Proceedings of USITS' 99: Th& 2ISENIX Symposium on Internet Technologies & Systems

Boulder, Colorado, USA, October 11-14, 1999

SECONDARY STORAGE MANAGEMENT
FOR WEB PROXIES

Evangelos P. Markatos, Manolis G.H. Katevenis,
Dionisis Pnevmatikatos, and Michail Flouris

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WhttZ// www. usenix.org

Rights to individual papers remain with the author or the author's employer.
Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Secondary Storage M anagement for Web Proxies

EvangelosP. Markatos Manolis G.H. Katevenis
Dionisis Pnevmatikatos Michail Flouris*

Computer Architecture and VLS Systems Division
Institute of Computer Science (ICS)
Foundation for Research & Technology — Hellas (FORTH)
P.O.Box 1385, Heraklio, Crete, GR-711-10 GREECE
http://archvisi.ics.forth.gr markatos@csi.forth.gr

Abstract

World-Wide Web proxies are being increasingly used to
provide Internet access to users behind a firewall and to
reduce wide-area network traffic. Recent results suggest
that disk 1/O is increasingly becoming the limiting factor
for the performance of web proxies. In this paper we study
the overheads associated with disk 1/0 for web proxies, and
propose secondary storage management alternativesthat im-
prove performance. We use a combination of experimental
evaluation and simulation based on traces from busy web
proxies. We show that web proxies experience significant
overheadsdueto disk 1/0. We propose severa file manage-
ment methods that reduce the disk 1/0 overhead overhead
by afactor of 25 overall, resulting in a single-disk service
rate that exceeds 500 (URL-get) operations per second.

1 Introduction

World-Wide Web proxiesarebeingincreasingly used to pro-
vide Internet access to users behind afirewall and to reduce
wide-area network traffic. Recent results suggest that disk
I/0O overhead is becoming an increasingly important bot-
tleneck for the performance of web proxies. For example,
Rousskov and Soloviev [33] observed that disk delays con-
tribute about 30% toward total hit response time. Mogul
states that their observations of the web proxy at Digital
Palo Alto firewall suggest the disk I/O overhead of caching
turns out to be much higher than the latency improvement
from cache hits [27]. Thus, to save the disk I/O overhead
the server istypically runin its non-caching mode.

In this paper we study the overheads associated with disk

*All the authors are also with the Unversity of Crete.

1/O for web proxies, and propose secondary storage man-
agement alternatives that improve performance. We show
that the single most important source of overhead is associ-
ated with storing each URL in a separate file. File system
operations (like afile creation followed by a file deletion)
may easily take up to 50 milliseconds (aggregate), even on
modern hardware. Given that the median size of a cached
file is 3KBytes [33], and that for each URL typical web
proxies create one file (to store the contents of the URL)
and delete another file (to free space), then the rate at which
a web proxy can store data to disk is 3KBytes every 50
msec, or roughly 60 KBytes/sec, a rate of execution that is
orders of magnitude lower than the data transfer rates that
current disks can sustain. This data rate is even lower than
most | nternet connections. To alleviatethisfilemanagement
overhead we propose a storage management method called
BUDDY that stores several URLs per file. BUDDY iden-
tifies URLs of similar sizes (“buddies’) and stores them in
the same file. BUDDY reduces file management overhead
by storing several URL s per file and reduces fragmentation
by storing similar-sized URLsin eachfile.

Once we reduce file management overhead using BUDDY,
we show that the next largest source of overhead is asso-
ciated with disk head movements due to file write requests
which write data in widely scattered places over the disk
space. To improve write throughput, we propose a file
space allocation algorithm (called STREAM) inspired from
log-structured file systems [32]. STREAM storesall URLs
inasinglefile contiguoudly (if possible). STREAM reduces
disk seek and rotational overheads and managesto perform
write operations at maximum speed. Once write operations
proceed at maximum speed, URL read operations emerge
as the next largest source of overhead. To reduce the disk
read overhead we propose algorithms that cluster several
read operations together (LAZY-READS) (in order to re-
duce the disk head seek time), and organize the layout of
the URLSs on the file so that URLSs accessed together are

stored in nearby file locations (locality buffers).

To evaluatethe performanceof our approach weuseamix of
trace-driven simulation and experimental evaluation. Traces
from the DEC's web proxy are fed into a 512-Mbyte main
memory LRU cachesimulator [7]. URLsthat missthemain
memory cache are fed into a 2-Gbyte disk LRU cache sm-
ulator. URLsthat missthis second-level cache are assumed
to be fetched from the Internet. These misses generate
URL-wri t e requests, because once they fetch the URL
from the Internet they save it on the disk. Second-level
URL hitsgenerate URL- r ead requests, sincethey read the
contents of the URL from the disk. To make space for the
newly arrived URLSs, the LRU replacement policy deletes
non-recently accessed URLsresultingin URL- del et e re-
quests. All URL-wri t e, URL-r ead, and URL- del et e
requests are fed into a file space simulator which maps
URLs into files (or blocks within files) and sends the ap-
propriate calls to the file system. Our results suggest that
BUDDY achievesan order of magnitudeimprovement over
traditional web proxy approaches, STREAM achievesafac-
tor of 2-3 improvement over BUDDY, and locality buffers
achieves a 20%-150% improvement over STREAM.

The rest of the paper is organized as follows: Section 2
surveys previous work. Section 3 presents our algorithms,
and evaluatestheir performance. Section 4 summarizesand
concludes the paper.

2 PreviousWork

Caching is being extensively used on the web. Most web
browsers cache documentsin main memory or in local disk.
Although thisisthe most widely used form of web caching,
it is the least effective, since it rarely results in large hit
rates [1]. To improve cache hit rates, caching proxies are
used [8, 39]. Proxies employ large caches which they use
to serve stream of requests coming from a large number
of users. Since even large caches may eventualy fill up,
cache replacement policies have been the subject of recent
research[1, 7, 20, 23, 31, 34, 40, 41]. Sophisticated caching
mechanisms usually improve the observed user latency and
reduce network traffic. Some caches may even employ
intelligent prefetching methods to improve the hit rate even
further [3, 4, 13, 24, 38, 29, 37].

