
Proceedings of USITS' 99: The 2nd USENIX Symposium on Internet Technologies & Systems

Boulder, Colorado, USA, October 11–14, 1999

P R E F E T C H I N G H Y P E R L I N K S

Dan Duchamp

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Prefetching Hyperlinks

Dan Duchamp

AT&T Labs – Research

Abstract

This paper develops a new method for prefetching Web
pages into the client cache. Clients send reference in-
formation to Web servers, which aggregate the reference
information in near-real-time and then disperse the ag-
gregated information to all clients, piggybacked on GET
responses. The information indicates how often hyper-
link URLs embedded in pages have been previously ac-
cessed relative to the embedding page. Based on knowl-
edge about which hyperlinks are generally popular, clients
initiate prefetching of the hyperlinks and their embedded
images according to any algorithm they prefer. Both client
and server may cap the prefetching mechanism’s space
overhead and waste of network resources due to specula-
tion. The result of these differences is improved prefetch-
ing: lower client latency (by 52.3%) and less wasted net-
work bandwidth (24.0%).

1 Introduction

The idea of prefetching Web pages has surely occurred
to many people as they used their browsers. It often takes
“too long” to load and display a requested page, and there-
after several seconds often elapse before the user’s next
request. It is natural to wonder if the substantial time be-
tween two consecutive requests could be used to antici-
pate and prefetch the second request.

The related work section of this paper cites 14 dis-
tinct prior studies of prefetching for the Web. In each
of these studies, anytransparentprefetching algorithm
(meaning that the user is uninvolved) is alsospeculative.
Speculative means that some system component makes
a guess about a user’s future page references based on
some knowledge of past references, gathered from that
user alone or from many users.

This paper examines a new method for prefetching Web
pages into the client cache that is also transparent and
speculative. While the basic approach to prefetching is
the same in all studies, major differences among prefetch-
ing methods lie in the details. The major characteristics
that distinguish this study from prior ones are:

1. We have implemented our ideas, twice in fact.

2. Clients send reference information to servers, which
then disperse aggregated information to other clients
in near-real-time. The reference information indi-
cates how often hyperlink URLs embedded in pages
have been previously accessed relative to the embed-
ding page.

3. Servers aggregate the reference information in near-
real-time rather than, say, overnight, allowing for
prefetching decisions based on up-to-date usage pat-
terns.

4. Clients initiate prefetchingaccording to any algo-
rithm they prefer; they also control how to age refer-
ence information.

5. Prefetching is not limited to URLs on the same
server, or to URLs previously accessed by the same
client.

6. Many un-cacheable pages may be prefetched, in-
cluding pages generated dynamically, by query
URLs, or those having cookies.

7. Both client and server can cap the prefetching mech-
anism’s overhead and waste.

8. In one implementation, proxies are used to avoid
changing either the browser or Web server.

9. HTTP is extended.

10. The prefetching algorithm continually measures
bandwidth available to the client and limits prefetch-
ing requests to a fraction of the available bandwidth.

Most of these characteristics are not shared by most prior
studies.

The result of these differences is improved prefetch-
ing: lower client latency (52.3% reduction) and much less
waste (62.5% of prefetched pages are eventually used).

Section 1.1 gives a brief sketch of how prefetching
works. Section 2 summarizes prior work in the area. Sec-
tion 3 describes some conclusions, drawn from reference

traces, that support certain design decisions, and Section 4
describes the design as well as two implementations. Sec-
tion 5.1 analyzes the costs and benefits of this approach to
prefetching.

1.1 Summary of Prefetching Method

Upon their first contact in “a while,” a client and server
negotiate the terms of prefetching: whether it will happen,
and when and how much information they will exchange
to support it.

Once terms have been negotiated, clients sendusage re-
portsto servers promptly but as part of the critical path of
a GET request. Usage reports describe the fact that one or
more URLs embedded within a page was recently refer-
enced from that page. For example, if a client references
page P and then references page Q based on an HREF
embedded in P, then the usage report will indicate that
P referenced Q; the usage report will also include other
information useful for prefetching, such as the size of Q
and all its embedded images, and how much time elapsed
between the reference to P and the reference to Q.

The server makes a best effort to accumulate the in-
formation from all usage reports that pertain to the same
page, P; the usage reports are kept ordered by time.
Whenever the server delivers P to a prefetch-enabled
client, it attaches a summary (called ausage profile) of
the information that it has obtained from earlier usage
reports for that page, from all clients. The summary,
whose format was negotiated earlier, indicates how often
HREFs embedded in page P have been referenced, rel-
ative to the number of references to P in the same time
period(s). Time is measured by references; thus, for ex-
ample, a client can negotiate to receive usage profiles that
describe the references of embedded HREFs relative to
the last 10, 25, and 50 references of the page P.

A client that receives a usage profile along with page
P may choose whether or not to prefetch any HREFs em-
bedded in P, according to any algorithm it prefers. The
decisions whether and how to prefetch rest with the client
because the client best knows its own usage patterns, the
state of its cache, and the effective bandwidth of its link
to the Internet.

2 Related Work

Here we survey 14 prior separate efforts relevant to
prefetching in the Web, divided into three categories: soft-
ware systems; papers describing algorithms, simulations,
and/or prototypes; and papers that establish bounds.

2.1 Software Systems

Smiley is similar to our work in that prefetching is de-
cided by the client based on usage statistics about em-
bedded HREFs. The client also continually monitors its
available bandwidth. One major difference is that im-
ages embedded within prefetched pages are not them-
selves prefetched. The Smiley implementation is only a
demonstration, and results [16, 17] are obtained by a sim-
ulation study of accesses to two frequently accessed pages
at UCLA.

Major differences in the gathering and use of usage
statistics between Smiley and our work are that there is
no method for clients to inform servers of their usage pat-
terns, and that usage statistics are gathered not in real time
but over many days and then they are not aged.

Although Smiley does not include a method for clients
to inform servers of their usage patterns, client-side and
server-side observations of usage patterns are merged in
the simulation. Jiang and Kleinrock conclude that us-
ing server-side statistics in combination with those of the
client yields a higher hit rate than using client-side statis-
tics alone. A basic hypothesis of our work is that an in-
dividual client can prefetch accurately basedupon usage
statistics gathered from a large population. The Smiley
results suggest that our hypothesis is sound.

