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Abstract Modeling and predicting user surfing paths involves

tradeoffs between model complexity and predictive
Modeling and predicting user surfing paths involvesaccuracy. In this paper we explore predictive modeling
tradeoffs between model complexity and predictivetechniques that attempt to reduce model complexity
accuracy. In this paper we explore predictive modelingwhile retaining predictive accuracy. The techniques
techniques that attempt to reduce model complexitymnerge two methods: a web-mining method that extracts
while retaining predictive accuracy. We show thatsignificant surfing patterns by the identification of
compared to various Markov models, longest repeatingongest repeating subsequendgdskS) and a pattern-
subsequence models are able to significantly reducenatching method that embodies the principle of
model size while retaining the ability to make accurateweighted specificity The LRS technique serves to
predictions. In addition, sharp increases in the overalfeduce the complexity of the model by focusing on
predictive capabilities of these models are achievablesignificant surfing patterns. This technique has been
by modest increases to the number of predictions madeexplored in connection with other areas of user

interaction [8]. The weighted specificity principal
1. Introduction exploits the finding that longer patterns of past surfing

paths are more predictive. These techniques are
Users surf the World Wide Web (WWW) by navigating motivated by results from previous predictive models
along the hyperlinks that connect islands of content. Ifand our prior empirical characterization [17] of surfing
we could predict where surfers were going (that is, whatdata. We shall show that when compared against a base
they were seeking) we might be able to improvestandard of two different Markov model
surfers’ interactions with the WWW. Indeed, severalrepresentations, the LRS pattern extraction and
research and industrial thrusts attempt to generate ansleighted specificity pattern matching techniques are
utilize such predictions. These technologies includeable to dramatically reduce model complexity while
those for searching through WWW content, retaining a high degree of predictive accuracy.
recommending related WWW pages, and reducing the
time that users have to wait for WWW content 1.1. Surfing Paths
downloads, as well as systems for analyzing the designs
of web sites. Our previous work [12, 17] has attemptedrigure 1 models the diffusion of surfers through a web
to characterize basic empirical properties of usersite [12, 17]: (a) users begin surfing a web site starting
surfing paths at web sites. Studied properties includérom different entry pages, (b) as they surf the web site,
the distribution of the number of clicks made by surfersusers arrive at specific web pages having traveled
at a web site, the complexity of path structures, and thelifferent surfing paths, (c) users choose to traverse
consistency (or change) of paths over time. In thispossible paths leading from pages they are currently
paper we explore pattern extraction and patterrvisiting and (d) after surfing through some number of
matching techniques that predict future surfing pathspages, users stop or go to another web site. Research in
We expect that future work may exploit these modelinga number of application areas assumes, either explicitly
techniques in applications such as WWW searchor implicitly, that information about surfing paths
recommendations, latency reduction, and analysis obbserved in the past can provide useful information
web site designs. about surfing paths that will occur in the future.



Users enter a website at various
pages and begin surfing

(a)
I:I Users arrive at pages having traveled
(b) I:I different paths
/ Continuing users distribute themselves
(C) I:I down various paths
Enter Exit
Aftersome number of page visits
(d) users leave the web site

Figure 1. A conceptual model depicting the various stages of users traversing a web site.
2. Applications of Predictive Models 2.2 Recommendation of Related Pages