Recently, it was realized that web proxies spend a signifi-
cant percentage of their time doing disk /0. Rousskov and
Soloviev observed that disk delays contribute 30% towards
total hit response time [33]. Mogul suggests that disk 1/0
overhead of disk caching turns out to be much higher than

the latency improvement from cache hits [27]. To reduce
disk 1/0 overhead Soloviev and Yahin suggest that proxies
should have several disks, and that each disk should have
severa partitions. Using sophisticated write distribution
policies Soloviev and Yahin are able to spread requests over
severa disks and to cluster requests on the same partition
to avoid long seek delays [36]. Scott Fritchie found that
USENET News servers spend a significant amount of time
storing articlesin files“onefile per article’ [12]. To reduce
this overhead he proposes to store several articles per file
and to manage each file as a cyclic buffer. His implemen-
tation shows that storing several URLSs per file results in
significant performance improvement. Maltzahn, Richard-
son and Grunwald [21] measured the performance of web
proxies. With regard to disk 1/0 they measured that several
disk accesses are needed for each URL request (in the av-
erage). Thisimpliesthat the disk subsystem is required to
perform alarge number of requests for each URL accessed
and thus it can easily become the bottleneck. In their sub-
sequent work, they propose two methodsto reducedisk 1/0
for web proxies[22]:

¢ they preserve locality of the http reference stream by
storing files of the same web server in the same proxy
directory (SQUIDL) and

e they useasinglefileto storeall objectslessthan 8K in
size (SQUIDM).

It seems that both the authors of this paper as well as
Maltzahn, Richardson and Grunwald have independently
discovered similar key ideasthat reducethedisk overhead of
aweb proxy. For example, SQUIDL and SQUIDM of [22]
use similar locality and file management principles to our
algorithms (MULTIPLE-DIRS and BUDDY respectively).
These common ideas reduce the file management (meta-
data) overhead associated with storing URLs in afile sys-
tem. However, our work also presents a clear contribution
towards improving data (not meta-data) access overhead:

e We propose and evaluate STREAM and STREAM-
PACK, two file-space management algorithms that
(much like log-structured file systems) optimize write
performance by writing data contiguously on the disk.

e We propose and evaluate LAZY-READS and LAZY-
READS-LOC, two methodsthat reducedi sk seek over-
head associated with read (URL hit) operations.

As aresult our algorithms improve on the performance of
SQUID by afactor more than 25, while[22] reports perfor-
mance improvements of afactor closeto 5.

M ost web proxies have been implemented as user-level pro-
cesses on top of commodity (albeit state-of-the-art) file-
systems. Some other web proxies were built on top of
custom-made file systems or operating systems. NetCache
was build on top of WAFL, a file system that improves
the performance of write operations [16]. Inktomi’s traffic
server uses UNIX raw devices [18]. CacheFlow has de-
veloped CacheOS, a special-purpose operating system for
proxies[17]. Unfortunately very little information has been
published about thedetail sand performanceof such custom-
madeweb proxies, and thusadirect quantitative comparison
between our approach and theirsis very difficult. Although
custom-made operating systems and file-systems can result
in the best performance, we chose to explore the approach
of running a web proxy as a user-application on top of a
commodity operating system. Our approach will result in
higher portability and more widespread use of web proxies.

The main contributions of our work in the area of disk 1/0
of web proxies are:

e We identify as the single largest source of overhead
the storage of each URL in a separate file. We show
the extend of this overhead, and propose a novel file
management algorithm (BUDDY) to reduce it by an
order of magnitude.

e We identify as the next single largest source of over-
head the cost associated with file write operations. We
propose a file space management approach (inspired
by log-structured file systems) called STREAM that
groups severa independent write requests into long
sequential writes that minimize disk head movement.

e Once write operations proceed at maximum speed
(with the use of STREAM-based algorithms), read
operations (although fewer in number) represent the
next single largest source of overhead. We propose
novel methods (LAZY-READS and LAZY-READS
LOC) that reduce the disk head movements associated
with disk read operations.

3 Evaluation

3.1 Methodology

To evaluate the disk 1/O performance of web prox-
ies we use a combination of simulation and experimen-
ta evaluation as shown in Figure 1. We use traces
from a SQUID web proxy used at Digital Equipment

Corporation (ftp://ftp.digital.com pub/ DEC
/traces/ proxy/ webtraces. ht m). We feed these
tracesto afirst-level main memory cachesimulator [7]. The
simulated main-memory is 512 Mbytes large and replaces
URLSs using the Least-Recently Used (LRU) replacement
policy. 1 URL requests that miss the main memory cache
are fed into a second-level cache smulator that smulates
the magnetic disk cache. Second-level hitsread the contents
of the URL from the disk and generate a URL-read request.
Second-level misses are assumed to be sent to the appropri-
ate web server over the Internet, and the server’s response
is saved in the disk generating a URL-write request. When
the disk runsout of space, an LRU replacement algorithmis
invoked, which may delete old filesgeneratingaURL-delete
request. URL-delete requests are also generated when new
versionsof cached files are requested. The generated URL -
read, URL-delete, and URL-write requests are sent to a
file-space management simulator which forwards them to
a Solaris UFS file system which reads, deletes, and writes
URLSs as requested. In all our experiments we report the
total time (completion time) to serve thefirst million URL-
read/URL -write/URL -del ete operations. 2 The completion
time reported in our experimentsis inversely proportional
to the throughput (operations per second) of the system and
thusisadirect measureof it. If for example, the completion
time reported is 2000 seconds, then the throughput of the
system is 1058206/2000=529 URL -get requests per second.
Itis possible to argue however, that, besides throughput, la-
tency is also an important metric, especialy for the end
user. However, latency (by itself) can be a misleading per-
formance metric for our work. For example, suppose that
proxy server A has a 15 msec average operation response
latency and manages to sustain 50 operations per second,
while server B has a 30 msec average operation response
latency and manages to sustain 100 operations per second.
Although latency may favor server A, most implementations
will probably prefer to use server B, sinceit achieves higher
throughput and its increase in latency is not noticeable by
most humans. For this reason, our performance results fo-
cuson server throughput while making surethat our policies
do not increase latency noticeably. This happens in most
cases without particular effort because our policies interact
with disks that operate in the millisecond range, while the
typical world-wide web latency is in the second range (3-
4 seconds per request in the average when lightly loaded,
and more than 10 seconds per request when heavily loaded
[2, 19)).

