Proceedings of USITS' 99: Th& 2ISENIX Symposium on Internet Technologies & Systems

Boulder, Colorado, USA, October 11-14, 1999

PREFETCHING HYPERLINKS

Dan Duchamp

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WhttZ// www. usenix.org

Rights to individual papers remain with the author or the author's employer.
Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Prefetching Hyperlinks
Dan Duchamp

AT&T Labs — Research

Abstract 1. We have implemented our ideas, twice in fact.

This paper develops a new method for prefetching wel?- Clients send reference information to servers, which
pages into the client cache. Clients send reference in- then disperse aggregated information to other clients
formation to Web servers, which aggregate the reference in near-real-time. The reference information indi-
information in near-real-time and then disperse the ag- cates how often hyperlink URLs embedded in pages
gregated information to all clients, piggybacked on GET ~have been previously accessed relative to the embed-
responses. The information indicates how often hyper- ding page.

link URLs embedded in pages have been previously ac;
cessed relative to the embedding page. Based on knowl-
edge about which hyperlinks are generally popular, clients
initiate prefetching of the hyperlinks and their embedded
images according to any algorithm they prefer. Both client
and server may cap the prefetching mechanism's spacg¢ Clients initiate prefetchingiccording to any algo-
overhead and waste of network resources due to specula- rithm they prefer; they also control how to age refer-
tion. The result of these differences is improved prefetch- ence information.

ing: lower client latency (by 52.3%) and less wasted net-

Servers aggregate the reference information in near-
real-time rather than, say, overnight, allowing for
prefetching decisions based on up-to-date usage pat-
terns.

work bandwidth (24.0%). 5. Prefetching is not limited to URLs on the same
server, or to URLs previously accessed by the same
client.

1 Introduction
6. Many un-cacheable pages may be prefetched, in-

The idea of prefetching Web pages has surely occurred ¢luding pages generated dynamically, by query
to many people as they used their browsers. It often takes URLS, or those having cookies.

“too long” to load and display a requested page, and there7
after several seconds often elapse before the user's next
request. It is natural to wonder if the substantial time be-
tween two consecutive requests could be used to anticB. In one implementation, proxies are used to avoid
pate and prefetch the second request. changing either the browser or Web server.

The related work section of this paper cites 14 dis-]
tinct prior studies of prefetching for the Web. In each9- HTTP is extended.
of these studies, anyransparentprefetching algorithm 14 1he prefetching algorithm continually measures
(meaning that the user is uninvolved) is aiseculative bandwidth available to the client and limits prefetch-
Speculative means that some system component makes j,q requests to a fraction of the available bandwidth.
a guess about a user’s future page references based on
some knowledge of past references, gathered from tNaist of these characteristics are not shared by most prior
user alone or from many users. studies.

This paper examines a new method for prefetching WebThe result of these differences is improved prefetch-
pages into the client cache that is also transparent amgl lower client latency (52.3% reduction) and much less
speculative. While the basic approach to prefetchingvimste (62.5% of prefetched pages are eventually used).
the same in all studies, major differences among prefetchSection 1.1 gives a brief sketch of how prefetching
ing methods lie in the details. The major characteristiegrks. Section 2 summarizes prior work in the area. Sec-
that distinguish this study from prior ones are: tion 3 describes some conclusions, drawn from reference

Both client and server can cap the prefetching mech-
anism’s overhead and waste.

traces, thatgpport certain design decisions, and Sectionrd1 Software Systems
describes the design as well as two implementations. Sec-

tion 5.1 analyzes the costs and benefits of this approacPfBieY is similar to our work in that prefetching is de-
prefetching. cided by the client based on usage statistics about em-

bedded HREFs. The client also continually monitors its
available bandwidth. One major difference is that im-
] ages embedded within prefetched pages are not them-
1.1 Summary of Prefetching Method selves prefetched. The Smiley implementation is only a
demonstration, and results [16, 17] are obtained by a sim-
Upon their first contact in “a while,” a client and serveyjjation study of accesses to two frequently accessed pages
negotiate the terms of prefetching: whether it will happeg; UCLA.
and when gnd how much information they will exchange Major differences in the gathering and use of usage
to support it. statistics between Smiley and our work are that there is
Once terms have been negotiated, clients smade re- no method for clients to inform servers of their usage pat-
portsto servers promptly but as part of the critical path aérns, and that usage statistics are gathered not in real time
a GET request. Usage reports describe the fact that onbwtrover many days and then they are not aged.
more URLs embedded within a page was recently refer-Although Smiley does not include a method for clients
enced from that page. For example, if a client referenaesinform servers of their usage patterns, client-side and
page P and then references page Q based on an HEE&fver-side observations of usage patterns are merged in
embedded in P, then the usage report will indicate that simulation. Jiang and Kleinrock conclude that us-
P referenced Q; the usage report will also include othay server-side statistics in combination with those of the
information useful for prefetching, such as the size of €ient yields a higher hit rate than using client-side statis-
and all its embedded images, and how much time elapsied alone. A basic hypothesis of our work is that an in-
between the reference to P and the reference to Q. dividual client can prefetch accurately basgubn usage
The server makes a best effort to accumulate the fiatistics gathered from a large population. The Smiley
formation from all usage reports that pertain to the sarfgsults suggest that our hypothesis is sound.
page, P; the usage reports are kept ordered by timeWcol [5] is a research prototype available on the Web.
Whenever the server delivers P to a prefetch-enablégrefetches embedded hyperlinks top-to-bottom with-
client, it attaches a summary (calleclisage profilg of out regard to likelihood of use. Embedded images of
the information that it has obtained from earlier usagefetched pages are also prefetched. Bandwidth waste
reports for that page, from all clients. The summargan be capped by configuring Wcol to prefetch no more
whose format was negotiated earlier, indicates how oftdran a certain number of hyperlinks, and no more than
HREFs embedded in page P have been referenced, aetertain number of images embedded within prefetched
ative to the number of references to P in the same tifgperlinks.
period(s). Time is measured by references; thus, for exPeakJet2000[26] is the second major version of a
ample, a client can negotiate to receive usage profiles tbamnmercial product. PeakJet runs on the client ma-
describe the references of embedded HREFs relativechine. It maintains a separate cache and provides a set
the last 10, 25, and 50 references of the page P. of tools for speeding Web access, some of which re-