2.1 Search Recently, tools have become available for suggesting
related pages to surfers [10, 16, 18]. The “What's
The ability to accurately predict user surfing patternsRelated” tool button on the Netscape browser
could lead to a number of improvements in user-WWWdeveloped by Alexa, provides recommendations based
interaction. For instance, the Google search engine [3)pn content, link structure, and usage patterns. Similar
assumes that a model of surfing can lead totools for specific repositories of WWW content are also
improvements in the precision of text-based searctprovided by Autonomy. One can think of these tools as
engine results. Conceptually, Google models surfersnaking the prediction that “surfers who come to this
pursuing random walks over the entire WWW link page (site) are most likely to be interested in the
structure. The distribution of visits over all WWW following pages (sites).” The predictive model of
pages is obtained from this model. This distribution issurfing proposed here could be used to enhance the
then used to re-weight and re-rank the results of a textrecommendations made by these and other systems.
based search engine. Under this model, surfer path
information is viewed as an indicator of user interests,2.3 Web Site Models
over and above the text keywords entered into a
standard search engine. Following this line of reasonindg’roducers of WWW content are often interested in
one might also assume that surfing models with higheimprovements in web site design. Recent research has
predictive accuracy would yield better search enginegleveloped visualizations to show the flow of users
since the models provide a more realistic view of realthrough a web site [5]. Businesses have emerged (e.g.,
world usage. The approach we propose here aims to b&/eb Techniques, www.webtechnigues.com) that send
more informed than the random walk model implicit in simulated users through existing web sites to provide
Google. To the extent that surfing predictions improvedata on web site design. Predictive models of surfer
text-based search results, we would expect that a mongaths could help move the state of web site analysis
informed approach would yield better improvementsfrom post-hoc modeling of past user interactions, or a
than a random walk model. current web site, to predictive models that can
accurately simulate surfer paths through hypothetical



web site signs. Web site designers could explordatencies could be reduced by improved caching and
different arrangements of links that promote desiredprefetching methods.
flows of surfers through content.

3. Predictive Surfing Models
2.4 Latency Reduction

Several predictive models of surfing have been
Predictive models have significant potential to reducedeveloped in order to improve WWW latencies. It is
user-perceived WWW latencies. Year after year, userinstructive to review how their effectiveness varies.
report WWW delays as their number one problem inThis review, plus a review of prior empirical
using the WWW [19]. One emerging strand of researchcharacterizations of surfing patterns, motivate the
that aims to improve WWW access times has grown oupattern extraction and pattern matching techniques that
of research on improving file accedime though we presentin Section 5.1.
prefetching and caching methods (e.g., [4]). Of
particular interest to our research, Grifioen and3.1 Path Profiles
Appleton’'s work [11] on file system prediction
introduced the notion of automatic prefetching andSchechter, Krishnan, and Smith [20] utilized path and
evaluated the effectiveness of a one-hop Markov modelpoint profiles generated from the analysis of Web

server logs to predict HTTP requests. They used these
A number of recent methods based on the use opredictions to explore latency reductions through the
Markov models as well as other methods have recentlpre-computation of dynamic Web pages. The profiles
been proposed for prefetching and caching of WWWare constructed from user session. During a single
pages [1, 9, 13, 15, 20]. Roughly, the idea is that if asession, a user interacting with the WWW traverses
system could predict the content a surfer was going tsome sequenc&, of URLs. From that single sequence,
visit next, and there was little cost involved, then thethe set of all possible subsequences is extracted as
system could prefetch that content. While the usempaths. Over some time period (say a day), the
processes one page of content, other pages could Beequency of all observed paths is recorded. The
prefetched from high-latency remote sites into low-resulting path profile consists of the set of all ordered
latency local storage. pairs of paths and their observed frequencies.

Kroeger, Long, and Mogul [13] explored potential Schechter et al. propose a method for predicting the
improvements in WWW interaction latencies that mightnext move of a surfer based on matching the surfer's
be gained by predicting surfer paths. Current proxycurrent surfing sequence against the paths in the path
servers typically mediate WWWocaess by accepting profile. The ranking of matches is determined by a
requests from user client applications. These requestsnd of specificity heuristic: the maximal prefixes of
are serviced by delivering content that has been cache@ach path (the firsN-1 elements of arN-length path)
prefetched, and retrieved from other caches, omre compared element-wise against the same length
retrieved directly from origin Web servers. Proxies aresuffixes of the user path (i.e., a siad-1 prefix is
typically accessed faster by clients than WWW serversnatched against the lalst1 elements of the user path),
are accessed by proxies. This usually occurs becaused the paths in the profile with the highest number of
the proxies are located on the same local area networ&lement-wise matches are returned. Partial matches are
as the client, whereas the proxies must access WWWlisallowed. In other words, if a surfer's path were <A,
servers over external network connections. Assumindg, C>, indicating the user visited URL A, then URL B,
this standard configuration, Kroeger et al. divided userthen URL C, the path would be better matched by a
WWW latencies into (a) internal latencies caused bypath in the profile of <A, B, C, D> than <B, C, E>. For
computers and networks utilized by the clients andthe paths in the profile that match, the one with the
proxies and (b) external latencies caused by computersighest observed frequency is selected and used to
and networks between the proxies and external WWWmake the prediction. Using our example, if <A, B, C,
servers. Examining WWW user traces collected at theD> were the best match and most frequently observed
Digital Equipment Corporation WWW proxy, Kroeger path in the profile, then it would be used to predict that
et al. found that external latencies accounted for 88% othe user who just visited <A, B, C> would next visit
the total amount of latency seen by users geographicalllyRL D. Schechter et al. found that storing longer paths
close to proxies. Other analyses by Kroeger et alin the profile offered some improvements in prediction
suggest that up to 60% of the observed externabut they did not study this systematically.