1Although more sophisticated policies than LRU have been proposed
they do not influence our results significantly.

2The file space management simulator is fed with 1058206 URL-get
requests that generate one million URL-read/URL-write/lURL-delete op-
erations. These 1058206 URL-get requests result in 338081 (32%) main
memory hits, 42085 (4%) secondary memory hits, and 678040 (64%)
misses, which result in 678040 URL-write operations, 42085 URL-read
operations, and 279875 URL -delete operations.

] ik h file accesy
proxy M{:un Me_mory Main Memor oisk Cache traces file space
Simulation J Simulation simulator
traces) misses 2 GB - LRU | URL-read
512 MB - LRU °
(DEC) URL-write
disk cache URL-delete file access
misses Iseek, rea}d,
(simulated mmapfwrite
Internet Magentic
disks

Figure 1: Simulation Methodology. Tracesfrom the DEC'sweb proxy are fed into a512-Mbyte main memory LRU cache
simulator. URLSs that miss the main memory cache are fed into a 2-Gbyte disk LRU cache simulator. URLS that miss
this second-level cache are assumed to be fetched from the Internet. These misses generate URL- wr i t e requests because
once they fetch the URL from the Internet they save it on the disk. Second-level URL hits generate URL- r ead requests,
since they read the contents of the URL from the disk. To make space for the newly arrived URLSs, the LRU replacement
policy deletes non-recently accessed URLsresultingin URL- del et e requests. All URL-wri t e, URL- r ead, and URL-

del et e requests are fed into a file space simulator which maps URLSs into files (or blocks within files) and sends the

appropriate calls to the file system.

Our experimental environment consists of an ULTRA-1
workstation running Solaris 5.6, equipped with a Seagate
ST15150WC 4Gbyte disk with 9 ms average latency, 7200
rotations per minute, on which we measured a maximum of
4.7 Mbytes per second write throughput.

3.2 Workload Characterization

In this first set of experiments we will demonstrate that
the traffic sent to the disk subsystem of a web proxy is
dominated by write requests. Figure 2 plots the number of
URL -read and URL -write operationsthat are sent to thefile
system of the proxy server (for 5 million URL-get requests).
The number of URL-write operations is around 3 million,
and decreasesslowly with disk size (sincelarger disksimply
fewer URL misses). The number of URL-read requestsis
less than half a million and increases with disk size (since
larger disksimply more URL hits). 3

Figure 2 suggests that the number of URL-read operations
is significantly smaller than the number of URL-write op-
erations. Thisis because URL-write operations correspond
to second-level URL misseswhich can be quitelarge, while
URL -read operationscorrespond to URL sthat missthefirst-
level cache but hit in the second-level cache, which are
usually asmall percentage.

3Note that the sum of URL-read and URL -write requestsisin all cases
3.4 million and not 5 million as one might expect. This because the 512-
Mbytefirst level cache isable to achieve a32% URL hit rate, which leaves
3.4 million URL requests for the second level cache.

[1 cbyte
|:| 2 Ghytes
- 6 Ghytes
Il 12 Gbytes

4000

3000

2000

Number of Operations (thousands)

1000

0

URL-READS URL-WRITES

Figure 2: File System Operations. Thefigure displaysthe
amount of URL operations(read/write) during the execution
of aweb proxy for various disk sizes. In all cases, write
operations outnumber read operations.

50

[File create
- File Delete

40

w
o

N
o

Time per operation (in ms)

10

0

1 4 10
File Size (in Kbytes)

Figure 3: Filemanagement Overhead. Thefiguredisplays
the cost of file creation and file deletion as measured by the
HBENCH-OS (latfs). The benchmark creates 64 files and
then deletesthem in the order of creation. The same process
isrepeated for files of varying sizes. We see that thetime to
create afile is more than 20 msec. Thetimeto delete afile
is between 10 and 20 msec. Thetimeto create and delete a
4-Kbytefileis close to 50 msec, which impliesthat thisfile
system can create no more than 20 such files per second.

3.3 File Management Overhead

Inthisset of experimentswewill demonstratethat thesingle
most important overhead associated with the disk 1/0 of web
proxiesis the result of storing each URL in a separate file.
To measure thisfile system overhead we use the HBENCH-
OS benchmark [6] that creates 64 files in a directory and
then deletes them in reverse-of-creation order. After the
benchmark is repeated a number of times, the average time
to do file operation, as well as its standard deviation are
reported. Inall but two casesthe standard deviation wasless
than 1% away of the averagetime, and in the two remaining
cases it was less than 10%. Figure 3 plots the results. We
seethat thetimeto create afileis more than 20 milliseconds
- evenwhenthefileisempty. Thetimeto createal10-Kbyte-
largefileiscloseto 40 milliseconds. Thetimeto deleteafile
is more than 20 milliseconds (for non-zero-sized files). If
we use a benchmark that creates/del etes more than 64 files,
these times will go up since the traditional UNIX directory
lookup takes time linear in the directory length. Published
research results using similar benchmarks agree with our
measurements [26].

