. There are two possible solutions to
this problem of efficiency:

• This is used as a rapid prototyping tool for a given data flow analysis. Once the
details are fixed, one could spend time writing a more efficient data flow analyzer.

• Instead of interpreting the specifications, a program can generated a customized
C code that is compiled with GCC source.

3.5 Global Data Flow Analysis

As observed earlier, implementation of global data flow analyzer is much simpler once
local data flow analysis and interface with the underlying compiler infrastructure is in
place. The fact thatgdfa use generic data flow Equations (1) and (2) makes it possible to
execute a wide variety of specifications without having to know the name of a particular
analysis being performed. In other words,gdfa driver is not a collection of data flow
analysis implementations but is capable of execution any specification within the limits
of the possible values of specification primitives.

At the top level, thegdfa driver needs to perform the following tasks:

• Create special values like⊤, BIStart , andBIEnd .

• Create space for data flow values

• Perform local data flow analysis

• Select flow functions

• Perform global data flow analysis

Functiongdfa_driver performs the above tasks:
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0 pfbv_dfi **

1 gdfa_driver(struct gimple_pfbv_dfa_spec dfa_spec)

2 {
3 if (find_entity_size(dfa_spec) == 0)

4 return NULL;

5 initialize_special_values(dfa_spec);
6 create_dfi_space();

7 traversal_order = dfa_spec.traversal_order;

8 confluence = dfa_spec.confluence;
9

10 local_dfa(dfa_spec);

11
12 forward_edge_flow = dfa_spec.forward_edge_flow;

13 backward_edge_flow = dfa_spec.backward_edge_flow;

14 forward_node_flow = dfa_spec.forward_node_flow;
15 backward_node_flow = dfa_spec.backward_node_flow;

16

17 perform_pfbvdfa();
18

19 preserve_dfi(dfa_spec.preserved_dfi);

20 return current_pfbv_dfi;
21 }

Lines 12 to 15 select the flow functions from the specifications. Below we show
the code fragment of functionperform_pfbvdfa when the direction of traversal is
FORWARD.

do
{ iteration_number++;

change = false;

FOR_EACH_BB_IN_SPECIFIED_TRAVERSAL_ORDER
{ bb = VARRAY_BB(dfs_ordered_basic_blocks,visit_bb);

if(bb)

{ if (traversal_order == FORWARD)
{ change_at_in = compute_in_info(bb);

change_at_out = compute_out_info(bb);

change = change||change_at_out||change_at_in;
}

else /* compute in the opposite order */

}
}

} while(change);

The main code fragment of functioncompute_in_info is as shown below. It calls
functionbackward_node_flowwhich is extracted from the specification.
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if (!bb->preds)

temp = combine(entry_info, backward_node_flow(bb));

else
temp = combine(combined_forward_edge_flow(bb),

backward_node_flow(bb));

old = CURRENT_IN(bb);
change = is_new_info(temp,old);

if (change)
{

CURRENT_IN(bb) = temp;

if (old)
free_dfvalue_space(old);

}

return change;

Functioncombined_forward_edge_flow computes the following term

p∈pred(n)

−→
f p→n(Out p)

Its main code fragment of as shown below. It calls functionforward_edge_flow
which is extracted from the specification.

edge_vec = bb->preds;

temp = make_initialized_dfvalue(top_value_spec);

if (forward_edge_flow == &stop_flow_along_edge)

return temp;

FOR_EACH_EDGE(e,ei,edge_vec)

{ pred_bb = e->src;

new = combine(temp,forward_edge_flow(pred_bb,bb));
if (temp)

free_dfvalue_space(temp);

temp = new;
}

return temp;

The code sequence corresponding to functioncompute_out_info is an exact dual
of the above code sequence. This completes the description of generic global data flow
analysis ingdfa.
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4 Extending the Generic Data Flow Analyzergdfa

Many extensions and enhancements ofgdfa are possible. We suggest some of them by
dividing them into the following categories.

• Extensions that do not require changing the architecture ofgdfa.

– Include space and time measurement of analyses.

– Consider scalar formal parameters for analysis.

– Support a work list based driver.

