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Abstract

World-Wide Web proxies are being increasingly used to
provide Internet access to users behind a firewall and to
reduce wide-area network traffic. Recent results suggest
that disk I/O is increasingly becoming the limiting factor
for the performance of web proxies. In this paper we study
the overheads associated with disk I/O for web proxies, and
propose secondary storage management alternatives that im-
prove performance. We use a combination of experimental
evaluation and simulation based on traces from busy web
proxies. We show that web proxies experience significant
overheads due to disk I/O. We propose several file manage-
ment methods that reduce the disk I/O overhead overhead
by a factor of 25 overall, resulting in a single-disk service
rate that exceeds 500 (URL-get) operations per second.

1 Introduction

World-Wide Web proxies are being increasingly used to pro-
vide Internet access to users behind a firewall and to reduce
wide-area network traffic. Recent results suggest that disk
I/O overhead is becoming an increasingly important bot-
tleneck for the performance of web proxies. For example,
Rousskov and Soloviev [33] observed that disk delays con-
tribute about 30% toward total hit response time. Mogul
states that their observations of the web proxy at Digital
Palo Alto firewall suggest the disk I/O overhead of caching
turns out to be much higher than the latency improvement
from cache hits [27]. Thus, to save the disk I/O overhead
the server is typically run in its non-caching mode.

In this paper we study the overheads associated with disk
�All the authors are also with the Unversity of Crete.

I/O for web proxies, and propose secondary storage man-
agement alternatives that improve performance. We show
that the single most important source of overhead is associ-
ated with storing each URL in a separate file. File system
operations (like a file creation followed by a file deletion)
may easily take up to 50 milliseconds (aggregate), even on
modern hardware. Given that the median size of a cached
file is 3KBytes [33], and that for each URL typical web
proxies create one file (to store the contents of the URL)
and delete another file (to free space), then the rate at which
a web proxy can store data to disk is 3KBytes every 50
msec, or roughly 60 KBytes/sec, a rate of execution that is
orders of magnitude lower than the data transfer rates that
current disks can sustain. This data rate is even lower than
most Internet connections. To alleviate this file management
overhead we propose a storage management method called
BUDDY that stores several URLs per file. BUDDY iden-
tifies URLs of similar sizes (“buddies”) and stores them in
the same file. BUDDY reduces file management overhead
by storing several URLs per file and reduces fragmentation
by storing similar-sized URLs in each file.

Once we reduce file management overhead using BUDDY,
we show that the next largest source of overhead is asso-
ciated with disk head movements due to file write requests
which write data in widely scattered places over the disk
space. To improve write throughput, we propose a file
space allocation algorithm (called STREAM) inspired from
log-structured file systems [32]. STREAM stores all URLs
in a single file contiguously (if possible). STREAM reduces
disk seek and rotational overheads and manages to perform
write operations at maximum speed. Once write operations
proceed at maximum speed, URL read operations emerge
as the next largest source of overhead. To reduce the disk
read overhead we propose algorithms that cluster several
read operations together (LAZY-READS) (in order to re-
duce the disk head seek time), and organize the layout of
the URLs on the file so that URLs accessed together are



stored in nearby file locations (locality buffers).

To evaluate the performance of our approach we use a mix of
trace-driven simulation and experimental evaluation. Traces
from the DEC’s web proxy are fed into a 512-Mbyte main
memory LRU cache simulator [7]. URLs that miss the main
memory cache are fed into a 2-Gbyte disk LRU cache sim-
ulator. URLs that miss this second-level cache are assumed
to be fetched from the Internet. These misses generate
URL-write requests, because once they fetch the URL
from the Internet they save it on the disk. Second-level
URL hits generate URL-read requests, since they read the
contents of the URL from the disk. To make space for the
newly arrived URLs, the LRU replacement policy deletes
non-recently accessed URLs resulting in URL-delete re-
quests. All URL-write, URL-read, and URL-delete
requests are fed into a file space simulator which maps
URLs into files (or blocks within files) and sends the ap-
propriate calls to the file system. Our results suggest that
BUDDY achieves an order of magnitude improvement over
traditional web proxy approaches, STREAM achieves a fac-
tor of 2-3 improvement over BUDDY, and locality buffers
achieves a 20%-150% improvement over STREAM.

The rest of the paper is organized as follows: Section 2
surveys previous work. Section 3 presents our algorithms,
and evaluates their performance. Section 4 summarizes and
concludes the paper.