For each URL fetched from a web server, a typical web
proxy needsto create afile to store the contents of the URL.
When the disk subsystem runs out of space, for each new

filecreated (inthe average) an old filewill haveto bedeleted
(to make free space). Thus, for each URL fetched from a
web server, onefileis created and onefileisdeleted. Figure
3 suggeststhat the cost of afilecreation and afiledeletionis
about 50 msec, which implies that a web proxy that incurs
such afile creation/del etion cost can fetch from the network
(and store in the local disk) no more than 20 URLS per
second. Given that the median size of a cached fileis only
about 3 Kbyteslong [33], then the web proxy can serve data
at arate of 3 Kbytes every 50 msec, or about 60 Kbytes
per second, a throughput that is two orders of magnitude
smaller than most modern magnetic disks provide. This
throughput is even smaller than most Internet connections.
Thus, it is obvious why researchers observe that “ the disk
1/0 overhead of caching turns out to be much higher than
the latency improvement from cache hits’ [27].

34 File Management

Most publicly available popular web proxies (including
Squid [39], Harvest [8], and CERN) store each URL on
aseparate file. Thesefiles are stored in a shallow directory
hierarchy (like Squid) or in adeep directory hierarchy (like
CERN and Harvest). We bdlieve that file management can
be the largest limiting factor in the performance of a web
proxy. To aleviate this performance bottleneck we propose
anovd file-grouping method called BUDDY. The mainidea
behind BUDDY is that each file may store several URLSs.
URL s that need one block of disk space (512 bytes) are all
stored in the same file. URLSs that need two blocks of disk
space are stored in another file, etc. Each file essentially is
composed of same-sized slots. Each new URL is stored is
the first free slot of the appropriate file. BUDDY behaves
asfollows:

e BUDDY creates one file to store all URLSs that are
smaller than one block, another file to store all URLs
that are larger than a block, but smaller than two, an-
other file to store all URLSs that are larger than two
blocks, but smaller than three, and so on, up to a pre-
determined number of blocks (THRESHOLD). URLs
larger than thisnumber are stored in separatefiles- one
URL per file.

e On afile-write request for a given size, BUDDY finds
the first free dot on the appropriate file, and stores
the contents of the new URL there. If the size of the
contents of the URL is above a certain threshold (128
Kbytes in most of our experiments), BUDDY creates
anew file to store this specific URL only. 4

4The effect of this threshold on performance is studied in figure 5.

Completion time (hours)

G—OSIMPLE
E—aSQUID
A—AMULTIPLE-DIRS
< —<BUDDY

6:00:00 |

5:00:00 |

4:00:00 |

3:00:00 }

2:00:00 |

1:00:00

e
e S
0 106000 206000 306000
Number of URL requests
Figure 4: File Management Overhead for Web Proxies.
The figure displays the overhead of doing 300,000 second-
level cache file system operations on a 1-Gbyte disk. We
see that both methods that create one file for each URL
they need to store perform very bad. BUDDY, which stores
several URL s per file takesroughly less than 9 msec per file
operation.

e On a file-delete request, BUDDY marks the corre-
sponding slot in the appropriate file as free. This dot
will be reused at a later time by another URL of the
givensize.

e On afileread request, BUDDY finds the dlot in the
appropriate file and reads the content of the requested
URL.

The main advantage of BUDDY isthat it practically elimi-
natesthe overhead of file creation/del etion operations. ® The
URL sthat occupy awholefile of their own, represent atiny
percentage of the total number of URLS, so that their file
creation/deletion overhead is not noticeable overall. One
more advantage of BUDDY is that by placing same-sized
URLSs on the same file, it eliminates file space fragmen-
tation; that is, a URL always occupies consecutive bytes
within afile. This simplifies the mapping between URLS
and the positions within files where they reside.

5BUDDY may aso be used to reduce internal fragmentation and im-
prove hit ratio by storing more data on a given disk. Current architecture
trends suggest that disk block size should increase. Thisimpliesthat small
files, which occupy at least one disk block, in the future will probably
occupy significantly more space than needed. On the contrary, when stor-
ing several URLSs per file, as BUDDY does, internal fragmentation will
be reduced, more data will fit into the disk, and higher hit rates will be
possible.

To evauate the performance advantages of BUDDY we
compared it against three traditional approaches:

e SIMPLE: this approach stores each URL in a separate
file. All filesreside in the same directory.

e SQUID: this approach, used by the SQUID proxy
server, createsatwo-level directory structure. Thefirst
level contains 16 directories (named 0..F), while the
second level contains 256 directories (named 00..FF)
for each first-level directory. Files are written in the
directories in a round robin manner: the first file is
written at 0/00, the next at 0/01, ... then at O/FF, then
at 1/00, etc.

e MULTIPLE-DIRS: this approach creates one file for
each URL. All filesthat correspond to URLs from the
same server are stored in the same directory. Filesthat
correspond to URLs from different servers are stored
in different directories. All directories arein the same
level.

Figure 4 shows the completion time of a stream of 300,000
file-system requests (URL-read, URL-write, URL-delete),
which were generated by 398034 URL-get requests as a
function of the management algorithm used. We see that
SIMPLE hastheworst performance, serving about 14 URL -
get operations per second. SQUID performs better - it
achieves 20 URL-get operations per second; independent
published performance results also suggest that SQUID
achieves 20-25 URL -get operations per second on asingle-
disk system [9]. MULTIPLE-DIRS performsalittle better,
achieving 23 URL -get operations per second.

Compared to SIMPLE, SQUID, and MULTIPLE-DIRS,
BUDDY improves performance almost by an order of mag-
nitude, since it achieves close to 133 URL-get operations
per second. This is because BUDDY neither creates nor
deletesfiles for most of the URLs it serves.

The careful reader however, will notice that SIMPLE,
SQUID, and MULTIPLE-DIRS appear to be more robust
than BUDDY in a case of system crash. If the sys
tem crashes, SIMPLE, SQUID, and MULTIPLE-DIRSwill
probably recover alarge percentage of their metadata, while
BUDDY will probably lose some portions of its metadata
(i.e. whereiseach URL stored). We believe that thisis not
asignificant problem for the following reasons:

e BUDDY can periodicaly (i.e. every few minutes)
write its metadata information on safe storage, so that
inthe case of crashit will lose only the work of the last
few minutes.