Wcol [5] is a research prototype available on the Web.
It prefetches embedded hyperlinks top-to-bottom with-
out regard to likelihood of use. Embedded images of
prefetched pages are also prefetched. Bandwidth waste
can be capped by configuring Wcol to prefetch no more
than a certain number of hyperlinks, and no more than
a certain number of images embedded within prefetched
hyperlinks.

PeakJet2000[26] is the second major version of a
commercial product. PeakJet runs on the client ma-
chine. It maintains a separate cache and provides a set
of tools for speeding Web access, some of which re-
quire user action. True prefetching exists in two modes,
“history-based” and “link-based.” The user picks the
mode. History-based prefetching prefetches an embedded
link only if that client has used it before (i.e., it performs
an IMS GET of a cached page). Link-based prefetching
prefetches all embedded HREFs.

NetAccelerator 2.0[24] is a similar commercial prod-
uct for Windows clients. Unlike PeakJet, it prefetches into
the browser’s disk cache. Its prefetching algorithm is the
same as PeakJet’s link-based prefetching: all hyperlinks
and their embedded images are prefetched.

2.2 Algorithms and Simulations

The method proposed byBestavrosin [2] is that “a server
responds to a clients’ [sic] request by sending, in addition

to the data (documents) requested, a number of other doc-
uments that it speculates will be requested by that client
in the near future.”

A Markov algorithm is used to determine related “doc-
uments.” The server examines the reference pattern of
each client separately. Two documents are considered re-
lated if the client has accessed them in the past within a
certain time interval. When a document is fetched, the
server also pushes to the client any other document that
is transitively related to it and whose likelihood of use is
greater than a threshold value.

Usage statistics are gathered over 60 days, updated
daily. Documents are considered related if requests from
same client come within 5 seconds ofeach other. Among
the results of this study are (1) that more recent usage
statistics yield better results, as does more frequent updat-
ing of the “related” relation; (2) and “speculation is most
effective when done conservatively.” That is, witheach
incremental decrease in client latency, the extra band-
width consumed and extra load imposed upon the server
becomes greater.

The main point of theDynamic Documentsprototype
[18] was to investigate how implementing documents as
programs rather than static files might provide a means to
help mobile clients adjust to enormous variations in band-
width. Prefetching was added more as demonstration of
a possibility rather than as a serious proposal. Pages in
the history list are prefetched, with the result that band-
width use is increased approximately 50% but only 2% of
prefetched pages are used.

In the work of Padmanabhan and Mogul [25], a
server maintains per-client usage statistics and determines
related-ness through a graph-based Markov model similar
to that of Bestavros. The graph contains a node for “every
file that has ever been accessed” and isupdated off-line,
nightly for example. Related-ness is determined by edges
through the nodes weighted by the probability that one
will be accessed soon after the other. Whereas Bestavros
defines “soon” by an amount of time, Padmanabhan and
Mogul define it by a number ofaccesses from the client
that occur in between.

When a GET is serviced, the server calculates a list of
its pages that are likely to be requested in the near future,
using some probability threshold. This list is appended to
the GET response, and the client decides whether to actu-
ally prefetch. Another HTTP extension allows the client
to indicate to the server that a certain GET is a prefetch, so
that the server will not recursively compute related-ness
for the prefetched page.

Trace-driven simulations show that average access time
can be reduced approximately 40%, at the cost of much
increased network traffic (70%). Another result suggests
that prefetching is more beneficial than increasing band-
width. That is, when prefetching causes a 20% increase

in traffic, the latency is lower than it would be without
prefetching but with 20% extra bandwidth. A third result
is that prefetching increases access time variability, but
very little.

The basic idea ofTop10 [21] is for servers (and prox-
ies) to publish their most-accessed pages (“Top 10”).
Downstream components (clients and proxies) prefetch
some fraction of the list. The approach is parameterized
two ways. One parameter indicates how many times a
client must have contacted a server before it will prefetch
at all. The other parameter indicates the maximum num-
ber of pages it will prefetch from a server. Results are by
trace-driven simulation with traces from 5 sites. As more
pages are prefetched, the percent of prefetched pages that
are eventually used rises quickly and levels off at between
3% and 23%, depending on the trace. This suggests that
the size of “TopN” should be small.

Fan et al. [13] evaluates several techniques for reduc-
ing client requests and observed latency. The evaluation is
based mostly on trace-driven simulations of dialup users
[15]. The authors have also implemented their prefetching
ideas using CERNhttpd . Pages are prefetched into a
simulated browser cache only from a shared proxy cache,
never from servers, so no extra wide-area traffic is gener-
ated. Consequently, prefetching is limited by the degree
to which one client is expected to use a page that it or
some other client sharing the same proxy has used in the
past, and which is still in the proxy’scache.

Simulation results indicate that (perfect) prefetching
and delta-compression [22] reduce latency considerably
more than either HTML compression or merely increas-
ing the size of the browser’s cache. Using all three
techniques with a finite browser cache resulted in only
30.3% latency reduction. However, prefetching reduced
the number of client requests by 50%.1 The 50% re-
quest savings, in turn, is limited by the fact that pages
are prefetched only from the proxy.

Image objects were prefetched more often than HTML
objects (64-74% versus 13-18%), and the prediction ac-
curacy was higher for image objects (approximately 65%
for JPEG and 58% for GIF versus 35% for HTML and
“other” types). One possible explanation for this pattern
is that this work uses a Markov-model prediction algo-
rithm. Such algorithms view objects as independent, and
often simply re-discover which images are embedded in
an HTML page.

In the implementation, there is a proxy on the client
side and one on the modem side. As in our work, the path
of a request is browser to client-side proxy to modem-
side proxy to server. Also like our work, The client-side
proxy apparently piggybacks hit info on requests. After

1Latency savings are less than request savings because cached pages
— those that can be prefetched — tended to be smaller than pages that
had to be fetched from servers.

the modem-side proxy processes a request, it keeps the
connection open, generates a list of URLs to prefetch,
and “pushes” them into the client-side proxy’scache. The
proxy prefetches only items in its cache. The predictor
at the modem-side proxy remembers the client’s last few
requests but does not know the state of its cache, resulting
in possible duplication.