A client that receives a usage profile along with pagglire user action. True prefetching exists in two modes,
P may choose whether or not to prefetch any HREFs efiistory-based” and “link-based.” The user picks the
bedded in P, according to any algorithm it prefers. THaode. History-based prefetching prefetches an embedded
decisions whether and how to prefetch rest with the clidiitk only if that client has used it before (i.e., it performs
because the client best knows its own usage patterns,8idMS GET of a cached page). Link-based prefetching

state of its cache, and the effective bandwidth of its lifefetches all embedded HREFs.
to the Internet. NetAccelerator 2.0[24] is a similar commercial prod-

uct for Windows clients. Unlike PeakJet, it prefetches into

the browser’s disk cache. Its prefetching algorithm is the

same as PeakJet’s link-based prefetching: all hyperlinks
2 Related Work and their embedded images are prefetched.

Here we survey 14 prior separate efforts relevant $0o Algorithms and Simulations
prefetching in the Web, divided into three categories: soft-

ware systems; papers describing algorithms, simulatiombe method proposed Bestavrosin [2] is that “a server
and/or prototypes; and papers that establish bounds. responds to a clients’ [sic] request by sending, in addition

to the data (documents) requested, a number of other dactraffic, the latency is lower than it would be without
uments that it speculates will be requested by that cligaefetching but with 20% extra bandwidth. A third result
in the near future.” is that prefetching increases access time vdiigbbut

A Markov algorithm is used to determine related “doorery little.
uments.” The server examines the reference pattern ofhe basic idea ofop10[21] is for servers (and prox-
each client separately. Two documents are consideredies) to publish their most-accessed pages (“Top 10%).
lated if the client has accessed them in the past withitbawnstream components (clients and proxies) prefetch
certain time interval. When a document is fetched, tiseme fraction of the list. The approach is parameterized
server also pushes to the client any other document ttvad ways. One parameter indicates how many times a
is transitively related to it and whose likelihood of use idient must have contacted a server before it will prefetch
greater than a threshold value. at all. The other parameter indicates the maximum num-

Usage statistics are gathered over 60 days, upddeed of pages it will prefetch from a server. Results are by
daily. Documents are considered related if requests frérace-driven simulation with traces from 5 sites. As more
same client come within 5 secondsesfch other. Among pages are prefetched, the percent of prefetched pages that
the results of this study are (1) that more recent usa@j€ eventually used rises quickly and levels off at between
statistics yield better results, as does more frequent upd and 23%, depending on the trace. Thiggests that
ing of the “related” relation; (2) and “speculation is moghe size of “TopN” should be small.
effective when done conservatively.” That is, wighch ~ Fan et al. [13] evaluates several techniques for reduc-
incremental decrease in client latency, the extra barilg client requests and observed latency. The evaluation is
width consumed and extra load imposed upon the serbased mostly on trace-driven simulations of dialup users
becomes greater. [15]. The authors have also implemented their prefetching

The main point of thé®ynamic Documentsprototype ideas using CERMttpd . Pages are prefetched into a
[18] was to investigate how implementing documents &inulated browser cache only from a shared proxy cache,
programs rather than static files might provide a means@ver from servers, so no extra wide-area traffic is gener-
help mobile clients adjust to enormous variations in bar@ted. Consequently, prefetching is limited by the degree
width. Prefetching was added more as demonstrationt@fwhich one client is expected to use a page that it or
a possibility rather than as a serious proposal. Pages@me other client sharing the same proxy has used in the
the history list are prefetched, with the result that bangast, and which is still in the proxy&ache.
width use is increased approximately 50% but only 2% of Simulation results indicate that (perfect) prefetching
prefetched pages are used. and delta-compression [22] reduce latency considerably

In the work of Padmanabhan and Mogul [25], a more than either HTML compression or merely increas-
server maintains per-client usage statistics and determitiés the size of the browser’s cache. Using all three
related-ness through a graph-based Markov model simfigghniques with a finite browser cache resulted in only
to that of Bestavros. The graph contains a node for “eve#9-3% latency reduction. However, prefetching reduced
file that has ever been accessed” andgdated off-line, the number of client requests by 50%The 50% re-
nightly for example. Related-ness is determined by edd#est savings, in turn, is limited by the fact that pages
through the nodes weighted by the probability that o€ prefetched only from the proxy.
will be accessed soon after the other. Whereas Bestavroknage objects were prefetched more often than HTML
defines “soon” by an amount of time, Padmanabhan apljects (64-74% versus 13-18%), and the prediction ac-
Mogul define it by a number adccesses from the clientcuracy was higher for image objects (approximately 65%
that occur in between. for JPEG and 58% for GIF versus 35% for HTML and

When a GET is serviced, the server calculates a list @fher” types). One possible explanation for this pattern
its pages that are likely to be requested in the near futdfethat this work uses a Markov-model prediction algo-
using some probability threshold. This list is appended fighm. Such algorithms view objects as independent, and
the GET response, and the client decides whether to a&fien simply re-discover which images are embedded in
ally prefetch. Another HTTP extension allows the clie@" HTML page.
to indicate to the server that a certain GET is a prefetch, sdn the implementation, there is a proxy on the client
that the server will not recursively compute related-negile and one on the modem side. As in our work, the path
for the prefetched page. of a request is browser to client-side proxy to modem-

Trace-driven simulations show that average access tifiée Proxy to server. Also like our work, The client-side
can be reduced approximately 40%, at the cost of mu¥pXy apparently piggybacks hit info on requests. After
increased network traffic (70%). Another result suggests; , .