¢ Alternatively, BUDDY canstorealongwitheach URL,
its name and size. In case of acrash, after the system
reboots, the disk can be scanned, and the information
about which URLs exist on the disk can be recovered.

e Evenif few cached documents are lost due to a crash,
they can be easily retrieved from the web server where
they permanently reside. Thus, a system crash does
not loseinformation permanently; it just losesthelocal
copy of some data (i.e. a few minutes worth) which
can be easily retrieved from the web again.

e There exists a significant amount of recent work that
speeds-up synchronousdisk write-operations(and thus
metadata updates) by using for example Non-volatile
RAM [42], transactions [14], replication [30], or soft-
updates[25].

InBUDDY, URLsthat arelarger than athreshold are stored
in a separate file each - one URL per file. All other URLsS
are“buddied” together in appropriatefiles. The next exper-
iment sets out to explore how large this threshold should
be. Figure 5 plots the completion time of the BUDDY as
a function of the threshold. We see that as the threshold
increases, the completion time of BUDDY improves fast.
Thisisbecause an increasing number of URLsare stored in
the same file, eliminating a significant number of file cre-
ate/delete operations. As the threshold increases above 10
(disk blocks), the completion timeimproves, but not asfast.
When the threshold reaches 256 blocks (i.e. 128 Kbytes),
we get (almost) the best performance. Our results suggest
that URL s larger than 128 Kbytes should be given afile of
their own. Such URLSs are rare and large, so that the file
creation/del etion overhead is not noticeable.

3.5 Optimizing Write throughput

Once we reduce the file management overhead we noticed
that the next single largest source of overhead is due to
disk latencies incurred by writing data scattered all over
the disk. Although it reduces file management overhead,
BUDDY makes no effort to layout data on disk in such as
way as to improve write (and/or read) performance. Given
that a web proxy’s disk workload is write-dominated (as
shown in figure 2), the performance of write operations can
beimproved if writesto the disk happen in alog-structured
fashion. Thus, instead of writing new data in some free
space on the disk, we continually append data to the disk
until the disk runs out of space, in which case write op-
erations continue from the beginning of the disk. This
method has been widely used in log-structured file systems
[5, 15, 28, 35]. In this paper we use a log-based approach

300.0

o——e BUDDY

250.0

200.0

150.0

Completion time (minutes)

100.0

%00 L

0.0

0 100 200 300
THRESHOLD (Kbytes)

Figure 5. Overhead of BUDDY as a function of the
THRESHOLD. The figure displays the cost of serving
400,000 file system operations as a function of the thresh-
old used by BUDDY. The experiment suggests that URLSs
smaller then 128 Kbytes should be “buddied” together.
URLs larger than 128 Kbytes can be safely given a file
of their own (one URL per file) - they will not result in any
noticeable overhead.

in user-space management to see if the effectiveness of log-
structured file system can be achieved by a user program
(the web proxy) without the need of a specialized file sys-
tem. Towards this end we devel op afile-space management
algorithm (called STREAM) that (much-like log-structured
file systems) streams write operationsto the disk:

e The web proxy storesall URLsin asinglefile orga-
nized in dots of 512 byteslong. Each URL occupies
an integer number of such dots.

¢ URL-delete operations mark the appropriate space on
thefile asfree.

e URL-read operations read the appropriate portions of
thefile that correspond to the given URL.

e URL write operations continue appending data to the
file until the file runs out of space (i.e. they reach the
end of file). In this case, new URL write operations
continue from the beginning of the file writing on free
dlots, until they reach the end of file, etc.

STREAM hasthe potential of making long sequential write
operations. The length of these sequential write operations
depends on the distribution of the free space on the file,
whichinturn dependson the amount of scratch spacethat is
availabletothefile. For example, if thereisno scratch space,

then therewill awaysbeonly onefreedot in thefile, which
will tend to movenon-sequentially inthefile, and STREAM
will have little opportunity to make long sequential writes.
The whole purpose behind STREAM (and log-structured
file systems) is that disks should be operated at much less
than 100% of their utilization, so that thereis alwaysenough
free space onthe disk. Thisfree space will be used to write
new files/datain long sequential write operations.

When we first evaluated the performance of STREAM we
noticed that even when therewas alwaysfree spaceand even
in the absence of read operations, STREAM did not write
to disk at maximum throughput. We traced the problem and
found that we were experiencing a small-write performance
problem: writing a small amount of datato the file system,
usually resulted in a disk-read and a disk-write operation.
The reason is the following: if a process writes a small
amount of data (e.g. the first block of a page) in a page
that is not in the main memory cache, the operating system
will read the page from the disk, make al updatesin main
memory, and then write the page to the disk. To reduce
these small-write effectswe devel oped a packetized version
of STREAM: STREAM-PACKETIZER that worksjust like
STREAM with the following exception:

e There exists a packetizer buffer that is one page long
and aligned to a page boundary. URL -write operations
are not being forwarded to the file system - instead
they are being accumulated into a packetizer as long
as they are stored contiguoudly to the previous URL -
write request. Once the packetizer fills up, or if the
current request is not contiguous to the previous one,
the packetizer is sent to the file system for writing to
the disk.

Figure 6 plots the performance of BUDDY, STREAM, and
STREAM-PACKETIZER as a function of disk utilization.
When disk utilization is high (around 95%), STREAM and
STREAM-PACKETIZER perform comparableto BUDDY.
This is because, at 95% utilization there do not exist long
sequential portions of free space, and thus STREAM and
STREAM-PACKETIZER can not perform long sequential
write operations. On the contrary, when disk utilization is
less than 72%, STREAM performs two times better than
BUDDY, and STREAM-PACKETIZER performs 2.5 times
better than BUDDY. Actually, STREAM-PACKETIZER
manages to achieve more than 350 URL -get operations per
second. To deliver their high performance, STREAM and
STREAM-PACKETIZER need about 30% more disk space
than the actual size of the URL s they need to store. Fortu-
nately, the cost of disk space decreases rapidly (by afactor
of two) every year [10]. Recent measurements suggest that
most file systemsare about half-full ontheaverage[11], and

Completion time (secs)

10000

[supbpY
[sTrReam

[STREAM-PACKETIZER
8000 I

9000

7000

6000

5000

4000

3000

2000

1000

0 95 _90 _83 _76 _71 -
Disk Space Utilization (%)

Figure 6: Overhead of file management algorithms as
a function of disk (space) utilization. The figure dis-
playsthe time it took to serve 1,000,000 file system opera-
tions as a function of disk utilization. The performance of
STREAM and STREAM-PACKETIZER improves as disk
utilization decreases. When disk utilization is around 70%
both STREAM and STREAM-PACKETIZER outperform
BUDDY by 2-3 times.