Cohen and Kaplan[6] investigate three other types of
prefetching: opening an HTTP connection to a server in
advance of its (possible) use (pre-connecting); resolving
a server’s name to an IP address in advance of opening
a connection to the server (pre-resolving); and sending a
dummy request (such as a HEAD) to the server in advance
of the first real request (pre-warming). Pre-connecting
is motivated by the substantial overhead of TCP con-
nection establishment. Pre-resolving is a subset of pre-
connecting: the only part of a GET request done in ad-
vance is to translate the server’s name into an IP address.
Pre-warming is a superset of pre-connecting: its purpose
is to force the server to perform one-time access control
checking in advance of demand requests. In a trace-driven
simulation, the three techniques reduced the number of
“session starting” HTTP interactions whose latency ex-
ceeded 4 seconds from 7% to 4.5%, 2%, and 1%, respec-
tively. This work represents a more conservative approach
to prefetching than our own: much less complex, more
likely to work without unintended consequences, and less
capable of reducing latency.

Cunha’s work [11] presents a very simple browser
prefetch mechanism plus two mathematical models taken
from prior work on other topics, that are used to indicate
whether the mechanism should be invoked. His disser-
tation [12] provides additional detail not supplied in the
paper, including recognition of the complications of file
size and the need to age the usage information.

The prefetch model is that only the client is active in
gathering usage information and making prefetch deci-
sions. Hence, a user prefetches only pages that he has ac-
cessed before. The earlier references resulted in Markov
chains with three types of links indicating whether objects
that were accessed within a time window are unrelated,
related by one being embedded in the other, or related
simply by being likely to be accessed at about the same
time.

The mathematical models – based on DRAM caches
and linear predictive coding for speech processing – at-
tempt to classify a user’s behavior as “surfing” or “conser-
vative.” Surfing behavior references many different URLs
whereas conservative behavior frequently re-references
the same URLs. Very high hit rates (e.g., over 80%) are
possible when the user’s behavior fits the model.

2.3 Bounds

One of the results of theCoolist papers [27, 28] is a
mathematical analysis of how accurate prefetch predic-
tions must be (or, alternatively, how lightly loaded the
network must be) in order for prefetches not to interfere
with demand fetches and therebyincreasethe average la-
tency of all fetches. The formula isR < E=(1 + E),
whereR is network utilization without prefetching andE
is the ratio of hit rate with prefetching to traffic increase
caused by prefetching. The papers also present a taxon-
omy of prefetching approaches that range from conserva-
tive to aggressive in their use of bandwidth, and “Coolist,”
a prefetcher that allows the user to choose the level of
aggressiveness for prefetching user-specified groups of
pages.

The surprising conclusion ofCrovella and Barford ’s
trace-driven simulations [9, 10] is that prefetching makes
traffic burstier and thereby worsens queueing. This is
surprising because, generally speaking, a side effect of
prefetching is to smooth short “spikes” of demand fetch-
ing into longer “trickles” of prefetching. The explanation
lies in the definition of prefetching: at the start of a session
all the files to be accessed in that session are prefetched
immediately, creating an initial burst of demand. Crovella
and Barford provide a solution, “rate-controlled prefetch-
ing,” that smoothes out traffic. Rate-controlled prefetch-
ing approximates realistic prefetching, where the looka-
head is limited. The analysis of rate-controlled prefetch-
ing also uses a better definition of prefetching – pages
are prefetched one at a time and not with perfect accu-
racy. Such rate-controlled prefetching significantly re-
duces queue length over a wide range of prefetch accu-
racies.

An important study byKroeger et al. [19] es-
tablishes bounds on the latency reduction achievable
throughcaching and prefetching,under idealized condi-
tions. Their most widely noted conclusion is that, even
employing an unlimited cache and a prefetch algorithm
that knows the future, at most 60% latency reduction can
be achieved.

However, this study assumes (1) that “query events
and events withcgi-bin in their URL cannot be ei-
ther prefetched or cached” and (2) prefetching will always
miss on the first access to a particular server. Neither is
true in our work. The first assumption does not apply to
our work because it is appropriate for a cache shared by
several users, but our algorithm prefetches into a user-
specific cache. Because many URLs represent queries
or dynamic content (16.3% as shown in Section 3.2), re-
moving this assumption in particular could yield an upper
bound significantly above 60%.

3 Preliminary Experiments

This section describes preliminary experiments that were
undertaken to reduce the number of unsupported assump-
tions and design decisions, and to test the extent to which
pessimistic conclusions of certain earlier studies [4, 19]
apply to this study.

Unfortunately, the data needed for the experiments de-
scribed in this section is not present in well known ex-
isting logs such those from DEC [8], Boston Univer-
sity, Berkeley [15], and AT&T. Accordingly, we had to
gather our own logs. A separate trace was gathered at
AT&T Labs over several months in 1999. A “snoop-
ing” proxy produced, for every GET request, the follow-
ing information: requesting client; URL; IMS request or
not;Referer field, if present; time request was received
by snooper; time first response byte was received; time
last response byte was received; status code; Content-
type field; lengths of header and content; time to expira-
tion, and how computed; the number of embedded URLs;
and whether the response would becached and, if not,
why not. In addition, all pages were permanently logged,
including in cases where an unaltered proxy would not
have cached it. It was necessary to log content because
some experiments described in this section need it. For
example, Experiment E determines, among other things,
whether the URL of a referenced page is embedded as
a hyperlink in any pageaccessed within the previous 30
seconds.

The trace consists of 92,518 references generated by
members of the author’s department (6 clients) over a
span of about 5 months. All clients were attached to
the same high speed LAN at 10Mb/sec. The LAN is at-
tached to the Internet via a partial DS3. Drawing traces
from a high speed environment is desirable because inter-
reference times are likely to reflect the user’s actual think
time rather than bandwidth limitations of the local envi-
ronment.