. Latency savings are less than request savings because cached pages

that prefetching is more beneficial than increasing band+ngse that can be prefetched — tended to be smaller than pages that
width. That is, when prefetching causes a 20% increas# to be fetched from servers.

the modem-side proxy processes a request, it keeps2hd Bounds
connection open, generates a list of URLs to prefetch,

and “pushes” them into the client-side proxgache. The))
proxy prefetches only items in its cache. The predicttin® Of the results of th€oolist papers [27, 28] is a

at the modem-side proxy remembers the client's last féwlthematical analysis of how accurate prefetch predic-

requests but does not know the state of its cacheltiegu ti0NS must be (or, alternatively, how lightly loaded the
in possible duplication. network must be) in order for prefetches not to interfere

with demand fetches and thereimgreasethe average la-

Cohen and Kaplan[6] investigate three other types ofency of all fetches. The formula B < E/(1 + E),
prefetching: opening an HTTP connection to a server hereR is network utilization without prefetching and
advance of its (possible) use (pre-connecting); resolviigthe ratio of hit rate with prefetching to traffic increase
a server's name to an IP address in advance of operfia§sed by prefetching. The papers also present a taxon-
a connection to the server (pre-resolving); and sendin§®@y of prefetching approaches that range from conserva-
dummy request (such as a HEAD) to the server in advarité® to aggressive intheir use of bandwidth, and “Coolist,”
of the first real request (pre-warming). Pre-connectifgPrefetcher that allows the user to choose the level of
is motivated by the substantial overhead of TCP cofddressiveness for prefetching user-specified groups of
nection establishment. Pre-resolving is a subset of pP&Jes.

connecting: the only part of a GET request done in ad-rpg g rhyrising conclusion @rovella and Barford's

vance is to translate the server's name into an 1P addrgSgee_driven simulations [9, 10] is that prefetching makes
Pre-warming is a superset of pre-connecting: its pUrpQg&tic hyrstier and thereby worsens queueing. This is
is to force the server to perform one-time access Contéﬂlrprising because, generally speaking, a side effect of

checking in advance of demand requests. In atrace-dr%;gfetching is to smooth short “spikes” of demand fetch-

simulation, the three techniques reduced the numberi into longer “trickles” of prefetching. The explanation

“session starting” HTTF; interac;[ionso whose Latency Cifes in the definition of prefetching: at the start of a session
ceeded 4 semds from 7% t0 4.5%, 2%, and 1%, respegy i files to be accessed in that session are prefetched
tively. This work represents a more conservative approggiy, e diately, creating an initial burst of demand. Crovella
to prefetching than our own: much less complex, moLe garford provide a solution, “rate-controlled prefetch-

likely to work without unintended consequences, and 168§ » 1hat smoothes out traffic. Rate-controlled prefetch-

capable of reducing latency. ing approximates realistic prefetching, where the looka-
Cunha’s work [11] presents a very simple browsepead is limited. The analysis of rate-controlled prefetch-

prefetch mechanism plus two mathematical models taked also uses a better definition of prefetching — pages

from prior work on other topics, that are used to indicaft® prefetched one at a time and ngt W't.h p'e.rfect accu-
whether the mechanism should be invoked. His diss&->" Such rate-controlled prefetchlng significantly re-
tation [12] provides additional detail not supplied in th uces queue length over a wide range of prefetch accu-
paper, including recognition of the complications of i EACIES-
size and the need to age the usage information. An important study byKroeger et al. [19] es-
o _ tablishes bounds on the latency reduction achievable
The prefetch model is that only the client is active ithroughcaching and prefetchinginder idealized condi-
gathering usage information and making prefetch degjsns. Their most widely noted conclusion is that, even
sions. Hence, a user prefetches only pages that he hag@gsioying an unlimited cache and a prefetch algorithm

cessed before. The earlier references resulted in Mark@yt knows the future, at most 60% latency reduction can
chains with three types of links indicating whether objects, achieved.

that were accessed within a time window are unrelated,
related by one being embedded in the other, or relatediowever, this study assumes (1) that “query events
simply by being likely to be accessed atoait the same and events wittcgi-bin ~in their URL cannot be ei-
time. ther prefetched or cached” and (2) prefetching will always
miss on the first access to a particular server. Neither is
The mathematical models — based on DRAM cacht&se in our work. The first assumption does not apply to
and linear predictive coding for speech processing — atir work because it is appropriate for a cache shared by
tempt to classify a user’s behavior as “surfing” or “conseseveral users, but our algorithm prefetches into a user-
vative.” Surfing behavior references many different URLspecific cache. Because many URLS represent queries
whereas conservative behavior frequently re-referenaesdynamic content (16.3% as shown in Section 3.2), re-
the same URLs. Very high hit rates (e.g., over 80%) amgoving this assumption in particular could yield an upper
possible when the user’s behavior fits the model. bound significantly above 60%.

3 Preliminary Experiments and IP addresses differ at the moment that the log analysis
program runs. In some cases, months elapsed between
This section describes preliminary experiments that wete gathering of log data and the last run of the analysis
undertaken to reduce the number of unsupported assupvegram. Itis assumed that during that time very few host
tions and design decisions, and to test the extent to whigdirs flip-flop between being same and different.
pessimistic conclusions of certain earlier studies [4, 19]The results are that 28.9% of referenced hyperlinks,
apply to this study. representing 19.9% of bytes, are to URLs on other
Unfortunately, the data needed for the experiments d@rvers. This seems high, and might reflect references

scribed in this section is not present in well known eXiewed to commercial sites packed with advertisements
isting logs such those from DEC [8], Boston Univergn other sites.

sity, Berkeley [15], and AT&T. Accordingly, we had to
gather our own logs. A separate trace was gathered at
AT&T Labs over several months in 1999. A “snoop: .