66

thus, log-structured approachesfor file management may be
more attractive than ever.

3.6 Improving Read Requests

Thanks to the STREAM and STREAM-PACKETIZER a-
gorithms, URL-write operations suffer little (if any at all)
seek and rotational overhead. However, URL-read oper-
ations still suffer from disk seek and rotational overhead,
because the disk head must movefrom the point it was writ-
ing data to disk to the point it must read data. To make
matters worse, once the read operation is completed, the
head must move back to continue streaming its data onto
thedisk. Thus, each read operation (which necessarily hap-
pens within a stream of write operations) induces two head
movements. To reduce this overhead we have developed
a LAZY-READ approach which is much like STREAM-
PACKETIZER with the following difference:

Once a URL read operation is issued, it is being
sent into an intermediate buffer. When the buffer
fills up with read requestsit forwards them to the
file system, sorted according to the position (in

8000

_ [] STREAM-PACKETIZER
] [] Lazv-READS
7000 _
6000
7 L
& 5000 —
XS L
]
£
= 4000
S
3
£
£ 3000
&
2000
1000
0 ‘
95 920 83 76 71 66

Disk Space Utilization (%)

Figure 7: Performance of LAZY-READS. Thefiguredis-
plays the cost of serving 1,000,000 file system operations
as a function of 2-Gbyte disk utilization. LAZY-READS
gathers reads requests ten-at-a-time and issues them all at
the sametimeto the disk reducing the disk head movements
between the write stream and the data read. The figure
shows that LAZY-READS improves the performance of
STREAM-PACKETIZER by 10%.

thefile) of the data they want to read.

Figure 7 shows that LAZY-READS improves the perfor-
mance of STREAM-PACKETIZER by 10%. It istrue that
we expected alarger performance improvement. We traced
the operating system actions and found that even if LAZY-
READS sends read operations to the file system ten-at-a-
time, the file system does not preserve this clustering and
sent 3-5 clustered read operationsto the disk in the average.
Nevertheless, clustering read operations has potential and
should be further explored. &

6The careful reader will notice however, that LAZY-READS may in-
crease operation latency. Our trace measurements show that STREAM-
PACKETIZER augmented with LAZY-READS s able to serve 10-20 read
requests per second (in addition) to the write requests. Thus LAZY-
READS will delay the average read operation only by a fraction of the
second. Given that the average web server latency is several seconds long
[2], LAZY-READS impose an unoticeable overhead. To make sure that
no user ever waits an unbounded amount of time to read a URL from the
disk even in an unloaded system, LAZY-READS can aso be augmented
with atime out period. If the time out elapses then al the outstanding read
operations are sent to disk.

8000
[STREAM-PACKETIZER

[vAzv-READS

[LAzv-rReADs-LOC-8
I LAZY-READS-LOC-64
Il L ~7Y-READS-LOC-128

7000
6000
5000 i
4000

3000

Completion time (secs)

2000

1000

0

90 “83 “76 71 66

Disk Space Utilization (%)
Figure 8: Performance of LAZY-READS-LOC. Thefig-
ure displaysthe cost of serving 1,000,000 file system opera-
tionsasafunction of disk utilization. LAZY-READS-LOC
attempts to put URLSs from the same server in nearby disk
locations by clustering themin locality buffers before send-
ingthemtothedisk. We seethat even asfew aseight buffers
improve performance over LAZY-READS.

3.6.1 Preservingthe Locality of the URL stream

The URL requests that arrive in aweb proxy contain a sig-
nificant amount of locality. For example, consider the case
of an HTML pagethat has several embedded images. Every
time a user requests that HTML page, (s)he will probably
request al the embedded images as well. Thus, it may be
worthwhile to store the HTML page and its embedded im-
ages in nearby disk locations so that future accesses to the
HTML page and its embedded images will proceed at top
speed. Unfortunately, current proxy serverstend to destroy
such locality because they receive (and interleave) requests
from several web clients. Thus, contiguous requests from
a single web client may be received by the proxy server
interleaved with tens of requests from other clients. There-
fore, URLSs that correspond to contiguous requests from a
single client may be stored in the magnetic disk hundreds
of Kbytes away from each other. To remedy this problem
we have augmented the LAZY-READS policy with a num-
ber of locality buffers (LAZY-READS-LOC) that work as
follows:

e There exist a set of locality buffers whose purpose is
to accumulate URL-write operations that correspond
to URLs from asingle web server.

Algorithm STREAM-PACK | STREAM-PACK | STREAM-PACK | STREAM-PACK
+LAZY-READS | +LOC-128 +LAZY-READS
+LOC-128
Time (minutes. sec) 46:31 42:08 36:16 3351
Improvement (over STREAM-PACK) 10% 28% 37.5%

Table 1: Comparison of the improvement of LAZY-READS, and locality buffers on the STREAM-PACKETIZER
algorithm. We see that the single largest performance improvement (28%) comes from the use of locality buffers and the

next improvement (10%) comes from LAZY-READS.

¢ When the proxy wants to store a URL fetched from
some web server, it searches for a buffer that accumu-
lates URLs from the same server and adds the data to
the buffer. If no such buffer isfound, onevictim buffer
is selected, its contents are written to the disk, and the
new URL iswritten in the buffer.