3.1 Cross-Server Links

Experiments A and B, respectively, address the assump-
tions in [19] that “prefetching can only begin after the
client’s first contact with that server” and that “query
events and events withcgi-bin in their URL cannot be ei-
ther prefetched or cached.” Neither prohibition applies to
this work. How significant are the effects of lifting these
prohibitions?

Experiment A. The experimental question is: in those
cases where one page refers to another, what fraction of
referenced links (and bytes) are from sites different from
the site of the referring page?

Analysis was done by parsing site information from the
URLs. Sites are deemed to be different if both their names

and IP addresses differ at the moment that the log analysis
program runs. In some cases, months elapsed between
the gathering of log data and the last run of the analysis
program. It is assumed that during that time very few host
pairs flip-flop between being same and different.

The results are that 28.9% of referenced hyperlinks,
representing 19.9% of bytes, are to URLs on other
servers. This seems high, and might reflect references
skewed to commercial sites packed with advertisements
on other sites.

3.2 Non-cacheable Links

Prefetch-ability in this work is not the same ascache-
ability in the literature. The reason is that the prefetcher
brings pages into aclient-specificcache. Because the
cache is not shared, it is possible to cache cookies, query
URLs and dynamic content. Studies of techniques for
shared caches exclude such pages, with considerable ef-
fect. For example, one study [14] found that, in one sam-
ple, 43.1% of documents were uncacheable, mostly be-
cause of cookies (30.2%), query URLs (9.9%), obvious
dynamic content (5.4%), and explicitcache-control pro-
hibitions (9.1%).2

Experiment B. The experimental question is: what
fraction of referenced links (and bytes) are query URLs
or “obvious” dynamic content?

The definition of “obvious dynamic content” is derived
from the one most often seen in the literature: a URL is
assumed to specify dynamic content if it containscgi .
This heuristic is outmoded, as there are ever more tools
for producing dynamic content, and these tools produce
URLs by a variety of conventions, not justcgi-bin .
The effect of using an old heuristic is that the proportion
of dynamic content is underestimated, meaning that we
err on the conservative side.

The results are that 16.3% of referenced hyperlinks,
representing 18.2% of bytes, are to query URLs or to
URLs containingcgi .

The results of experiments A and B are not meant to
challenge or invalidate conclusions such as those in [19],
because thebounds in that paper were developed under
conditions that are unrealistically favorable. These re-
sults are meant to show merely that the theoretical limit
to latency improvement via prefetching is probably higher
than 60%, for two reasons. First, [19] assumes a shared
cache and therefore does not prefetch certain pages that
can be prefetching into a private cache. Second, [19] ex-
cludes the possibility of prefetching from a “new” site.

2The individual numbers do not add to 43.1% because some docu-
ments are uncacheable for several reasons.

0

50

100

150

200

250

300

350

50ms 500ms 1sec 6sec 15sec 2min 7min 20min >2hrs

N
um

be
r

of
 A

cc
es

se
s

Time

Distribution of Time Between HTML Accesses

Figure 1: Time Between Referer and Referee (HTML)

3.3 Inter-reference Time

Prefetching is not a purely algorithmic problem. Even
given an oracle that could predict future accesses per-
fectly, prefetching results might be imperfect if a page
were demanded during the time between the prediction of
its need and its arrival. In such a case prefetching might
still lower the observed latency, but conventionally such
partial success is counted as a prefetching failure.

Experiment C1 determines the distribution of the time
interval between referring and referred-to pages. Since
Web data expires after a while, another timing issue is the
distribution of expiration intervals. Because prefetched
data can expire before it is demanded, prefetching too far
in advance is also a problem. Experiment C2 determines
the distribution of expiration times.

Experiment C1. The experimental question is: in
those cases where one page refers to another, what is the
distribution of the time between (1) the end of the trans-
fer of the referer and (2) the beginning of the transfer of
the referee? This is the amount of time available to the
prefetcher.

The results are broken down into two categories:
HTML referencing HTML (Figure 1), and HTML con-
tent referencing image content (Figure 1). The break-
down is intended to capture the difference between ref-
erences to embedded hyperlinks and images, respectively.
As shown, the browser-generated references to embedded
images happen much more quickly than user-generated
references to hyperlinks. The median inter-reference time
between two HTML pages is 52 seconds, while inter-
reference time between an HTML page and an image page
is 2.25 seconds. However, a significant fraction of im-
ages (32.3%) are requested within one second or less of
the referencing HTML page. This suggests that when an
HTML page is prefetched, its embedded images should
be prefetched too. Doing so substantially increases the

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

50ms 500ms 1sec 6sec 15sec 2min 7min 20min >2hrs

N
um

be
r

of
 A

cc
es

se
s

Time

Distribution of Time Between HTML and Image Accesses

Figure 2: Time Between Referer and Referee (Image)

0

100

200

300

400

500

600

700

800

800 4K 8K 9.6K 14.4K 33.6K 56K ISDN DSL Ether above

N
um

be
r

of
 A

cc
es

se
s

Bandwidth (bits/sec)

Distribution of Estimated Bandwidth Required for Prefetch

19.6%

27.1%

13.4%

 3.0%

 8.3%

14.9%

 6.3%
 5.1%

 2.3%

 0 0

Figure 3: Bandwidth Required for Prefetching One Page

penalty for being wrong.
Figure 3 is the distribution of “total page size” divided

by inter-reference time. That is, references in the log were
analyzed to determine the size of an HTML page plus
all its embedded images, whether or not they were ac-
tually referenced – an overestimate of what is needed to
completely prefetch a page. Then this number was di-
vided by the time between when that page’s referrer was
loaded and when the page was requested. This quotient
is the maximum amount of data a prefetcher would have
to deliver divided by the amount of time available to it:
the bandwidth needed to prefetch one page. The median
bandwidth is around 5KB/sec, safely within the capacity
of even a dialup modem, suggesting that several pages
could be prefetched while remaining within bandwidth
constraints.

Experiment C2. The experimental question is: what
is the distribution of expiration times, and how are the
times computed? Prefetching can be harmful if prefetched
content expires before it is demanded.