Schechter et al. were also concerned with reducingection 5 we introduce the longest repeating
model complexity. They pointed out that since asubsequence (LRS) method as a technique that adheres
sessionS consists of an ordered sequence of URLsto the principles of path specificity and model
visited by a user, the worst case scenario of a naiveomplexity reduction and evaluate it against surfing
algorithm to store the decomposition of every path ispath data in Section 6.

order [S} To reduce the model size, Schechter et al.

used a maximal prefix trie with a minimal threshold 4. Empirical Analysis Surfing Paths using
requirement for repeating prefixes. K"M-Order Markov Models

3.2 First-Order Markov Models In [17], we systematically evaluated the predictive
capabilities of K'-order Markov using ten days of log
Based on the first-order Markov prediction method files collected at the xerox.com web site. Among other
described in [11] for file prediction, Padmanabhan ancdthings, the results of this analysis suggest that storing
Mogul [15] constructed a dependency graph containindgonger path dependencies would lead to better
nodes for all files ever accessed at a particular WWWprediction accuracy. This section reviews the methods
server. Dependency arcs between nodes indicated thahd results of that study.
one file was accessed within some number of accesses
w of another file. The arcs were weighted to reflect4.1 N-Gram Representation of Paths
access rates. Padmanabhan and Mogul found that a
predictive prefetching method based on thisSurfing paths can be representednagrams N-grams
dependency representation reduced WWW latencies;an be formalized as tuples of the fornKi<Xo, ... Xo>
and the reductions increasedwasncreased froom=2  to indicate sequences of page clicks by a population of
tow=4. users visiting a web site. Each of the components of the
n-gram take on specific values = x for a specific
Bestravos [1] used a method where one first estimatesurfing path taken by a specific user on a specific visit
the conditional probabilities of transitioning directly to a web site.
from each page to every other page within a timge
based upon server log file analysis. Like Padmanabhablsers often surf over more than one page at a web site.
and Mogul, this is a first-order Markov model One may record surfing n-gramsXg X, ... X> of
approximation for predicting surfer paths, except theany length observable in practice. Assume we define
forward window is measured by time instead of numberthese n-grams as corresponding to individual surfing
of pages. Using this approach, Bestravos developed sessions by individual users. That is, each surfing
speculativeservice method that substantially reducedsession is comprised of a sequence of visits made by a
server loads and latencies. The architecture allows fosurfer, with no significantly long pauses. Over the
the server and/or client to initiate the retrieval of course of a data collection period—say a day—one
resources predicted to be requested in the near futuréinds that the lengthsp, of surfing paths will be
Such systems now are generally referred tohag-  distributed as an inverse Gaussian functjonith the
basedsystems, e.g., [7, 13, 15]. Bestravos did not,mode of the distribution being length one. This appears
however, explore the effects of using longer surferto be a universal law that is predicted from general
paths (higher-order Markov models) in the predictiveassumptions about the foraging decisions made by

model. individual surfers [12]. In practice one typically finds
that the majority of users visit one page on a web site
3.3 Summary and then click to another web site.