ing” proxy produced, for every GET request, the foIIovxr?"2 Non-cacheable Links
ing information: requesting client; URL; IMS request o

not;Referer field, if present; time request was receive%refemh'ab'“ty in this work is not the same aache-

ability in the literature. The reason is that the prefetcher

by snooper; time first response byte waseived; time rin ages into alient-specificcache. Because the
last response byte wagaeived; status code; Contentl-) gs pag lent-spec Lo
ache is not shared, it is possible to cachekies, query

type field; lengths of header and content; time to expir%%

tion, and how computed: the number of embedded URL RLs and dynamic content. Studies of techniques for
and’whether the respoﬁse would &@ched and. if not. S lared caches exclude such pages, with considerable ef-

why not. In addition, all pages were permanently Ioggeffﬁa‘,g[':l::%O ;;:i?gféuomngnsttsus&’e[rle‘lgj:%géﬂ;zzt{e'nrﬁg;;agg
. . . |) : . ’ g)
including in cases where an unaltered proxy would n Ause of cookies (30.2%), query URLS (9.9%), obvious

have cached it. It was necessary to log content beca mic content (5.4%), and expligiache-control pro-
some experiments described in this section need it. g 7o) P P

example, Experiment E determines, among other thinBEt?'t'onS (9.19%). _ o

whether the URL of a referenced page is embedded a§Xperiment B. The experimental question is: what
a hyperlink in any pageccessed within the previous 3draction of referenced links (and bytes) are query URLs
seconds. or “obvious” dynamic content?

The trace consists of 92,518 references generated byhe definition of “obvious dynamic content” is derived
members of the author’s department (6 clients) overfram the one most often seen in the literature: a URL is
span of about 5 months. All clients were attached &ssumed to specify dynamic content if it contaags .
the same high speed LAN at 10Mb/sec. The LAN is athis heuristic is outmoded, as there are ever more tools
tached to the Internet via a partial DS3. Drawing tracé producing dynamic content, and these tools produce
from a high speed environment is desirable because int¢RLs by a variety of conventions, not jusyi-bin
reference times are likely to reflect the user’s actual thiflke effect of using an old heuristic is that the proportion
time rather than bandwidth limitations of the local envief dynamic content is underestimated, meaning that we
ronment. err on the conservative side.

The results are that 16.3% of referenced hyperlinks,
representing 18.2% of bytes, are to query URLs or to
URLSs containingcgi .

Experiments A and B, respectively, address the assumpThe results of experiments A and B are not meant to
tions in [19] that “prefetching can only begin after thehallenge or invalidate conclusions such as those in [19],
client’s first contact with that server” and that “querpecause théounds in that paper were developed under
events and events wittgi-binin their URL cannot be ei- conditions that are unrealistically favorable. These re-
ther prefetched or cached.” Neither praitiin applies to sults are meant to show merely that the theoretical limit
this work. How significant are the effects of lifting theséo latency improvement via prefetching is probably higher
prohibitions? than 60%, for two reasons. First, [19] assumes a shared
Experiment A. The experimental question is: in thoseache and therefore does not prefetch certain pages that
cases where one page refers to another, what fractiorcaf be prefetching into a private cache. &at; [19] ex-
referenced links (and bytes) are from sites different froofudes the possibility of prefetching from a “new” site.
the site of the referring page?

Analysis was done by parSing_Site inf(_)rmation from the 21he individual numbers do not add to 43.1% because some docu-
URLs. Sites are deemed to be different if both their nam@snts are uncacheable for several reasons.

3.1 Cross-Server Links

Distribution of Time Between HTML Accesses Distribution of Time Between HTML and Image Accesses
350 — 9000

00 | 8000 |

7000 -

250
6000 -

200 - 5000 F

150 | 4000 |-

3000 -

Number of Accesses
Number of Accesses

100
2000 -

1000 [ﬁ

oL 0 . .
50ms 500ms 1sec 6sec 15sec 2min 7min 20min >2hrs 50ms 500ms 1sec 6sec 15sec 2min 7min 20min >2hrs
Time Time

50 -

Figure 1: Time Between Referer and Referee (HTML) Figure 2: Time Between Referer and Referee (Image)

Distribution of Estimated Bandwidth Required for Prefetch

3.3 Inter-reference Time 800

700 27.1%

Prefetching is not a purely algorithmic problem. Even
given an oracle that could predict future accesses per-
fectly, prefetching results might be imperfect if a page
were demanded during the time between the prediction of 5 o |
its need and its arrival. In such a case prefetching mightg 300 |
still lower the observed latency, but conventionally such 2 ,, |
partial success isounted as a prefetching failure.

Experiment C1 determines the distribution of the time T
interval between referring and referred-to pages. Since 800 4K 8K 9.6K 14.4K33.6K 56K ISDN DSL Ether above
Web data expires after a while, another timing issue is the Bandwidth (biisfseo)
distribution of expiration intervals. Because prefetchéd
data can expire before it is demanded, prefetching too E‘r
in advance is also a problem. Experiment C2 determinesg
the distribution of expiration times.

Experiment C1. The experimental question is: inpenalty for being wrong.
those cases where one page refers to another, what is thgure 3 is the distribution of “total page size” divided
distribution of the time between (1) the end of the tranby inter-reference time. That is, references in the log were
fer of the referer and (2) the beginning of the transfer ahalyzed to determine the size of an HTML page plus
the referee? This is the amount of time available to th# its embedded images, whether or not they were ac-
prefetcher. tually referenced — an overestimate of what is needed to

The results are broken down into two categoriespmpletely prefetch a page. Then this number was di-
HTML referencing HTML (Figure 1), and HTML con- vided by the time between when that page’s referrer was
tent referencing image content (Figure 1). The bredkaded and when the page was requested. This quotient
down is intended to capture the difference between réf-the maximum amount of data a prefetcher would have
erences to embedded hyperlinks and images, respectivielydeliver divided by the amount of time available to it:
As shown, the browser-generated references to embediedbandwidth needed to prefetch one page. The median
images happen much more quickly than user-generab@ddwidth is around 5KB/sec, safely within the capacity
references to hyperlinks. The median inter-reference tiwieeven a dialup modem, suggesting that several pages
between two HTML pages is 52 seconds, while integould be prefetched while remaining within bandwidth
reference time between an HTML page and an image pagastraints.
is 2.25 seconds. However, a significant fraction of im- Experiment C2. The experimental question is: what
ages (32.3%) are requested within one second or lesssothe distribution of expiration times, and how are the
the referencing HTML page. This suggests that when imes computed? Prefetching can be harmful if prefetched
HTML page is prefetched, its embedded images showlahntent expires before it is demanded.
be prefetched too. Doing so substantially increases thé\s Figure 4 shows, the most common expiration time

ccesses

ure 3: Bandwidth Required for Prefetching One Page

Distribution of Expiration Times "nkS/byteS are aCtua”y accessed?