Thispolicy gathersURL sfrom the same server into thesame
locality buffer, so that URL sfrom the same server requested
within ashort timeinterval will probably be written in con-
tiguous file locations. We have evaluated the performance
of this policy (for 8-128 locality buffers) against the per-
formanceof LAZY-READSand STREAM-PACKETIZER.
Figure 8 plotsthe results. We see that the existence of even
eight locality buffers (LAZY-READS-LOC-8) improves
performance over LAZY-READS significantly. The most
spectacular improvements happen at medium to large disk
utilization. For example, at 76% disk utilization LAZY-
READS-LOC-128 performs 2.5 times better than LAZY-
READS. In all cases, however, LAZY-READS-LOC-128
is at least 30% better than LAZY-READS. In the best case
LAZY-READS-LOC achieves around 500 URL -get opera-
tions per second.

In our fina experiment we will explore what is
the contribution of each factor (read-clustering/LAZY-
READS and locality buffers/LOC) to the performance of
STREAM-PACKETIZER. Table 1 presents the comple-
tion time of policies STREAM-PACKETIZER, STREAM-
PACKETIZER augmentedwith LAZY-READS, STREAM-
PACKETIZER augmented with locality buffers (128 of
them), and finaly, STREAM-PACKETIZER augmented
with both LAZY-READS and locality buffers at 71%
disk utilization. It also shows the (percentage) improve-
ment of every method on top of STREAM-PACKETIZER.
We see that LAZY-READS improve 10% on STREAM-
PACKETIZER, locality buffersimprove 28% on STREAM-
PACKETIZER, and both methods improve 37% on
STREAM-PACKETIZER.

Summarizing, table 2 shows the (best) performance of the
various algorithms studied.

Algorithm Performance
(operations
per second)

SIMPLE 14

SQUID 20

MULTIPLE-DIRS 23

BUDDY 133

STREAM 295

STREAM-PACK 358

LAZY-READS 396

LAZY-READS-LOC 495

Table2: Comparativeperformance(in termsof URL -get
operationsper second) of variousfile space management
algorithms.

4 Summary-Conclusions

In this paper we study the disk 1/0 overhead of world-wide
web proxy servers. Using a combination of experimental
evaluation and simulation based on traces from busy web
proxies we show that web proxies experience significant
overheads dueto disk 1/0. We propose severa file manage-
ment methods (like BUDDY, STREAM, LAZY-READS,
STREAM-PACKETIZER, and locality buffers) which re-
duce the disk management overhead by more than a factor
of 25overall (from SQUID to LAZY-READS-LOC). Based
onh our experiments we conclude:

e Thesinglelargest sourceof overheadin traditional web
proxies is the file creation and file deletion overhead
associated with storing each URL on a separate file.
Storing several URLSs per file improves performance
by an order of magnitude.

e Disk accesses of web proxies are dominated by write
requests. Streaming these write operations to disk
(much like log-structured file systems do) improves
performance by a factor of 2-3.

e Web clients display alocality of referencein their ac-

cesses. Web proxies tend to destroy it by interleaving
requests from several clients. Preserving this locality
of reference results in better layout of URLs on the
disk, which improves performance by 30%-150%.

e User-level file management policies improve perfor-
mance (over traditional web proxieslike SQUID) by a
factor of 25 overal, leaving little space for improve-
ment by specialized kernel-level implementations.

We believe that our results are significant today and they
will be even more significant in the future. As disk band-
width improves at a much higher rate than disk latency
[10], methods that reduce disk head movementsand stream
data to disk will result in increasingly larger performance
improvements.

Acknowledgments

This work was supported in part by the Institute of Com-
puter Science of Foundation for Research and Technology
-Héllas, in part by the University of Crete through project
“File Systemsfor Web servers’ (1200), and in part by EPET
Il project“ E-Commerce” funded through the General Secre-
tariat for Research and Devel opment. We deeply appreciate
this financial support.

Panos Tsirigotis was a source of inspiration and of many
useful comments. Manolis Marazakis and George Dramiti-
nosgaveususeful commentsin earlier versionsof thispaper.
Katia Obraczka (our shepherd) provided useful comments
inthefinal version of the paper. P. Cao provided one of the
simulators used. We thank them all.

References

[1] M. Abrams, C.R.Standridge, G. Abdulla, S. Williams,
and E.A. Fox. Caching Proxies. Limitations and Po-
tentials. In Proceedings of the Fourth International
WWW Conference, 1995.

[2] J. Almeida and P. Cao. Measuring Proxy Perfor-
mance with the Wisconsin Proxy Benchmark. Journal
of Computer Networks and ISDN Systems, 30:2179—
2192, 1998.

[3] Azer Bestavros. Speculative Data Dissemination and
Service to Reduce Server Load, Network Traffic and
Service Time for Distributed Information Systems.

(4]

(9]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

In Proceedings of ICDE’96; The 1996 International
Conference on Data Engineering, March 1996.

Azer Bestavros. Using speculation to reduce server
load and service time on the WWW. In roceedings of
CIKM’95: The Fourth ACM International Conference
on Infor mation and Knowledge Management, Novem-
ber 1995.

Trevor Blackwell, Jeffrey Harris, and Margo Seltzer.
Heuristic Cleaning Algorithmsfor Log-Structured File
Systems. In Proceedings of the 1995 Usenix Technical
Conference, January 1995.

A. Brown and M. Seltzer. Operating System Bench-
markinginthe Wake of Lmbench: A Case Study of the
Performanceof NetBSD ontheIntel x86 Architecture.
In Proc. of the 1997 ACM S GMETRICS Conference,
pages 214224, 1997.

Pel Cao and Sandy Irani. Cost-Aware WWW Proxy
Caching Algorithms. In Proc. of the USENIX Sympo-
sium on Internet Technologies and Systems, 1997.

Anawat Chankhunthod, Peter B. Danzig, Chuck Neer-
dadls, Michael F. Schwartz, and Kurt J. Worrell. A
Hierarchical Internet Object Cache. In Proc. of the
1996 Usenix Technical Conference, 1996.

G. Chisholm. Squid Performance as a
Factor of the Number of Disks Utilised.
http://www.dnepr.net/Squi d/Benchmarking/Number-
of-Disks/.