2 Previous Work

Caching is being extensively used on the web. Most web
browsers cache documents in main memory or in local disk.
Although this is the most widely used form of web caching,
it is the least effective, since it rarely results in large hit
rates [1]. To improve cache hit rates, caching proxies are
used [8, 39]. Proxies employ large caches which they use
to serve stream of requests coming from a large number
of users. Since even large caches may eventually fill up,
cache replacement policies have been the subject of recent
research [1, 7, 20, 23, 31, 34, 40, 41]. Sophisticated caching
mechanisms usually improve the observed user latency and
reduce network traffic. Some caches may even employ
intelligent prefetching methods to improve the hit rate even
further [3, 4, 13, 24, 38, 29, 37].

Recently, it was realized that web proxies spend a signifi-
cant percentage of their time doing disk I/O. Rousskov and
Soloviev observed that disk delays contribute 30% towards
total hit response time [33]. Mogul suggests that disk I/O
overhead of disk caching turns out to be much higher than

the latency improvement from cache hits [27]. To reduce
disk I/O overhead Soloviev and Yahin suggest that proxies
should have several disks, and that each disk should have
several partitions. Using sophisticated write distribution
policies Soloviev and Yahin are able to spread requests over
several disks and to cluster requests on the same partition
to avoid long seek delays [36]. Scott Fritchie found that
USENET News servers spend a significant amount of time
storing articles in files “one file per article” [12]. To reduce
this overhead he proposes to store several articles per file
and to manage each file as a cyclic buffer. His implemen-
tation shows that storing several URLs per file results in
significant performance improvement. Maltzahn, Richard-
son and Grunwald [21] measured the performance of web
proxies. With regard to disk I/O they measured that several
disk accesses are needed for each URL request (in the av-
erage). This implies that the disk subsystem is required to
perform a large number of requests for each URL accessed
and thus it can easily become the bottleneck. In their sub-
sequent work, they propose two methods to reduce disk I/O
for web proxies [22]:

� they preserve locality of the http reference stream by
storing files of the same web server in the same proxy
directory (SQUIDL) and

� they use a single file to store all objects less than 8K in
size (SQUIDM).

It seems that both the authors of this paper as well as
Maltzahn, Richardson and Grunwald have independently
discovered similar key ideas that reduce the disk overhead of
a web proxy. For example, SQUIDL and SQUIDM of [22]
use similar locality and file management principles to our
algorithms (MULTIPLE-DIRS and BUDDY respectively).
These common ideas reduce the file management (meta-
data) overhead associated with storing URLs in a file sys-
tem. However, our work also presents a clear contribution
towards improving data (not meta-data) access overhead:

� We propose and evaluate STREAM and STREAM-
PACK, two file-space management algorithms that
(much like log-structured file systems) optimize write
performance by writing data contiguously on the disk.

� We propose and evaluate LAZY-READS and LAZY-
READS-LOC, two methods that reduce disk seek over-
head associated with read (URL hit) operations.

As a result our algorithms improve on the performance of
SQUID by a factor more than 25, while [22] reports perfor-
mance improvements of a factor close to 5.



Most web proxies have been implemented as user-level pro-
cesses on top of commodity (albeit state-of-the-art) file-
systems. Some other web proxies were built on top of
custom-made file systems or operating systems. NetCache
was build on top of WAFL, a file system that improves
the performance of write operations [16]. Inktomi’s traffic
server uses UNIX raw devices [18]. CacheFlow has de-
veloped CacheOS, a special-purpose operating system for
proxies [17]. Unfortunately very little information has been
published about the details and performance of such custom-
made web proxies, and thus a direct quantitative comparison
between our approach and theirs is very difficult. Although
custom-made operating systems and file-systems can result
in the best performance, we chose to explore the approach
of running a web proxy as a user-application on top of a
commodity operating system. Our approach will result in
higher portability and more widespread use of web proxies.

The main contributions of our work in the area of disk I/O
of web proxies are:

� We identify as the single largest source of overhead
the storage of each URL in a separate file. We show
the extend of this overhead, and propose a novel file
management algorithm (BUDDY) to reduce it by an
order of magnitude.

� We identify as the next single largest source of over-
head the cost associated with file write operations. We
propose a file space management approach (inspired
by log-structured file systems) called STREAM that
groups several independent write requests into long
sequential writes that minimize disk head movement.