Regardless of where the transitions were recordedt.2 K™-Order Markov Approximations

(proxy, server, etc.) all of these prefetching methods

essentially record surfing transitions and use these daféhe first-order Markov model used by Bestravos [1]
to predict future transitions. It is interesting to note thatand Padmanabhan and Mogul [15] were concerned with
the methods of Schechter et al. and Padmanabhan apége-to-page transition probabilities. These can be
Mogul seemed to improve predictions when they stored

longer path depe.ndendes' In. .or.der t(? fqrther motivate The inverse Gaussian distribution is a heavily skewed
the rational behind the specificity principle for path distribution (much like the log normal distribution) that

matching, we next summarize the results of empiricalpredicts that the bulk of recorded paths will be very short with
analyses we [17] performed on server log files. Ina few verylong paths.




estimated from n-grams of the form £XX,> to yield The models were estimated from surfing transitions
the conditional probabilities extracted from training sets of WWW server log file
data and tested against test sets of data that occurred
p(x, | %) =Pr(X, =%, | X, =X%,). after the training set. The prediction scenario assumed
a surfer was just observed makikgpage visits. In
If we want to capture longer surfing paths, we mayorder to make a prediction of the next page visit the
wish to consider the conditional probability that a surfermodel must have (a) an estimate @q|Xn.1,.. %« )
transitions to am™ page given their previous = n-1  from the training data, which required that (b) a path of
page visits: k visits <X,.1,... %4> (@ penultimate path) had been
observed in the training data. Given a penultimate path
P(X, | Xogsee Xy ) = PrOX, = X, | X _4,..,X_ ). match between paths in the training and test data, the
Such conditional probabilities are known a&-Krder

model examined all the conditional probabilities,

1,---%k ) available for all pages,, and predicted that
Markov approximations (or K-order Markov models). the page having the highest conditional probability of
The zerd' order Markov model is the unconditional occurring next would in fact be requested next.
base rate probability: Whether the observed surfer made the predicted visit (a

hit) or not (a miss) was then tallied. The model did not

p(x,)=Pr(X,) make a prediction when a matching path in the model

did not exist. It is important to examine the
which is the probability of a page visit. This might be performance of the model in making correct predictions
estimated as the proportion of visits to a page over as well as incorrect predictions since incorrect
period of time. predictions often result in undesirable costs, which can

mitigate any benefits.
4.3 Summary of Prior Empirical Analysis

Table 1 presents a subset of the analyses presented in
Using data collected from xerox.com for the dates May[17], where predictions based on a training set collected
10, 1998 through May 19, 1998 we [17] systematicallyone day and were tested against data collected the next

tested the predictive properties of™forder Markov —day. We define
models. The site received between 220,026 and 651,640

requests per day during this period. Over this periody
there were 16,051 files on the xerox.com web site, of
which 8,517 pages were HTML.

The reliable identification of user paths in a web site is
often a complicated and site specific task. The
xerox.com web site issued cookies to users only upon
entry to the Xerox splash page and recorded the “User»
Agent” and “Referer” field for each request when

Pr(Match), the probability that a penultimate path,
<Xn1,-..%->, Observed in the test data was matched
by the same penultimate path in the training data,

Pr(Hit|Match), the conditional probability that page
X, IS visited, given that X, i,...%.>, is the
penultimate path and the highest probability
conditional on that path is R{Xn.1, ... %k ),

Pr(Hit) = Pr(Hit|Match)«Pr(Match), the probability
that the page visited in the test set is the one

present. User paths were identified using cookies and a estimated from the training as the most likely to

set of fallback heuristics when cookies did not eXist

The Xerox server permitted caching of resources. When
present, Get-If-Modified headers were included in the.
construction of user paths. Still, under certain client
and proxy configurations, the xerox.com caching policy
resulted in missed client navigation, e.g., when a user
clicked on the “Back” button. As a result, user pathse
constructed by our heuristics often contained transitions
to other pages not linked to from the current page. Over

occur (in accordance with the method in our
scenario),

Pr(Miss|Match), the conditional probability that
pagex, is not visited, given that x,.4,...%.>, is the
penultimate path and the highest probability
conditional on that path is R{*n.1, ... %k ),

Pr(Miss) = Pr(Miss|Match)sPr(Match), the
probability that the page visited in the test sehat
the one estimated from the training as the most likely

the ten days used in this study, 176,712 user paths wereto occur (in accordance with the method in our

observed.