As Figure 4 shows, the most common expiration time

0

5000

10000

15000

20000

25000

30000

default 0 1-sec 30-sec 1-min 5-min 10-min 1-hr 1-day >1-day

N
um

be
r

of
 A

cc
es

se
s

Expiration Time

Distribution of Expiration Times

50.9%

 9.1%

 0.1% 0.8% 0.1% 0.3% 0.1%
 2.1%

10.2%

26.4%

Figure 4: Time Until Expiration

is zero (60.0%). Typically (50.9%), zero is determined
by default because the server has provided no information
(Expires orLast-modified headers) upon which to
base an estimate. The rest of the time (9.1%), the server
has provided identicalExpires andDate headers.

Strictly speaking, a zero expiration time should doom
prefetching because prefetched content will be expired
once it is demanded from the cache. However, since the
meaning of a zero expiration time is “use only once,” in
our implementation we take the following steps. First, as
explained in Section 4.1, a special header (Prefetch:
Prefetch) is present in prefetched pages. The cache
freshness-check code has been altered to ignore an ex-
plicit zero expiration (i.e., Expires = Date) when such a
page has the prefetch header. When a such a page is
eventually read, the cached page is re-written with the
current time in the expires field and thePrefetch:
Prefetch header overwritten.

The median non-zero expiration time (more than one
day) far exceeds the average inter-reference time (52 sec-
onds), indicating that too-early prefetching is not a prac-
tical concern. The median expiration time is so large
because in many cases expiration is based onlyupon
Last-modified headers, and many pages have not
been modified in months.

3.4 The Naive Approach

The naive approach to prefetching based on embedded
links [5, 26, 24] is to prefetch all embedded links or some
number of them, without regard to the likelihood of use.
Experiment D determines that some pages can have a
very large number of embedded links, representing many
bytes.

Experiment D. The experimental question is: what
is the distribution of the number of links per page, how
many bytes do these links represent, and what fraction of

links/bytes are actually accessed?
As the snooper recorded the content ofeach page, it

also parsed the pages and loggedeach embedded URL
and its reference type (HREF, IMG SRC, etc.). The log
analyzer determined which of these URLs were later ac-
cessed from that page. It also determined the size of
each embedded HREF URL and its embedded images by
calling a utility similar to the popularwebget . There-
fore, the sizes were determined, in some cases, weeks or
months after the fact. It is assumed that size changes oc-
curring the interim are negligible, or at least not substan-
tially skewed in one direction or another.

The average number of links per page is 22.6. The av-
erage size of these links is 7760 bytes. The fraction of
links and bytes accessed is very low (5.4% and 3.8%, re-
spectively), again perhaps because of commercial portal
sites that are packed with links. These results reinforce
the importance of accurate prefetch predictions.

3.5 Markov Prediction Algorithms

Some prior work (e.g., [2, 13, 25]) has used Markov mod-
eling to make reference predictions. A Markov prediction
algorithm makes no use of structure information such as
theReferer field, but instead regards earlier references
as an unstructured string drawn from the “alphabet” of
page IDs and attempts to discover patterns in the string.
Recurrence of the initial part of a detected pattern triggers
prefetching of the remainder of the pattern string. Markov
algorithms seek patterns within a “window” of prior ref-
erences, where the window typically is measured by time
or number of references.

The two advantages of the Markov approach are that it
does not depend upon theReferer field (which may not
always be present) and that it can discover non-intuitive
patterns. However, there are significant disadvantages
to Markov algorithms. One is that such algorithms of-
ten have a high cost, measured in storage and compute
time. The reason is that a Markov algorithm typically
represents pages as graph nodes andaccesses as weighted
graph edges. With no structure to guide the search for pat-
terns, predictive ability is improved by enlarging the win-
dow: retaining as many nodes as possible and searching
as many paths as possible. Second, naive implementations
of Markov algorithms have trouble aging their data. We
hypothesize that Markov algorithms suffer a third draw-
back of being too general – they discover patterns that,
to a large degree, are already obvious in the HTML of re-
cently accessed pages and might be more simply extracted
therefrom.

Experiment E compares the fraction of Markov “depen-
dencies” among pages (that is, patterns where an access
to page X tends to be closely followed by an access to
page Y) that are also embedded links within recently ref-

Time (sec) 10 30 60 120
Embedded 70.0% 74.6% 76.0% 77.2%

References 1 3 5 10
Embedded 39.6% 66.3% 73.2% 78.3%

Figure 5: Percent of Markov Dependencies Also Present
as Embedded Links Within Recently Accessed HTML
Pages

erenced HTML pages.

Experiment E. The experimental question is: what
fraction of “dependent” pages/bytes might also be eas-
ily detectable as embedded links? Two definitions of de-
pendency are taken from much-cited works, [2] and [25].
Two references represent a dependency if they are made
by the same client within a certain time or a certain num-
ber of prior references, respectively. As explained below,
only a certain class of dependencies is considered. The
results are shown in Figure 5.

The experiment computed, for every URL accessed,
whether that URL was present as an embedded link within
an HTML page that was previously referenced either
within a certain time interval (10, 30, 60, and 120 sec-
onds), or within a certain number of prior HTML pages
(1, 3, 5, and 10). For each case, the table reports the frac-
tion of URLs that were present as embedded links in those
earlier HTML pages.

The interpretation of these results is not straightfor-
ward. First, there is no single “Markov algorithm” to
compare to. For example, a Markov algorithm will de-
clare two references to be dependent if they occur consec-
utively with more than a certain probability. Varying the
threshold probability yields different algorithms. Second,
Markov-based algorithms can find dependencies between
any two pages, not just between an HTML page and an-
other page. Therefore, Experiment E sheds some light
on Markov algorithms versus our approach of examining
links embedded in HTML, but it is not a definitive evalu-
ation.

Experiment E considers only dependenciesX ! Y ,
whereX is an HTML page. In this subset of dependen-
cies that a Markov algorithm might find, the results indi-
cate that the (presumably) simpler method of inspecting
HTML can locate a high percentage of dependencies. For
instance, 39.6% of such dependencies can be discovered
by inspecting only the single prior HTML page; 70.0%
can be discovered by inspecting the HTML pages that
were referenced in the preceding 10 seconds. These re-
sults are conservative, since it is not certain that any par-
ticular Markov algorithmwould succeed in locating100%
of the dependencies.