� Once write operations proceed at maximum speed
(with the use of STREAM-based algorithms), read
operations (although fewer in number) represent the
next single largest source of overhead. We propose
novel methods (LAZY-READS and LAZY-READS-
LOC) that reduce the disk head movements associated
with disk read operations.

3 Evaluation

3.1 Methodology

To evaluate the disk I/O performance of web prox-
ies we use a combination of simulation and experimen-
tal evaluation as shown in Figure 1. We use traces
from a SQUID web proxy used at Digital Equipment

Corporation (ftp://ftp.digital.com/pub/DEC
/traces/proxy/webtraces.html). We feed these
traces to a first-level main memory cache simulator [7]. The
simulated main-memory is 512 Mbytes large and replaces
URLs using the Least-Recently Used (LRU) replacement
policy. 1 URL requests that miss the main memory cache
are fed into a second-level cache simulator that simulates
the magnetic disk cache. Second-level hits read the contents
of the URL from the disk and generate a URL-read request.
Second-level misses are assumed to be sent to the appropri-
ate web server over the Internet, and the server’s response
is saved in the disk generating a URL-write request. When
the disk runs out of space, an LRU replacement algorithm is
invoked, which may delete old files generating a URL-delete
request. URL-delete requests are also generated when new
versions of cached files are requested. The generated URL-
read, URL-delete, and URL-write requests are sent to a
file-space management simulator which forwards them to
a Solaris UFS file system which reads, deletes, and writes
URLs as requested. In all our experiments we report the
total time (completion time) to serve the first million URL-
read/URL-write/URL-delete operations. 2 The completion
time reported in our experiments is inversely proportional
to the throughput (operations per second) of the system and
thus is a direct measure of it. If for example, the completion
time reported is 2000 seconds, then the throughput of the
system is 1058206/2000=529URL-get requests per second.
It is possible to argue however, that, besides throughput, la-
tency is also an important metric, especially for the end
user. However, latency (by itself) can be a misleading per-
formance metric for our work. For example, suppose that
proxy server A has a 15 msec average operation response
latency and manages to sustain 50 operations per second,
while server B has a 30 msec average operation response
latency and manages to sustain 100 operations per second.
Although latency may favor server A, most implementations
will probably prefer to use server B, since it achieves higher
throughput and its increase in latency is not noticeable by
most humans. For this reason, our performance results fo-
cus on server throughput while making sure that our policies
do not increase latency noticeably. This happens in most
cases without particular effort because our policies interact
with disks that operate in the millisecond range, while the
typical world-wide web latency is in the second range (3-
4 seconds per request in the average when lightly loaded,
and more than 10 seconds per request when heavily loaded
[2, 19]).

1Although more sophisticated policies than LRU have been proposed
they do not influence our results significantly.

2The file space management simulator is fed with 1058206 URL-get
requests that generate one million URL-read/URL-write/URL-delete op-
erations. These 1058206 URL-get requests result in 338081 (32%) main
memory hits, 42085 (4%) secondary memory hits, and 678040 (64%)
misses, which result in 678040 URL-write operations, 42085 URL-read
operations, and 279875 URL-delete operations.
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Figure 1: Simulation Methodology. Traces from the DEC’s web proxy are fed into a 512-Mbyte main memory LRU cache
simulator. URLs that miss the main memory cache are fed into a 2-Gbyte disk LRU cache simulator. URLs that miss
this second-level cache are assumed to be fetched from the Internet. These misses generate URL-write requests because
once they fetch the URL from the Internet they save it on the disk. Second-level URL hits generate URL-read requests,
since they read the contents of the URL from the disk. To make space for the newly arrived URLs, the LRU replacement
policy deletes non-recently accessed URLs resulting in URL-delete requests. All URL-write, URL-read, and URL-
delete requests are fed into a file space simulator which maps URLs into files (or blocks within files) and sends the
appropriate calls to the file system.

Our experimental environment consists of an ULTRA-1
workstation running Solaris 5.6, equipped with a Seagate
ST15150WC 4Gbyte disk with 9 ms average latency, 7200
rotations per minute, on which we measured a maximum of
4.7 Mbytes per second write throughput.

3.2 Workload Characterization

In this first set of experiments we will demonstrate that
the traffic sent to the disk subsystem of a web proxy is
dominated by write requests. Figure 2 plots the number of
URL-read and URL-write operations that are sent to the file
system of the proxy server (for 5 million URL-get requests).
The number of URL-write operations is around 3 million,
and decreases slowly with disk size (since larger disks imply
fewer URL misses). The number of URL-read requests is
less than half a million and increases with disk size (since
larger disks imply more URL hits). 3

Figure 2 suggests that the number of URL-read operations
is significantly smaller than the number of URL-write op-
erations. This is because URL-write operations correspond
to second-level URL misses which can be quite large, while
URL-read operations correspond to URLs that miss the first-
level cache but hit in the second-level cache, which are
usually a small percentage.