T As the snooper recorded the contenteaich page, it
also parsed the pages and loggath embedded URL
and its reference type (HREF, IMG SRC, etc.). The log
20000 1 analyzer determined which of these URLs were later ac-
cessed from that page. It also determined the size of
each embedded HREF URL and its embedded images by
calling a utility similar to the populawebget . There-
fore, the sizes were determined, in some cases, weeks or

months after the fact. It is assumed that size changes oc-
o Ll T“v%%fl"ov%%ﬂ"%% = . curring the interim are negligible, or at least not substan-
e piaion Tine tially skewed in one direction or another.
The average number of links per page is 22.6. The av-
erage size of these links is 7760 bytes. The fraction of
Figure 4: Time Until Expiration links and bytes accessed is very low (5.4% and 3.8%, re-
spectively), again perhaps because of commercial portal
sites that are packed with links. These results reinforce
is zero (60.0%). Typically (50.9%), zero is determineghe importance of accurate prefetch predictions.
by default because the server has provided no information
(Expires orLast-modified headers) upon which to
base an estimate. The rest of the time (9.1%), the se e5

has provided identicdixpires ~ andDate headers. Some prior work (e.g., [2, 13, 25]) has used Markov mod-
Strictly speaking, a zero expiration time should doogling to make reference predictions. A Markov prediction
prefetching because prefetched content will be expirggyorithm makes no use of structure information such as
once it is demanded from the cache. However, since g Referer field, but instead regards earlier references
meaning of a zero expiration time is “use only once,” is an unstructured string drawn from the “alphabet” of
our implementation we take the following steps. First, @age IDs and attempts to discover patterns in the string.
explained in Section 4.1, a special headerefetch: Recurrence of the initial part of a detected pattern triggers
Prefetch) is present in prefetched pages. The cachgafetching of the remainder of the pattern string. Markov
freshness-check code has been altered to ignore an gxurithms seek patterns within a “window” of prior ref-
plicit zero expiration (i.e., Expires = Date) when such &ences, where the window typically is measured by time
page has the prefetch header. When a such a paggrisumber of references.
eventually read, the cached page is réitem with the The tyo advantages of the Markov approach are that it
current time in the expires field and th&refetch: does not depend upon tReferer field (which may not
Prefetch header overwritten. always be present) and that it can discover non-intuitive
The median non-zero expiration time (more than O@tterns. However, there are significant disadvantages
day) far exceeds the average inter-reference time (52 sgCmarkov algorithms. One is that such algorithms of-
onds), indicating that too-early prefetching is not a pragsn nave a high cost, measured in storage and compute
tical concern. The median expiration time is so largfne. The reason is that a Markov algorithm typically
because in many cases expiration is based @pgn represents pages as graph nodesamedsses as weighted

30000

T
50.9%

25000

15000 26.4% 1

10000 -

Number of Accesses

9.1%
5000 -

Markov Prediction Algorithms

Last-modified ~ headers, and many pages have ngfanh edges. With no structure to guide the search for pat-

been modified in months. terns, predictive ability is improved by enlarging the win-
dow: retaining as many nodes as possible and searching

3.4 The Naive Approach as many paths as possible. Second, naive implementations

of Markov algorithms have trouble aging their data. We

The naive approach to prefetching based on embeddggothesize that Markov algorithms suffer a third draw-
links [5, 26, 24] is to prefetch all embedded links or sonmgack of being too general — they discover patterns that,
number of them, without regard to the likelihood of us¢o a large degree, are already obvious in the HTML of re-
Experiment D determines that some pages can haveeatly accessed pages and might be more simply extracted
very large number of embedded links, representing materefrom.
bytes. Experiment E compares the fraction of Markov “depen-

Experiment D. The experimental question is: whatlencies” among pages (that is, patterns where an access
is the distribution of the number of links per page, hoto page X tends to be closely followed by an access to
many bytes do these links represent, and what fractionpafge Y) that are also embedded links within recently ref-

Time (sec) | 10 30 60 120 4 Design
Embedded| 70.0% | 74.6% | 76.0% | 77.2%
References 1 3 5 10

Embedded| 39.6% | 66.3% | 73.2% | 78.3%

This section adds to Section 1 by explaining two topics in
greater depth: the protocol used to exchange usage reports
and usage profiles and the prefetching algorithm used by
¢ client.

Figure 5: Percent of Markov Dependencies Also Presén
as Embedded Links Within Recently Accessed HTML _
Pages 4.1 Information Exchange Protocol

One new HTTP header is defineBrefetch . There

are five Prefetch directives:Negotiate , Report ,
erenced HTML pages. Profile ,Prefetch ,andHalt . Some directives take

Experiment E. The experimental question is: wha@fguments. In particular, usage reports are provi.ded as ar-

fraction of “dependent” pages/bytes might also be ediiments to th&keport directive and usage profiles are
ily detectable as embedded links? Two definitions of detovided as arguments to tReofile directive.
pendency are taken from much-cited works, [2] and [25]. Both client and server can limit the amount and de-
Two references represent a dependency if they are mff@ the format of prefetching information they exchange,
by the same client within a certain time or a certain nurind specify when such exchanges may take place. When
ber of prior references, respectively. As explained belofitiated by a clientPrefetch: Negotiate should

only a certain class of dependencies is considered. Hfesent along with a message to which a response is ex-
results are shown in Figure 5. pected, such as the first GERrefetch: Report

may be sent by the client along with any message after ne-

The experiment computed, for every URL a_Ccessegotiation has finishedPrefetch: Profile is sent
whether that URL was present as an embedded Ilnkwmlyg) the server only on GET responses, since the profile

an HTML page j[hat was previously referenced eithﬁ[artains to only those URLs whose body is included in
within a certain time interval (10, 30, 60, and 120 Sethe message.

onds), or within a certain number of prior HTML pages e \egotiate directive can be specialized through