4 Design

This section adds to Section 1 by explaining two topics in
greater depth: the protocol used to exchange usage reports
and usage profiles and the prefetching algorithm used by
the client.

4.1 Information Exchange Protocol

One new HTTP header is defined,Prefetch . There
are five Prefetch directives:Negotiate , Report ,
Profile , Prefetch , andHalt . Some directives take
arguments. In particular, usage reports are provided as ar-
guments to theReport directive and usage profiles are
provided as arguments to theProfile directive.

Both client and server can limit the amount and de-
fine the format of prefetching information they exchange,
and specify when such exchanges may take place. When
initiated by a client,Prefetch: Negotiate should
be sent along with a message to which a response is ex-
pected, such as the first GET.Prefetch: Report
may be sent by the client along with any message after ne-
gotiation has finished.Prefetch: Profile is sent
by the server only on GET responses, since the profile
pertains to only those URLs whose body is included in
the message.

TheNegotiate directive can be specialized through
a number of arguments that specify whether usage reports
will be sent occasionally, periodically, after a certain num-
ber of page accesses, or once the usage report reaches a
certain size.

The most common use ofNegotiate , Report ,
Profile , andPrefetch directives is as follows:

client server
------ ------

------------------>
negotiate

<------------------
negotiate

...
------------------>

report
...

<------------------
profile

...
------------------>

prefetch
<------------------

prefetch

Three other arguments toNegotiate specify the de-
sired format of future usage profile directives. One ar-
gument indicates how to age the data. For example,

last=10,20,50 means that the server’s usage profile
should, if possible, summarize which embedded refer-
ences have been used in the last 10, 20, and 50 references
to the page. The server is bound only to make a best ef-
fort to retain enough data to deliver usage profiles in the
format it has negotiated. The other two arguments specify
limits on the size of the usage profile: absolute byte count
and relative to the attached GET response.

4.1.1 Record Format

A usage report includes the referring and referred-to
URLs, when the request took place, how long it took to
satisfy, and the size of the result. Only successful refer-
ences to HREFs are reported.

Usage profiles comprise two sorts of records. One is
Last N whereN is an integer. The other sort of record
is similar to a usage report prefaced by an integer,M .
The two types of records are intermixed, with oneLast
N record followed by some number of “M... ” records.
This pattern repeats. The meaning of such a sequence of
records is that the lastN times this page was referenced,
it happenedMi times thatURLi was referenced by that
page. The sum ofMi need not equalN .

Auxiliary information, such as the elapsed time be-
tween references to P and some embedded HREF Q, ap-
pear in the summary as medians plus standard deviations.

4.2 Prefetching Algorithm

The client-side prefetch algorithm that has been used for
the measurements in this paper is the following. Dur-
ing negotiation with a server, the client asks for the us-
age profile to summarize the last 10 and 50 references.
The client continually measures the speed of its HTTP
GET transfers, and maintains a running average; the speed
varies depending on many factors so the data is inac-
curate, but inaccurate data is regarded as better than no
data. Whenever a page is demand-fetched, its embedded
HREFs are noted during the parsing necessary to display
it. These HREFs are put on a list and the list is passed
to the prefetcher along with the usage profile that came
in the HTTP header. After page display is complete, the
prefetch algorithm runs, comparing the embedded hyper-
links with the usage profile. The comparison ensures that
a recently deletedhyperlink mentioned in the usage pro-
file will not be prefetched. The usage profile indicates the
size of embedded HREFs (including the size of embed-
ded images), and the prefetcher ensures that it never has
GET requests outstanding for more than a certain frac-
tion of the measured average bandwidth available to it:
50%, to be safe considering the inaccuracy of the band-
width measure. Until the bandwidth limit is reached, the
client prefetches URLs that have been accessed among

the last 10 references, in descending order of popular-
ity, down to a limit of 25%. That is, if the chances of
a page being accessed are less than one quarter, that page
is not prefetched. A prefetch request is not complete until
the HTML page and all its embedded images have been
loaded. A demand fetch aborts all prefetching efforts.
As prefetch requests complete, more are issued from the
“last-10” list and then from the “last-50” list, again in de-
scending order of popularity down to the limit.

5 Implementation

There are two implementations of this approach to
prefetching. In both, the server side is implemented by
a proxy. The proxy emulates all the Web servers in the
world, keeping track of usage reports and forming usage
profiles for all URLs of all Web servers. This was done for
testing and debugging purposes so that every Web server
could seem to be one that supports prefetching. In prac-
tice, a server-side proxy might serve only a single server.
The server-side proxy is an altered version of the W3C’s
httpd , version 3.0A.

The two implementations are distinguished by the
client side. One implementation is an altered version of
the September 4 1998 version of Mozilla which runs as
multi-threaded software on UNIX. The other implemen-
tation is a proxy, once again an altered version ofhttpd
3.0A.

An important optimization is presently missing from
the implementations: there is no need for a client to send
a usage report to a server if both referer and referee URLs
are on that server. The server (or its proxy) can determine
the same information itself provided that the client sends
theReferer field.

5.1 Evaluation

We have characterized prefetching performance through
five measures: prefetch accuracy, client latency, network
overhead, program space overhead, and program time
overhead. All numbers are taken from the Mozilla im-
plementation.

Mozilla has been altered to read the trace log and replay
the HTML accesses with timing that is faithful (insofar
as possible) to that in the log. The pages are displayed
completely, just as if the user had typed in the same ref-
erences with the timing evident in the log. The latency
and prefetch accuracy numbers were gathered using this
mechanism. Latency reduction is calculated by compar-
ing the time between (1) Mozilla’s initiation of an HTML
page GET, and (2) Mozilla’s receipt of the end of the last
embedded image for that page. This time is compared to
the similar time taken from the trace log. The two times

are not exactly comparable because the trace log records
the time for a client-side snooping proxy to communicate
with a remote web server, whereas Mozilla is recording
the time for it to communicate with a server-side proxy
which then communicates with the remote web server.
However, since this approach places the prefetching im-
plementation at a disadvantage – three parties communi-
cate in series instead of two – we ignore the difference.
Mozilla’s diskcache size was kept at the default 5MB.