3Note that the sum of URL-read and URL-write requests is in all cases
3.4 million and not 5 million as one might expect. This because the 512-
Mbyte first level cache is able to achieve a 32% URL hit rate, which leaves
3.4 million URL requests for the second level cache.
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Figure 2: File System Operations. The figure displays the
amount of URL operations (read/write) during the execution
of a web proxy for various disk sizes. In all cases, write
operations outnumber read operations.
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Figure 3: File management Overhead. The figure displays
the cost of file creation and file deletion as measured by the
HBENCH-OS (latfs). The benchmark creates 64 files and
then deletes them in the order of creation. The same process
is repeated for files of varying sizes. We see that the time to
create a file is more than 20 msec. The time to delete a file
is between 10 and 20 msec. The time to create and delete a
4-Kbyte file is close to 50 msec, which implies that this file
system can create no more than 20 such files per second.

3.3 File Management Overhead

In this set of experiments we will demonstrate that the single
most important overhead associated with the disk I/O of web
proxies is the result of storing each URL in a separate file.
To measure this file system overhead we use the HBENCH-
OS benchmark [6] that creates 64 files in a directory and
then deletes them in reverse-of-creation order. After the
benchmark is repeated a number of times, the average time
to do file operation, as well as its standard deviation are
reported. In all but two cases the standard deviation was less
than 1% away of the average time, and in the two remaining
cases it was less than 10%. Figure 3 plots the results. We
see that the time to create a file is more than 20 milliseconds
- even when the file is empty. The time to create a 10-Kbyte-
large file is close to 40 milliseconds. The time to delete a file
is more than 20 milliseconds (for non-zero-sized files). If
we use a benchmark that creates/deletes more than 64 files,
these times will go up since the traditional UNIX directory
lookup takes time linear in the directory length. Published
research results using similar benchmarks agree with our
measurements [26].

For each URL fetched from a web server, a typical web
proxy needs to create a file to store the contents of the URL.
When the disk subsystem runs out of space, for each new

file created (in the average) an old file will have to be deleted
(to make free space). Thus, for each URL fetched from a
web server, one file is created and one file is deleted. Figure
3 suggests that the cost of a file creation and a file deletion is
about 50 msec, which implies that a web proxy that incurs
such a file creation/deletion cost can fetch from the network
(and store in the local disk) no more than 20 URLs per
second. Given that the median size of a cached file is only
about 3 Kbytes long [33], then the web proxy can serve data
at a rate of 3 Kbytes every 50 msec, or about 60 Kbytes
per second, a throughput that is two orders of magnitude
smaller than most modern magnetic disks provide. This
throughput is even smaller than most Internet connections.
Thus, it is obvious why researchers observe that “ the disk
I/O overhead of caching turns out to be much higher than
the latency improvement from cache hits” [27].

3.4 File Management

Most publicly available popular web proxies (including
Squid [39], Harvest [8], and CERN) store each URL on
a separate file. These files are stored in a shallow directory
hierarchy (like Squid) or in a deep directory hierarchy (like
CERN and Harvest). We believe that file management can
be the largest limiting factor in the performance of a web
proxy. To alleviate this performance bottleneck we propose
a novel file-grouping method called BUDDY. The main idea
behind BUDDY is that each file may store several URLs.
URLs that need one block of disk space (512 bytes) are all
stored in the same file. URLs that need two blocks of disk
space are stored in another file, etc. Each file essentially is
composed of same-sized slots. Each new URL is stored is
the first free slot of the appropriate file. BUDDY behaves
as follows:

� BUDDY creates one file to store all URLs that are
smaller than one block, another file to store all URLs
that are larger than a block, but smaller than two, an-
other file to store all URLs that are larger than two
blocks, but smaller than three, and so on, up to a pre-
determined number of blocks (THRESHOLD). URLs
larger than this number are stored in separate files - one
URL per file.