(1,3, 5, and 10). For each case, the table reports the fracy, mper of arguments that specify whether usage reports

tion of URLs that were present as embedded links in thQgy he sent occasionally, periodically, after a certain num-

earlier HTML pages. ber of page accesses, or once the usage report reaches a
The interpretation of these results is not straightfarertain size.

ward. First, there is no single “Markov algorithm” to The most common use dflegotiate , Report |,

compare to. For example, a Markov algorithm will deProfile , andPrefetch directives is as follows:

clare two references to be dependent if they occur consec-

utively with more than a certain probabilityarying the Cclient server

threshold probability yields different algorithms. Second@,™™ 777

Markov-based algorithms can find dependencies between =777 ,'">
any two pages, not just between an HTML page and an- negotiate
other page. Therefore, Experiment E sheds some light <~
on Markov algorithms versus our approach of examining negotiate
links embedded in HTML, but it is not a definitive evalu-
aton. T >
report
Experiment E considers only dependenciées— Y,
whereX is an HTML page. In this subset of dependen- __________________
cies that a Markov algorithm might find, the results indi- profile
cate that the (presumably) simpler method of inspecting
HTML can locate a high percentage of dependencies. For __________________ S
instance, 39.6% of such dependencies can be discovered prefetch
by inspecting only the single prior HTML page; 70.0% . _________________
can be discovered by inspecting the HTML pages that prefetch

were referenced in the preceding 10@ads. These re-

sults are conservative, since it is not certain that any parThree other arguments Megotiate specify the de-
ticular Markov algorithmwould succeed in locatih@0% sired format of future usage profile directives. One ar-
of the dependencies. gument indicates how to age the data. For example,

last=10,20,50 means that the server's usage profikle last 10 references, in descending order of popular-
should, if possible, summarize which embedded reféty, down to a limit of 25%. That is, if the chances of
ences have been used in the last 10, 20, and 50 referemacgage being accessed are less than one quarter, that page
to the page. The server is bound only to make a best isfnot prefetched. A prefetch request is not complete until
fort to retain enough data to deliver usage profiles in thiee HTML page and all its embedded images have been
format it has negotiated. The other two arguments spedifaded. A demand fetch aborts all prefetching efforts.
limits on the size of the usage profile: absolute byte couls prefetch requests complete, more are issued from the
and relative to the attached GET response. “last-10" list and then from the “last-50" list, again in de-
scending order of popularity down to the limit.

4.1.1 Record Format

A usage report includes the referring and referred- Implementation
URLs, when the request took place, how long it took to
satisfy, and the size of the result. Only successful refdihere are two implementations of this approach to
ences to HREFs are reported. prefetching. In both, the server side is implemented by
Usage profiles comprise two sorts of records. Onedgproxy. The proxy emulates all the Web servers in the
Last N whereN is an integer. The other sort of recoravorld, keeping track of usage reports and forming usage
is similar to a usage report prefaced by an integér, profilesforall URLs of all Web servers. This was done for
The two types of records are intermixed, with dresst ~ testing and debugging purposes so that every Web server
N record followed by some number off:.. ” records. could seem to be one that supports prefetching. In prac-
This pattern repeats. The meaning of such a sequencas, a server-side proxy might serve only a single server.
records is that the lasY times this page was referencedlhe server-side proxy is an altered version of the W3C'’s
it happenedV/; times thatl’ RL; was referenced by thathttpd , version 3.0A.
page. The sum aof/; need not equaV . The two implementations are distinguished by the
Auxiliary information, such as the elapsed time belient side. One implementation is an altered version of
tween references to P and some embedded HREF Q,thg-September 4 1998 version of Mozilla which runs as
pear in the summary as medians plus standard deviatidnslti-threaded software on UNIX. The other implemen-
tation is a proxy, once again an altered versiohttd
. . 3.0A.
4.2 Prefetching Algorithm An important optimization is presently missing from
The client-side prefetch algorithm that has been used Bf implementations: there is no need for a client to send
the measurements in this paper is the following. D#-Ysage report to a server if both rgferer and referee URLs
ing negotiation with a server, the client asks for the u&r€ On that server. The server (or its proxy) can determine
age profile to summarize the last 10 and 50 referencle same |nformat|0n itself provided that the client sends
The client continually measures the speed of its HTTpeReferer field.
GET transfers, and maintains a running average; the speed
varies depending on many .factors so the data is inacq Evaluation
curate, but inaccurate data is regarded as better than no
data. Whenever a page is demand-fetched, its embeddédhave characterized prefetching performance through
HREFs are noted during the parsing necessary to disgiisg measures: prefetch accuracy, client latency, network
it. These HREFs are put on a list and the list is passederhead, program space overhead, and program time
to the prefetcher along with the usage profile that cameerhead. All numbers are taken from the Mozilla im-
in the HTTP header. After page display is complete, tiementation.
prefetch algorithm runs, comparing the embedded hyperMozilla has been altered to read the trace log and replay
links with the usage profile. The comparison ensures thlaé HTML accesses with timing that is faithful (insofar
a recently deletetlyperlink mentioned in the usage proas possible) to that in the log. The pages are displayed
file will not be prefetched. The usage profile indicates tlhtempletely, just as if the user had typed in the same ref-
size of embedded HREFs (including the size of embegrences with the timing evident in the log. The latency
ded images), and the prefetcher ensures that it never &rad prefetch accuracy numbers were gathered using this
GET requests outstanding for more than a certain franechanism. Latency reduction is calculated by compar-
tion of the measured average bandwidth available toiitg the time between (1) Mozilla’s initiation of an HTML
50%, to be safe considering the inaccuracy of the bamhge GET, and (2) Mozilla'sceipt of the end of the last
width measure. Until the bandwidth limit is reached, thrembedded image for that page. This time is compared to
client prefetches URLs that have been accessed amdmgsimilar time taken from the trace log. The two times

are not exactly comparable because the trace log recdsd®2 Implementation Effort
the time for a client-side snooping proxy to communicate . e 1 .
ozillawas the largest and most difficultimplementation,