– Extendgdfa to support definitions as entities and specify reaching defini-
tions analysis.

– Extendgdfa to support other entities such as statements (e.g., for dataflow
analysis based program slicing), and basic blocks (e.g., for data flow anal-
ysis based dominator computation). Both these problems arebit vector
problems.

– Improve the implementation ofgdfa to make it more space and time effi-
cient. This may require compromising on the simplicity of the implemen-
tation but generality should not be compromised.

• Extensions that may require minor changes to the architecture of gdfa.

– Implement incremental data flow analysis and measure its effectiveness by
invoking in just before gimple is expanded into RTL.

This would require a variant of a work list based driver.

– Explore the possibility of extendinggdfa to the data flow frameworks where
data flow information can be represented using bit vectors but the frame-
works are not bit vector frameworks because they are non-separable e.g.,
faint variables analysis, possibly undefined variables, analysis, strongly live
variables analysis.

This would require changing the local data flow analysis. Onepossible
option is using matrix based local property computation. The other option
is to treat a statement as an independent basic block.

• Extensions that may require major changes to the architecture of gdfa.

– Extendgdfa to non-separable frameworks in which data flow information
cannot be represented by bit vectors e.g., constant propagation, signs analy-
sis, points-to analysis, alias analysis, heap reference analysis etc. Although
the main driver would remain same, this would require makingfundamen-
tal changes to the architecture.

– Extendgdfa to support some variant of context and flow sensitive interpro-
cedural data flow analysis.
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5 Further Readings

Most texts on compilers discuss data flow analysis in varyinglengths [1, 2, 3, 7, 8, 11].
Some of them discuss details [1, 2, 8]. A useful introductorychapter is by Khedker [5].
An advanced treatment of data flow analysis can be found in thebooks by Hecht [4],
Muchnick and Jones [9], F. Nielson, H. R. Nielson and Hankin [10], and by Khedker,
Sanyal, and Karkare [6].

We list below some useful resources for learning about GCC:

• GCC Internals
http://gcc.gnu.org/onlinedocs/gccint.html

This is the official internals document which exhaustively describes mostdetails
and is a part of the documentation distributed with the compiler code.

• GCC Internals documents developed at IIT Bombay
http://www.cse.iitb.ac.in/grc/

This is the website ofGCC Resource Centerat IIT Bombay. It hosts the GCC
documents developed at IIT Bombay.

• The GCC Wiki
http://gcc.gnu.org/wiki/

The official GCC Wiki pages where the various aspects of GCC, including some
description of the internals, are being developed by the GCCdevelopers and
others.

• The GCC Internals workshop held at IIT Bombay
http://www.cse.iitb.ac.in/˜uday/gcc-workshop/

This workshop that focused mainly on the machine descriptions was held at IIT
Bombay in June 2007. The slides and some associated softwareis available on
theDownloads page of the workshop.

• The GCC on Wikipedia
http://en.wikipedia.org/wiki/GNU_Compiler_Collection

• The GCC Internals on Wikipedia
http://en.wikibooks.org/wiki/GNU_C_Compiler_Internals

6 Copyright

gdfa and this manual is a copyrighted material of the GCC ResourceCenter, Depart-
ment of Computer Science and Engineering, Indian Instituteof Technology Bombay.
This material may be distributed only subject to the terms and conditions set forth in

• the GNU GPL v 2.0(http://www.gnu.org/licenses/gpl.html) or later,
for the source code ofgdfa, and
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• the GNU FDL v1.2(http://www.gnu.org/licenses/fdl.html) or later,
for the documentation.

In particular, the original content of these documents, when used in your work,
must be clearly marked as “Copyright©2008 GCC Resource Center, Department of
Computer Science and Engineering, Indian Institute of Technology Bombay”. The
documents and the source code has been provided for the sole and exclusive purpose of
disseminating information. You are free to download them, but neither GCC Resource
Center, nor Indian Institute of Technology Bombay, nor any person related to them are
in any way responsible for anything you do with it. In other words, the documents are
provided as is. In case you are interested in redistributionor republishing of the gdfa
source code or it’s manual, whole or in part, either modified or unmodified, and you
have questions, please contact the author.
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