� On a file-write request for a given size, BUDDY finds
the first free slot on the appropriate file, and stores
the contents of the new URL there. If the size of the
contents of the URL is above a certain threshold (128
Kbytes in most of our experiments), BUDDY creates
a new file to store this specific URL only. 4

4The effect of this threshold on performance is studied in figure 5.
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Figure 4: File Management Overhead for Web Proxies.
The figure displays the overhead of doing 300,000 second-
level cache file system operations on a 1-Gbyte disk. We
see that both methods that create one file for each URL
they need to store perform very bad. BUDDY, which stores
several URLs per file takes roughly less than 9 msec per file
operation.

� On a file-delete request, BUDDY marks the corre-
sponding slot in the appropriate file as free. This slot
will be reused at a later time by another URL of the
given size.

� On a file-read request, BUDDY finds the slot in the
appropriate file and reads the content of the requested
URL.

The main advantage of BUDDY is that it practically elimi-
nates the overhead of file creation/deletion operations. 5 The
URLs that occupy a whole file of their own, represent a tiny
percentage of the total number of URLs, so that their file
creation/deletion overhead is not noticeable overall. One
more advantage of BUDDY is that by placing same-sized
URLs on the same file, it eliminates file space fragmen-
tation; that is, a URL always occupies consecutive bytes
within a file. This simplifies the mapping between URLs
and the positions within files where they reside.

5BUDDY may also be used to reduce internal fragmentation and im-
prove hit ratio by storing more data on a given disk. Current architecture
trends suggest that disk block size should increase. This implies that small
files, which occupy at least one disk block, in the future will probably
occupy significantly more space than needed. On the contrary, when stor-
ing several URLs per file, as BUDDY does, internal fragmentation will
be reduced, more data will fit into the disk, and higher hit rates will be
possible.

To evaluate the performance advantages of BUDDY we
compared it against three traditional approaches:

� SIMPLE: this approach stores each URL in a separate
file. All files reside in the same directory.

� SQUID: this approach, used by the SQUID proxy
server, creates a two-level directory structure. The first
level contains 16 directories (named 0..F), while the
second level contains 256 directories (named 00..FF)
for each first-level directory. Files are written in the
directories in a round robin manner: the first file is
written at 0/00, the next at 0/01, ... then at 0/FF, then
at 1/00, etc.

� MULTIPLE-DIRS: this approach creates one file for
each URL. All files that correspond to URLs from the
same server are stored in the same directory. Files that
correspond to URLs from different servers are stored
in different directories. All directories are in the same
level.

Figure 4 shows the completion time of a stream of 300,000
file-system requests (URL-read, URL-write, URL-delete),
which were generated by 398034 URL-get requests as a
function of the management algorithm used. We see that
SIMPLE has the worst performance, serving about 14 URL-
get operations per second. SQUID performs better - it
achieves 20 URL-get operations per second; independent
published performance results also suggest that SQUID
achieves 20-25 URL-get operations per second on a single-
disk system [9]. MULTIPLE-DIRS performs a little better,
achieving 23 URL-get operations per second.

Compared to SIMPLE, SQUID, and MULTIPLE-DIRS,
BUDDY improves performance almost by an order of mag-
nitude, since it achieves close to 133 URL-get operations
per second. This is because BUDDY neither creates nor
deletes files for most of the URLs it serves.

The careful reader however, will notice that SIMPLE,
SQUID, and MULTIPLE-DIRS appear to be more robust
than BUDDY in a case of system crash. If the sys-
tem crashes, SIMPLE, SQUID, and MULTIPLE-DIRS will
probably recover a large percentage of their metadata, while
BUDDY will probably lose some portions of its metadata
(i.e. where is each URL stored). We believe that this is not
a significant problem for the following reasons:

� BUDDY can periodically (i.e. every few minutes)
write its metadata information on safe storage, so that
in the case of crash it will lose only the work of the last
few minutes.



� Alternatively, BUDDY can store along with each URL,
its name and size. In case of a crash, after the system
reboots, the disk can be scanned, and the information
about which URLs exist on the disk can be recovered.

� Even if few cached documents are lost due to a crash,
they can be easily retrieved from the web server where
they permanently reside. Thus, a system crash does
not lose information permanently; it just loses the local
copy of some data (i.e. a few minutes worth) which
can be easily retrieved from the web again.

� There exists a significant amount of recent work that
speeds-up synchronous disk write-operations (and thus
metadata updates) by using for example Non-volatile
RAM [42], transactions [14], replication [30], or soft-
updates [25].