with a remote web server, whereas Mozilla is recordi . ;
the time for it to communicate with a server-side pro&éth atotal of 3581 lines of code added or changed:

which then communicates with the remote web server., ks into the parser to discover URLS: 47
However, since this approach places the prefetching im-

plementation at a disadvantage — three parties communie Response timing: 113

cate in series instead of two — we ignore the difference. _ _

Mozilla’s disk cache size was kept at the default 5MB. ® Accumulating usage reports, tracking the state of ne-

gotiations with all servers: 786
Prefetch Accuracy. The observed prefetch accuracy
is high: while less than a majority of prefetched HTML e Prefetch algorithm: 1312
pages (42.6%) are eventually accessed, a much higher

fraction of all pages (62.5%) are eventually used. The rea-* Connection management: 751

son is that many links from a common page share embedy ~5che management to address the Expires=0 prob-
ded images. So if pag& has embedded links and 7, lem: 450

and ifY is wrongly prefetched instead 4f, considerable

savings may still result it” andZ share many embedded e Short circuit of front-end display code so that pages
images. The overall increase in network traffic is consid- are fetched but not displayed: 122

erably smaller (24.0%) than the overall prefetch miss rate o
of 37.5% because of demand fetches. Three variations of the W3@ttpd have been pro-

duced: a client-side prefetching proxy, a snooping proxy,

The restraint exercised by the prefetch algorithm — ngtd a server-side proxy that maintains usage statistics for
prefetching links that have less than 25% chance of beiilgservers. The client-side proxy is the most complicated,
accessed — governs the tradeoff between lowering lateggyugh some code is shared with Mozilla; compared to
and wasting bandwidth. Twenty-five percent was foutozilla there are no front-end complications, and con-

to be the optimum point (from among every five perceniction management is much easier. The snooping and
for balancing bandwidth waste against latency reductiogerver-side proxies are simple.

Latency. Prefetching decreases average total latency
to display an HTML page and all its embedded imag&3 Privacy Implications
by more than half (52.3%). This number probably lies ,
between the prefetched-HTML hit rate (42.6%) and tH@_ order to operate transparently, the prefetching mecha-

overall prefetched hit rate (62.5%) because, on averagi§m must examine HTML anReferer headers. This
image pages are smaller than HTML pages. raises several privacy issues. The first is that the HTML

must be available. End-to-end protocols or tunnels that

Network Overhead. Usage reports and usage profilegight encrypt, compress, difference, or otherwise obscure
can be lengthy. The average usage report is 66 bytg$ML content could make the proxy implementation im-
while the average usage profile is 197 bytes. Most spagisssible. Second, some privacy advocates are concerned
is taken up by URLs, especially query URLs. It mighibout theReferer field and want, at minimum, to be
be practical to abbreviate URLs in the usage profile, singBle to configure browsers not to send it. This goal is in
the same URLs are embedded in the accompanying paggflict with our prefetching mechanism: suppressing the
content. However, no such method has been investigatréferer field makes a proxy implementation impossi-

Space Overhead.Some extra fields have been adde%,e’ while having a browser implementation send usage

to Mozilla’s data structure that describes a page; howeV&P orts 'defea.t:Referer suppression. .Inde'ed, a thqul
this structure is very large and the added space is neg| i|}/acy issue is that usage reports contain strictly more in-

ble. On the server side, the proxy’s data structures gro fmation thaq tnﬁef?rer f'elg' A four;dr: 'f’fﬁe 'sr t?"’tlt her
proportion to the number of pages distinct pages serve OMe users might feet uneasy knowing that the pretetche
examines their pages and browsing patterns. In this re-

Time Overhead. The effect of prefetch code ongard, the prefetcher does not pose a threat that is not al-
Mozilla’s critical path is negligible, mostly drause ready present from proxies, firewalls, and servers; never-
Mozilla executes a great deal of code for every GET offteless, knowing that the prefetcher systematically parses
eration. Time added at the server proxy is also negligiteir pages might make some users uncomfortable. Fi-
ble. The data structures for maintaining usage profiles a@ly, perhaps the largest privacy issue is that prefetching
kept in memory, requiring added space but no extra didkpends upon server administrators agreeing to release
accesses until they grow very large. statistics about how their pages are being used. In many

cases such information has commercial value, meaning
that web site operators might refuse to release it or de-
mand payment for it. 5]

6 Conclusion

We have shown that accurate Web prefetching is possi-
ble based on following HREFs in recently fetched pageis]
Letting the client control prefetching and aging of usag
statistics has many advantages and may be the only practi-
cal approach in a world where proxies are commaoe!
However, placing control at the client is also problematic
because many pages contain large numbenypérlinks, [7]
and simply prefetching them all is worse than nothing.
Also the client cannot be expected to have a good under-
standing of HREF reference patterns unless the page is
one read frequently and/or the page rarely changes.

Our approach to this problem is to have clients pass
record of their references up to the relevant server, which
then distributes them to all clients. It is hypothesized that
HREFs within a page are strongly skewed to “hot” an
“cold,” so that one client can learn from the usage patterns
of others. The results in Section 5.1 bear this out.

The information exchange between clients and servefg
complicates deployment; however, there are other exam-
ples of recent work that depend on a similar flow of in-
formation [23, 7], suggesting that the idea may be useful
more generally.

[10]
References
[1] V. Almeida et al. Characterizing Ref-
erence Locality in the WWW. In Proc.