Prefetch Accuracy. The observed prefetch accuracy
is high: while less than a majority of prefetched HTML
pages (42.6%) are eventually accessed, a much higher
fraction of all pages (62.5%) are eventually used. The rea-
son is that many links from a common page share embed-
ded images. So if pageX has embedded linksY andZ,
and ifY is wrongly prefetched instead ofZ, considerable
savings may still result ifY andZ share many embedded
images. The overall increase in network traffic is consid-
erably smaller (24.0%) than the overall prefetch miss rate
of 37.5% because of demand fetches.

The restraint exercised by the prefetch algorithm – not
prefetching links that have less than 25% chance of being
accessed – governs the tradeoff between lowering latency
and wasting bandwidth. Twenty-five percent was found
to be the optimum point (from among every five percent)
for balancing bandwidth waste against latency reduction.

Latency. Prefetching decreases average total latency
to display an HTML page and all its embedded images
by more than half (52.3%). This number probably lies
between the prefetched-HTML hit rate (42.6%) and the
overall prefetched hit rate (62.5%) because, on average,
image pages are smaller than HTML pages.

Network Overhead. Usage reports and usage profiles
can be lengthy. The average usage report is 66 bytes,
while the average usage profile is 197 bytes. Most space
is taken up by URLs, especially query URLs. It might
be practical to abbreviate URLs in the usage profile, since
the same URLs are embedded in the accompanying page
content. However, no such method has been investigated.

Space Overhead.Some extra fields have been added
to Mozilla’s data structure that describes a page; however,
this structure is very large and the added space is negligi-
ble. On the server side, the proxy’s data structures grow in
proportion to the number of pages distinct pages served.

Time Overhead. The effect of prefetch code on
Mozilla’s critical path is negligible, mostly because
Mozilla executes a great deal of code for every GET op-
eration. Time added at the server proxy is also negligi-
ble. The data structures for maintaining usage profiles are
kept in memory, requiring added space but no extra disk
accesses until they grow very large.

5.2 Implementation Effort

Mozilla was the largest and most difficult implementation,
with a total of 3581 lines of code added or changed:

� Hooks into the parser to discover URLs: 47

� Response timing: 113

� Accumulating usage reports, tracking the state of ne-
gotiations with all servers: 786

� Prefetch algorithm: 1312

� Connection management: 751

� Cache management to address the Expires=0 prob-
lem: 450

� Short circuit of front-end display code so that pages
are fetched but not displayed: 122

Three variations of the W3Chttpd have been pro-
duced: a client-side prefetching proxy, a snooping proxy,
and a server-side proxy that maintains usage statistics for
all servers. The client-side proxy is the most complicated,
though some code is shared with Mozilla; compared to
Mozilla there are no front-end complications, and con-
nection management is much easier. The snooping and
server-side proxies are simple.

5.3 Privacy Implications

In order to operate transparently, the prefetching mecha-
nism must examine HTML andReferer headers. This
raises several privacy issues. The first is that the HTML
must be available. End-to-end protocols or tunnels that
might encrypt, compress, difference, or otherwise obscure
HTML content could make the proxy implementation im-
possible. Second, some privacy advocates are concerned
about theReferer field and want, at minimum, to be
able to configure browsers not to send it. This goal is in
conflict with our prefetching mechanism: suppressing the
Referer field makes a proxy implementation impossi-
ble, while having a browser implementation send usage
reports defeatsReferer suppression. Indeed, a third
privacy issue is that usage reports contain strictly more in-
formation than theReferer field. A fourth issue is that
some users might feel uneasy knowing that the prefetcher
examines their pages and browsing patterns. In this re-
gard, the prefetcher does not pose a threat that is not al-
ready present from proxies, firewalls, and servers; never-
theless, knowing that the prefetcher systematically parses
their pages might make some users uncomfortable. Fi-
nally, perhaps the largest privacy issue is that prefetching
depends upon server administrators agreeing to release
statistics about how their pages are being used. In many

cases such information has commercial value, meaning
that web site operators might refuse to release it or de-
mand payment for it.

6 Conclusion

We have shown that accurate Web prefetching is possi-
ble based on following HREFs in recently fetched pages.
Letting the client control prefetching and aging of usage
statistics has many advantages and may be the only practi-
cal approach in a world where proxies are commonplace.
However, placing control at the client is also problematic
because many pages contain large numbers ofhyperlinks,
and simply prefetching them all is worse than nothing.
Also the client cannot be expected to have a good under-
standing of HREF reference patterns unless the page is
one read frequently and/or the page rarely changes.

Our approach to this problem is to have clients pass
record of their references up to the relevant server, which
then distributes them to all clients. It is hypothesized that
HREFs within a page are strongly skewed to “hot” and
“cold,” so that one client can learn from the usage patterns
of others. The results in Section 5.1 bear this out.

The information exchange between clients and servers
complicates deployment; however, there are other exam-
ples of recent work that depend on a similar flow of in-
formation [23, 7], suggesting that the idea may be useful
more generally.

References

[1] V. Almeida et al. Characterizing Ref-
erence Locality in the WWW. In Proc.
IEEE Conf. on Parallel and Distributed In-
formation Systems. IEEE, December1996.
http://www.cs.bu.edu/˜best/res/
papers/pdis96.ps

[2] A. Bestavros. Using Speculation to Reduce
Server Load and Service Time on the WWW.
In Proc. 4th ACM Intl. Conf. on Information
and Knowledge Mgmt.. ACM, November 1995.
http://www.cs.bu.edu/˜best/res/
papers/cikm95.ps

[3] A. Bestavros and C. Cunha. Server-Initiated Doc-
ument Dissemination for the WWW.IEEE Data
Engineering Bull., 19(3):3–11, September 1996.
http://www.cs.bu.edu/˜best/res/
papers/debull96.ps

[4] R. Caceres, et al. Web Proxy Caching: The Devil
is in the Details.ACM SIGMETRICS Performance
Evaluation Rev., 26(3):11–15, December 1998.

http://www.research.att.com/˜ramon/
papers/wisp98.ps.gz

[5] K. Chinen and S. Yamaguchi. An Interac-
tive Prefetching Proxy Server for Improvement of
WWW Latency. In Proc. INET 97, June 1997.
http://www.isoc.org/inet97/
proceedings/A1/A1 3.HTM

[6] E. Cohen and H. Kaplan. Reducing User-
Perceived Latency by Prefetching Connections and
Pre-warming ServersUnpublished AT&T technical
report, February 1999.