In BUDDY, URLs that are larger than a threshold are stored
in a separate file each - one URL per file. All other URLs
are “buddied” together in appropriate files. The next exper-
iment sets out to explore how large this threshold should
be. Figure 5 plots the completion time of the BUDDY as
a function of the threshold. We see that as the threshold
increases, the completion time of BUDDY improves fast.
This is because an increasing number of URLs are stored in
the same file, eliminating a significant number of file cre-
ate/delete operations. As the threshold increases above 10
(disk blocks), the completion time improves, but not as fast.
When the threshold reaches 256 blocks (i.e. 128 Kbytes),
we get (almost) the best performance. Our results suggest
that URLs larger than 128 Kbytes should be given a file of
their own. Such URLs are rare and large, so that the file
creation/deletion overhead is not noticeable.

3.5 Optimizing Write throughput

Once we reduce the file management overhead we noticed
that the next single largest source of overhead is due to
disk latencies incurred by writing data scattered all over
the disk. Although it reduces file management overhead,
BUDDY makes no effort to layout data on disk in such as
way as to improve write (and/or read) performance. Given
that a web proxy’s disk workload is write-dominated (as
shown in figure 2), the performance of write operations can
be improved if writes to the disk happen in a log-structured
fashion. Thus, instead of writing new data in some free
space on the disk, we continually append data to the disk
until the disk runs out of space, in which case write op-
erations continue from the beginning of the disk. This
method has been widely used in log-structured file systems
[5, 15, 28, 35]. In this paper we use a log-based approach
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Figure 5: Overhead of BUDDY as a function of the
THRESHOLD. The figure displays the cost of serving
400,000 file system operations as a function of the thresh-
old used by BUDDY. The experiment suggests that URLs
smaller then 128 Kbytes should be “buddied” together.
URLs larger than 128 Kbytes can be safely given a file
of their own (one URL per file) - they will not result in any
noticeable overhead.

in user-space management to see if the effectiveness of log-
structured file system can be achieved by a user program
(the web proxy) without the need of a specialized file sys-
tem. Towards this end we develop a file-space management
algorithm (called STREAM) that (much-like log-structured
file systems) streams write operations to the disk:

� The web proxy stores all URLs in a single file orga-
nized in slots of 512 bytes long. Each URL occupies
an integer number of such slots.

� URL-delete operations mark the appropriate space on
the file as free.

� URL-read operations read the appropriate portions of
the file that correspond to the given URL.

� URL write operations continue appending data to the
file until the file runs out of space (i.e. they reach the
end of file). In this case, new URL write operations
continue from the beginning of the file writing on free
slots, until they reach the end of file, etc.

STREAM has the potential of making long sequential write
operations. The length of these sequential write operations
depends on the distribution of the free space on the file,
which in turn depends on the amount of scratch space that is
available to the file. For example, if there is no scratch space,



then there will always be only one free slot in the file, which
will tend to move non-sequentially in the file, and STREAM
will have little opportunity to make long sequential writes.
The whole purpose behind STREAM (and log-structured
file systems) is that disks should be operated at much less
than 100% of their utilization, so that there is always enough
free space on the disk. This free space will be used to write
new files/data in long sequential write operations.

When we first evaluated the performance of STREAM we
noticed that even when there was always free space and even
in the absence of read operations, STREAM did not write
to disk at maximum throughput. We traced the problem and
found that we were experiencing a small-write performance
problem: writing a small amount of data to the file system,
usually resulted in a disk-read and a disk-write operation.
The reason is the following: if a process writes a small
amount of data (e.g. the first block of a page) in a page
that is not in the main memory cache, the operating system
will read the page from the disk, make all updates in main
memory, and then write the page to the disk. To reduce
these small-write effects we developed a packetized version
of STREAM: STREAM-PACKETIZER that works just like
STREAM with the following exception:

� There exists a packetizer buffer that is one page long
and aligned to a page boundary. URL-write operations
are not being forwarded to the file system - instead
they are being accumulated into a packetizer as long
as they are stored contiguously to the previous URL-
write request. Once the packetizer fills up, or if the
current request is not contiguous to the previous one,
the packetizer is sent to the file system for writing to
the disk.