IEEE Conf. on Parallel and Distributed In{11]
formation Systems. I|IEEE, Decembenl996.
http://www.cs.bu.edu/"best/res/

papers/pdis96.ps

[2] A. Bestavros. Using Speculation to Reduce
Server Load and Service Time on the WWW.
In Proc. 4th ACM Intl. Conf. on Information
and Knowledge Mgmt.ACM, November 1995. [12
http://www.cs.bu.edu/"best/res/
papers/cikm95.ps

[3] A. Bestavros and C. Cunha. Server-Initiated Doc-
ument Dissemination for the WWW.IEEE Data
Engineering Bull. 19(3):3-11, September 1996.
http://www.cs.bu.edu/"best/res/ [13]
papers/debull96.ps

[4] R. Caceres, et al. Web Proxy Caching: The Devil
is in the Details. ACM SIGMETRICS Performance
Evaluation Rey. 26(3):11-15, Bcember 1998.

http://www.research.att.com/“ramon/
papers/wisp98.ps.gz

K. Chinen and S. Yamaguchi. An Interac-
tive Prefetching Proxy Server for Improvement of
WWW Latency. InProc. INET 97 June 1997.
http://www.isoc.org/inet97/

proceedings/A1/A1 3.HTM

E. Cohen and H. Kaplan. Reducing User-
Perceived Latency by Prefetching Connections and
Pre-warming Server&Jnpublished AT&T technical
report, February 1999.

E. Cohen, B. Krishnamurthy, and J. Rex-

ford. Improving End-to-End Performance
of the Web Using Server Wolumes and
Proxy Filters. In Proc. ACM SIGCOMM

98, pages 241-253. ACM, September 1998.
http://www.research.att.com/"edith/
Papers/sigcomm98.ps.Z

8] Traces of Corporate Web Proxies. Compaq Corp.

ftp://ftp.digital.com/pub/
DEC!/traces/proxy/webtraces.html

M. Crovella and P. Barford. The Network Effects
of Prefetching. InProc. Infocom 98IEEE, April
1998. http://cs-www.bu.edu/faculty/
crovella/paper-archive/infocom98.ps

M. Crovella and P. Barford. The Network
Effects of Prefetching. Technical Report TR-
97-002, Boston University, February 1997.
http://cs-www.bu.edu/techreports/
97-002-prefetcheff.ps.zZ

C.R. Cunha and C.F.B. adcoud. Deter-
mining WWW Users Next Access and
Its Application to Pre-fetching. InProc.

Second |EEE Intl. Symp. on Computers
and Communication '97 IEEE, July 1997.
http://cs-www.bu.edu/techreports/
97-004-userbehaviorprediction.ps.Z

] C.R. Cunha. Trace Analysis and Its Ap-

plications to Performance Enhancements of
Distributed Information Systems. PhD The-
sis TR-97-004, Boston University, 1997.
http://www.cs.bu.edu/students/
alumni/carro/thesis.ps.Z

L. Fan et al. Web Prefetching Between Low-
Bandwidth Clients and Proxies: Potential
and Performance. InProc. ACM SIGMET-
RICS Conf. pages 178-187. ACM, May 1999.
http://www.cs.wisc.edu/"cao/papers/
prepush.ps.gz

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

A. Feldmann et al. Performance of Web Proxy
Caching in Heterogeneous Bandwidth Environ-
ments. InProc. Infocom 99 IEEE, March1999.
http://www.research.att.com/“ramon/

papers/infocom99.proxy.ps.gz [23]

Traces of Dialup Users. S. Gribble.
http://ita.ee.lbl.gov/html
/contrib/UCB.home-IP-HTTP.html [24]

Z. Jiang and L. Kleinrock. Prefetching Links
on the WWW. In ICC 97. June 1997.
http://millennium.cs.ucla.edu/
“jiang/Research/Publication/

prefetch.ps

[25]

Z. Jiang and L. Kleinrock. An Adaptive Net-
work Prefetch SchemelEEE Journ. Selected Ar-
eas of Communicatiqri7(4):358-368, April 1998.
http://millennium.cs.ucla.edu/
“jiang/Research/Publication/

extended.ps

[26

—_

M.F. Kaashoek, T. Pinckney, and J.A. Tauber. D)[g7]
namic Documents: Mobile Wireless Access to the
WWW. In Wkshp. on Mobile Computing Systems
and Applicationspages 179-184EEE, December

1994, (28]

T.M. Kroeger, D.D.E. Long, and J.C. Mogul.
Exploring the Bounds of Web Latency Reduc-
tion from Caching and Prefetching. IRroc.
USENIX Symp. on Internet Technologies and
Systemspages 13-22. USENIX, €&ember1997.
http://www.usenix.org/publications/
library/proceedings/usits97/

kroeger.html

T.S. Loon and V. Bharghavan. Alleviat-
ing the Latency and Bandwidth Problems
in WWW Browsing. In Proc. USENIX
Symp. on Internet Technologies and Sysiems
pages 219-230. USENIX, d2ember 1997.
http://www.usenix.org/publications/
library/proceedings/usits97/

tong.html
E.P. Markatos and C.E. Chronaki. A
Top-10 Approach to Prefetching on the

Web. In Proc. INET 98 July 1998.
http://www.ics.forth.gr/proj/
arch-visi’/html _papers/
INET98 _prefetch/paper.html

J. Mogul et al. Potential Benefits of
Delta Encoding and Data Compression for
HTTP. In Proc. ACM SIGCOMM 97

pages 181-194. ACM, 1997.
ftp://ftp.digital.com/%7emogul/

sigcomm97.ps.gz

September

J. Mogul and P. keach. Simple Hit-Metering
and Usage-Limiting for HTTP. IETF Net-
work Working Group RFC 22270ctober 1997.
http://lwww.ietf.org/rfc/rfc2227 .txt

NetAccelerator 2.0 software.
http://www.imsisoft.com/

netaccelerator/netacc2.htmi

V. Padmanabhan and J. Mogul. Using Predictive
Prefetching to Improve World Wide Web Latency.
Computer Communication Re26(3):22-36, July
1996. http://www.cs.berkeley.edu/
“padmanab/papers/ccr-july96.ps

PeakJet2000
http://lwww.peak.com/
peakjet2long.html

software.

Z. Wang and J. Crowcroft. Prefetching in World
Wide Web. InProc. Globecom 9GEEE, December
1996. http://lwww.bell-labs.com/user/
zhwang/papers/prefetch.ps.zZ

Z. Wang and J. Crowcroft. Prefetching in
World Wide Web. In Proc. Global Inter-
net pages 28-32. HEE, November 1996.
http://www.cs.columbia.edu/"hgs/
InternetTC/Globallnternet96/
Wang9611_Prefetching.ps.gz