[7] E. Cohen, B. Krishnamurthy, and J. Rex-
ford. Improving End-to-End Performance
of the Web Using Server Volumes and
Proxy Filters. In Proc. ACM SIGCOMM
98, pages 241–253. ACM, September 1998.
http://www.research.att.com/˜edith/
Papers/sigcomm98.ps.Z

[8] Traces of Corporate Web Proxies. Compaq Corp.
ftp://ftp.digital.com/pub/
DEC/traces/proxy/webtraces.html

[9] M. Crovella and P. Barford. The Network Effects
of Prefetching. InProc. Infocom 98. IEEE, April
1998.http://cs-www.bu.edu/faculty/
crovella/paper-archive/infocom98.ps

[10] M. Crovella and P. Barford. The Network
Effects of Prefetching. Technical Report TR-
97-002, Boston University, February 1997.
http://cs-www.bu.edu/techreports/
97-002-prefetcheff.ps.Z

[11] C.R. Cunha and C.F.B. Jaccoud. Deter-
mining WWW User’s Next Access and
Its Application to Pre-fetching. In Proc.
Second IEEE Intl. Symp. on Computers
and Communication ’97. IEEE, July 1997.
http://cs-www.bu.edu/techreports/
97-004-userbehaviorprediction.ps.Z

[12] C.R. Cunha. Trace Analysis and Its Ap-
plications to Performance Enhancements of
Distributed Information Systems. PhD The-
sis TR-97-004, Boston University, 1997.
http://www.cs.bu.edu/students/
alumni/carro/thesis.ps.Z

[13] L. Fan et al. Web Prefetching Between Low-
Bandwidth Clients and Proxies: Potential
and Performance. InProc. ACM SIGMET-
RICS Conf., pages 178-187. ACM, May 1999.
http://www.cs.wisc.edu/˜cao/papers/
prepush.ps.gz

[14] A. Feldmann et al. Performance of Web Proxy
Caching in Heterogeneous Bandwidth Environ-
ments. InProc. Infocom 99. IEEE, March1999.
http://www.research.att.com/˜ramon/
papers/infocom99.proxy.ps.gz

[15] Traces of Dialup Users. S. Gribble.
http://ita.ee.lbl.gov/html
/contrib/UCB.home-IP-HTTP.html

[16] Z. Jiang and L. Kleinrock. Prefetching Links
on the WWW. In ICC 97. June 1997.
http://millennium.cs.ucla.edu/
˜jiang/Research/Publication/
prefetch.ps

[17] Z. Jiang and L. Kleinrock. An Adaptive Net-
work Prefetch Scheme.IEEE Journ. Selected Ar-
eas of Communication, 17(4):358–368, April 1998.
http://millennium.cs.ucla.edu/
˜jiang/Research/Publication/
extended.ps

[18] M.F. Kaashoek, T. Pinckney, and J.A. Tauber. Dy-
namic Documents: Mobile Wireless Access to the
WWW. In Wkshp. on Mobile Computing Systems
and Applications, pages 179–184. IEEE, December
1994.

[19] T.M. Kroeger, D.D.E. Long, and J.C. Mogul.
Exploring the Bounds of Web Latency Reduc-
tion from Caching and Prefetching. InProc.
USENIX Symp. on Internet Technologies and
Systems, pages 13–22. USENIX, December1997.
http://www.usenix.org/publications/
library/proceedings/usits97/
kroeger.html

[20] T.S. Loon and V. Bharghavan. Alleviat-
ing the Latency and Bandwidth Problems
in WWW Browsing. In Proc. USENIX
Symp. on Internet Technologies and Systems,
pages 219–230. USENIX, December 1997.
http://www.usenix.org/publications/
library/proceedings/usits97/
tong.html

[21] E.P. Markatos and C.E. Chronaki. A
Top-10 Approach to Prefetching on the
Web. In Proc. INET 98. July 1998.
http://www.ics.forth.gr/proj/
arch-vlsi/html papers/
INET98 prefetch/paper.html

[22] J. Mogul et al. Potential Benefits of
Delta Encoding and Data Compression for
HTTP. In Proc. ACM SIGCOMM 97,

pages 181–194. ACM, September 1997.
ftp://ftp.digital.com/%7emogul/
sigcomm97.ps.gz

[23] J. Mogul and P. Leach. Simple Hit-Metering
and Usage-Limiting for HTTP. IETF Net-
work Working Group RFC 2227, October 1997.
http://www.ietf.org/rfc/rfc2227.txt

[24] NetAccelerator 2.0 software.
http://www.imsisoft.com/
netaccelerator/netacc2.html

[25] V. Padmanabhan and J. Mogul. Using Predictive
Prefetching to Improve World Wide Web Latency.
Computer Communication Rev., 26(3):22–36, July
1996.http://www.cs.berkeley.edu/
˜padmanab/papers/ccr-july96.ps

[26] PeakJet2000 software.
http://www.peak.com/
peakjet2long.html

[27] Z. Wang and J. Crowcroft. Prefetching in World
Wide Web. InProc. Globecom 96. IEEE, December
1996.http://www.bell-labs.com/user/
zhwang/papers/prefetch.ps.Z

[28] Z. Wang and J. Crowcroft. Prefetching in
World Wide Web. In Proc. Global Inter-
net, pages 28–32. IEEE, November 1996.
http://www.cs.columbia.edu/˜hgs/
InternetTC/GlobalInternet96/
Wang9611 Prefetching.ps.gz