Figure 6 plots the performance of BUDDY, STREAM, and
STREAM-PACKETIZER as a function of disk utilization.
When disk utilization is high (around 95%), STREAM and
STREAM-PACKETIZER perform comparable to BUDDY.
This is because, at 95% utilization there do not exist long
sequential portions of free space, and thus STREAM and
STREAM-PACKETIZER can not perform long sequential
write operations. On the contrary, when disk utilization is
less than 72%, STREAM performs two times better than
BUDDY, and STREAM-PACKETIZER performs 2.5 times
better than BUDDY. Actually, STREAM-PACKETIZER
manages to achieve more than 350 URL-get operations per
second. To deliver their high performance, STREAM and
STREAM-PACKETIZER need about 30% more disk space
than the actual size of the URLs they need to store. Fortu-
nately, the cost of disk space decreases rapidly (by a factor
of two) every year [10]. Recent measurements suggest that
most file systems are about half-full on the average [11], and
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Figure 6: Overhead of file management algorithms as
a function of disk (space) utilization. The figure dis-
plays the time it took to serve 1,000,000 file system opera-
tions as a function of disk utilization. The performance of
STREAM and STREAM-PACKETIZER improves as disk
utilization decreases. When disk utilization is around 70%
both STREAM and STREAM-PACKETIZER outperform
BUDDY by 2-3 times.

thus, log-structured approaches for file management may be
more attractive than ever.

3.6 Improving Read Requests

Thanks to the STREAM and STREAM-PACKETIZER al-
gorithms, URL-write operations suffer little (if any at all)
seek and rotational overhead. However, URL-read oper-
ations still suffer from disk seek and rotational overhead,
because the disk head must move from the point it was writ-
ing data to disk to the point it must read data. To make
matters worse, once the read operation is completed, the
head must move back to continue streaming its data onto
the disk. Thus, each read operation (which necessarily hap-
pens within a stream of write operations) induces two head
movements. To reduce this overhead we have developed
a LAZY-READ approach which is much like STREAM-
PACKETIZER with the following difference:

Once a URL read operation is issued, it is being
sent into an intermediate buffer. When the buffer
fills up with read requests it forwards them to the
file system, sorted according to the position (in
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Figure 7: Performance of LAZY-READS. The figure dis-
plays the cost of serving 1,000,000 file system operations
as a function of 2-Gbyte disk utilization. LAZY-READS
gathers reads requests ten-at-a-time and issues them all at
the same time to the disk reducing the disk head movements
between the write stream and the data read. The figure
shows that LAZY-READS improves the performance of
STREAM-PACKETIZER by 10%.

the file) of the data they want to read.

Figure 7 shows that LAZY-READS improves the perfor-
mance of STREAM-PACKETIZER by 10%. It is true that
we expected a larger performance improvement. We traced
the operating system actions and found that even if LAZY-
READS sends read operations to the file system ten-at-a-
time, the file system does not preserve this clustering and
sent 3-5 clustered read operations to the disk in the average.
Nevertheless, clustering read operations has potential and
should be further explored. 6

6The careful reader will notice however, that LAZY-READS may in-
crease operation latency. Our trace measurements show that STREAM-
PACKETIZER augmented with LAZY-READS is able to serve 10-20 read
requests per second (in addition) to the write requests. Thus LAZY-
READS will delay the average read operation only by a fraction of the
second. Given that the average web server latency is several seconds long
[2], LAZY-READS impose an unoticeable overhead. To make sure that
no user ever waits an unbounded amount of time to read a URL from the
disk even in an unloaded system, LAZY-READS can also be augmented
with a time out period. If the time out elapses then all the outstanding read
operations are sent to disk.
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Figure 8: Performance of LAZY-READS-LOC. The fig-
ure displays the cost of serving 1,000,000 file system opera-
tions as a function of disk utilization. LAZY-READS-LOC
attempts to put URLs from the same server in nearby disk
locations by clustering them in locality buffers before send-
ing them to the disk. We see that even as few as eight buffers
improve performance over LAZY-READS.

3.6.1 Preserving the Locality of the URL stream

The URL requests that arrive in a web proxy contain a sig-
nificant amount of locality. For example, consider the case
of an HTML page that has several embedded images. Every
time a user requests that HTML page, (s)he will probably
request all the embedded images as well. Thus, it may be
worthwhile to store the HTML page and its embedded im-
ages in nearby disk locations so that future accesses to the
HTML page and its embedded images will proceed at top
speed. Unfortunately, current proxy servers tend to destroy
such locality because they receive (and interleave) requests
from several web clients. Thus, contiguous requests from
a single web client may be received by the proxy server
interleaved with tens of requests from other clients. There-
fore, URLs that correspond to contiguous requests from a
single client may be stored in the magnetic disk hundreds
of Kbytes away from each other. To remedy this problem
we have augmented the LAZY-READS policy with a num-
ber of locality buffers (LAZY-READS-LOC) that work as
follows:

� There exist a set of locality buffers whose purpose is
to accumulate URL-write operations that correspond
to URLs from a single web server.