M. Dahlin. Serverless Network File Systems. PhD
thesis, UC Berkeley, December 1995.

J.R. Douceur and W.J. Bolosky. A Large-Scale Study
of File System Contents. In Proc. of the 1999 ACM
S GMETRICS Conference, pages 5970, 1999.

S.L. Fritchie. The Cyclic News Filesystem: Getting
INN To Do More With Less. In Proc. of the 1997 Sys-
tems Administration Conference, pages99-111, 1997.

J. Gwertzman and M. Seltzer. The Case for Geo-
graphical Push Caching. In Proceedings of the 1995
Wbrkshop on Hot Operating Systems, 1995.

R. Hagmann. Reimplementing the Cedar File System
using Logging and Group Commit. In Proc. 11-th
Symposium on Operating Systems Principles, pages
155172, 1987.

J. Hartman and J. Ousterhout. The Zebra Striped Net-
work File System. Proc. 14-th Symposium on Op-
erating Systems Principles, pages 29-43, December
1993.

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

D. Hitz, J. Lau, and M. Malcolm. File System Design
for an NFSFile Server Appliance. InProc. of the 1994
Winter Usenix Technical Conference, pages 235-246,
1994,

Cache Flow Inc. http://www.cacheflow.com.

Inktomi Inc. The Sun/Inktomi Large Scale Bench-
mark. http://www.inktomi.com/inkbench.html.

T.M. Kroeger, D.D.E. Long, and J.C. Mogul. Ex-
ploring the Bounds of Web Latency Reduction from
Caching and Prefetching. InProc. of the USENIX Sym-
posium on Internet Technologies and Systems, pages
13-22,1997.

P. Lorenzetti, L. Rizzo, and L. Vicisano. Re-
placement Policies for a Proxy Cache, 1998.
http://www.iet.unipi.it/~ luigi/research.html.

C. Maltzahn, K. Richardson, and D. Grunwald. Per-
formance I ssues of Enterprise Level Web Proxies. In
Proc. of the 1997 ACM S GMETRICS Conference,
pages 13-23, 1997.

C. Maltzahn, K. Richardson, and D. Grunwald. Re-
ducing the Disk /O of Web Proxy Server Caches. In
Proc. of the 1999 Usenix Technical Conference, 1999.

E.P. Markatos. Main Memory Caching of Web Docu-
ments. Computer Networks and |SDN Systems, 28(7-
11):893-906, 1996.

E.P. Markatos and C. Chronaki. A Top-10 Approach
to Prefetching onthe Web. In Proceedingsof the INET
98 Conference, 1998.

M.K. McKusick and G.R. Ganger. Soft Updates. A
Technique for Eliminating Most Synchronous\Writes
in the Fast FileSystem. In Proc. of the 1999 Usenix
Technical Conference - Freenix Track, pages 1-17,
1999.

L. McVoy and C. Stadlin. Imbench: Portable Toolsfor
Performance Analysis. In Proc. of the 1996 Usenix
Technical Conference, pages 279-294, January 1996.

Jeffrey C. Mogul. Speedier Squid: A Case Study of
an Internet Server Performance Problem. ;login: The
USENIX Association Magazine, 24(1):50-58, 1999.

M. Nelson, B. Welch, and J. Ousterhout. Caching in
the Sprite Network File System. ACM Transactions
on Computer Systems, 6(1):134-154, February 1988.

V.N. Padmanabhan and J. Mogul. Using Predic-
tive Prefetching to Improve World Wide Web La
tency. SSGCOMM Computer Communication Review,
26:22-36, 1996.

[30]

(31]

[32]

[33]

(34]

[35]

[36]

(37]

(38]

[39]

[40]

[41]

[42]

Athanasi os Papathanasi ou and Evangel osP. Markatos.
Lightweight Transactions on Networks of Worksta-
tions. In Proc. 18-th Int. Conf. on Distr. Comp. Syst.,
pages 544-553, 1998.

JE. Pitkow and M. Recker. A Simple, Yet Robust
Caching Algorithm Based on Dynamic Access Pat-
terns. In Proceedings of the Second International
WWW Conference, 1994,

Mendel Rosenblum and John Ousterhout. The Design
and Implementation of aLog-Structured File System.
In Proc. 13-th Symposiumon Operating Systems Prin-
ciples, pages 1-15, October 1991.

A. Rousskov and V. Soloviev. On Performance of
Caching Proxies. In Proc. of the 1998 ACM S GMET-
RICS Conference, 1998.

P. Scheuearmann, J. Shim, and R. Vingralek. A Case
for Delay-Conscious Caching of Web Documents. In
6th International World Wide Web Conference, 1997.

M. Seltzer, M. K. McKusick, K. Bostic, and C. Stadlin.
An Implementation of a Log-Structured File System
for UNIX. In Proceedings of the 1995 Winter Usenix
Technical Conference, San Diego, CA, January 1993.

V. Soloviev and A. Yahin. File Placement in a Web
Cache Server. In Proc. 10-th ACM Symposium on
Parallel Algorithms and Architectures, 1998.

Joe Touch. Defining High Speed Protocols : Five
Challenges and an Example That Survives the Chal-
lenges. |IEEE JSAC, 13(5):828-835, June 1995.

Stuart Wachsberg, Thomas Kunz, and Johnny
Wong. Fast World-Wide Web Browsing Over Low-
Bandwidth Links, 1996. http://ccnga.uwaterloo.cal”
shwachsh/paper.html.

D. Wessels. Squid Internet Object Cache, 1996.
http://squid.nlanr.net/Squid/.

S. Williams, M. Abrams, C.R. Standbridge, G. Ab-
dulla, and E.A. Fox. Remova Policies in Network
Caches for World-Wide Web Documents. In Proc. of
the ACM SGCOMM 96, 1996.

Roland P. Wooster and Marc Abrams. Proxy Caching
that Estimates Page Load Delays. In 6th International
World Wide Web Conference, 1997.

Michael Wu and Willy Zwaenepoel. eNVy: a Non-
VolatileMain Memory Storage System. In Proc. of the
6-th International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, pages 86-97, 1994.