Algorithm STREAM-PACK STREAM-PACK STREAM-PACK STREAM-PACK
+LAZY-READS +LOC-128 +LAZY-READS

+LOC-128
Time (minutes:sec) 46:31 42:08 36:16 33:51
Improvement (over STREAM-PACK) 10% 28% 37.5%

Table 1: Comparison of the improvement of LAZY-READS, and locality buffers on the STREAM-PACKETIZER
algorithm. We see that the single largest performance improvement (28%) comes from the use of locality buffers and the
next improvement (10%) comes from LAZY-READS.

� When the proxy wants to store a URL fetched from
some web server, it searches for a buffer that accumu-
lates URLs from the same server and adds the data to
the buffer. If no such buffer is found, one victim buffer
is selected, its contents are written to the disk, and the
new URL is written in the buffer.

This policy gathers URLs from the same server into the same
locality buffer, so that URLs from the same server requested
within a short time interval will probably be written in con-
tiguous file locations. We have evaluated the performance
of this policy (for 8-128 locality buffers) against the per-
formance of LAZY-READS and STREAM-PACKETIZER.
Figure 8 plots the results. We see that the existence of even
eight locality buffers (LAZY-READS-LOC-8) improves
performance over LAZY-READS significantly. The most
spectacular improvements happen at medium to large disk
utilization. For example, at 76% disk utilization LAZY-
READS-LOC-128 performs 2.5 times better than LAZY-
READS. In all cases, however, LAZY-READS-LOC-128
is at least 30% better than LAZY-READS. In the best case
LAZY-READS-LOC achieves around 500 URL-get opera-
tions per second.

In our final experiment we will explore what is
the contribution of each factor (read-clustering/LAZY-
READS and locality buffers/LOC) to the performance of
STREAM-PACKETIZER. Table 1 presents the comple-
tion time of policies STREAM-PACKETIZER, STREAM-
PACKETIZER augmented with LAZY-READS, STREAM-
PACKETIZER augmented with locality buffers (128 of
them), and finally, STREAM-PACKETIZER augmented
with both LAZY-READS and locality buffers at 71%
disk utilization. It also shows the (percentage) improve-
ment of every method on top of STREAM-PACKETIZER.
We see that LAZY-READS improve 10% on STREAM-
PACKETIZER, locality buffers improve 28% on STREAM-
PACKETIZER, and both methods improve 37% on
STREAM-PACKETIZER.

Summarizing, table 2 shows the (best) performance of the
various algorithms studied.

Algorithm Performance
(operations
per second)

SIMPLE 14
SQUID 20
MULTIPLE-DIRS 23
BUDDY 133
STREAM 295
STREAM-PACK 358
LAZY-READS 396
LAZY-READS-LOC 495

Table 2: Comparative performance (in terms of URL-get
operations per second) of various file space management
algorithms.

4 Summary-Conclusions

In this paper we study the disk I/O overhead of world-wide
web proxy servers. Using a combination of experimental
evaluation and simulation based on traces from busy web
proxies we show that web proxies experience significant
overheads due to disk I/O. We propose several file manage-
ment methods (like BUDDY, STREAM, LAZY-READS,
STREAM-PACKETIZER, and locality buffers) which re-
duce the disk management overhead by more than a factor
of 25 overall (from SQUID to LAZY-READS-LOC). Based
on our experiments we conclude:

� The single largest source of overhead in traditional web
proxies is the file creation and file deletion overhead
associated with storing each URL on a separate file.
Storing several URLs per file improves performance
by an order of magnitude.

� Disk accesses of web proxies are dominated by write
requests. Streaming these write operations to disk
(much like log-structured file systems do) improves
performance by a factor of 2-3.

� Web clients display a locality of reference in their ac-



cesses. Web proxies tend to destroy it by interleaving
requests from several clients. Preserving this locality
of reference results in better layout of URLs on the
disk, which improves performance by 30%-150%.

� User-level file management policies improve perfor-
mance (over traditional web proxies like SQUID) by a
factor of 25 overall, leaving little space for improve-
ment by specialized kernel-level implementations.

We believe that our results are significant today and they
will be even more significant in the future. As disk band-
width improves at a much higher rate than disk latency
[10], methods that reduce disk head movements and stream
data to disk will result in increasingly larger performance
improvements.
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