2 The exact methods, tradeoffs, and the effects of counting
each IP as a user are described greater detHlil4h

scenario), and



Table 1. Probability of matching a path of the same length, Pr(Match), conditional probability of accurately predicting the
next page visit of a surfer given a path match, Pr(Hit|{Match), and the overall accuracy of predicting a surfer page visit,
Pr(Hit). Conditional miss probabilities, Pr(Miss|Match), overall miss rate, Pr(Miss), and hit to miss ratios, Pr (Hit)/Pr(Miss),

are also provided. Training data and test data were collected on successive days. Matching and predictions were conducted
on paths of the same length. No predictions were made in the absence of a match.

Order of Pr Pr Pr Pr Pr Pr(Hit)/
Markov Model (Match) (Hit|Match) (Hit) (Miss|Match) (Miss) Pr(Miss)
1 .87 .23 .20 a7 .67 .30

2 .61 .30 .18 .70 .43 42

3 .30 .34 .10 .66 .20 .51

4 .21 41 .08 .59 12 .65

5 .21 .29 .06 71 .15 .40

6 .20 31 .06 .69 14 43

7 .20 .27 .05 .73 .15 .34

e Pr(Hit)/Pr(Miss), the probability of correctly The results of the above analyses lead us to explore
predicting pagex divided by the probability of methods that would improve both pattern extraction and
making an incorrect prediction for all transitions. pattern matching. In this next section, we introduce the

notion of longest repeating subsequences (LRS) to

The last metric provides a coarse measure of thédentify information rich patterns and present two

benefit-cost ratio. That is, modifications of LRS to improve pattern matching.
These models are then compared to different Markov
Benefit:Cost =B * Pr(Hit) / C * Pr(miss) models in Section 6.

whereB andC vary between 0 and 1 and represent the5. Model and Prediction Methods

relative weights associated with the benefits and costs

for each application. Naturally, different applications Schechter et al. [20] discuss the explosive growth of

have different inherent tradeoffs associated with thestorage requirements for path profiles (we discuss their

benefits of making a correct prediction versus the cost@inalysis in detail below). Producing an accurate

of making an incorrect prediction and will often require predictive model using the least amount of space has

a more complex metric to encode the true tradeoffsmany computational benefits as well as practical

From Table 1 it can be seen that, benefits. One might even imagine a model being

compact enough to reside in memory for each thread

» Lower-order models have higher Pr(Match). This handling requests on a busy WWW server.
indicates that the chances of seeing short surfing
paths across days are much higher than for longe©ne solution to reduce model space is to use compact
surfing paths. data structures like tries as was used in Schechter et al.

« Higher-order models have higher Pr(Hit|Match). If While an issue of great interest and complexity, we will
one can find a match of longer surfing paths thennot treat more efficient data structure solutions in this
they are likely to be better predictors than shorterpaper. Another solution is to attack the problem at the
surfing paths. core and remove low information elements from the

e Lower-order models have higher Pr(Hit) overall. model. The LRS technique treats the problem as a data-
This indicates that the overall hit rate is dominated bymining task, where some of the paths are considered
the probability of finding a penultimate path match, noise. This hinges off the insight that many paths occur
Pr(Match). infrequently, often as a result of erroneous navigation.

» For the xerox.com data, if one assumes that thddentifying repeating subsequences enables common
benefit of making a correct hit equals the cost ofsub-paths to be extracted. This has the benefit of
making an incorrect predictiorB(= C = 1), using a  preserving the sequential nature of the paths while
4" order model is optimal. being robust to noise. Using LRS, the storage

requirement is reduced by saving only information rich

Included in [17] is an analysis of prediction stability paths.

over time using entropy analysis and the improvements

due to increasing the size of the training data set.
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Figure 2. Examples illustrating the formation of longest repeating subsequences (LRS). Thick-lined arrows indicate more
than one traversal whereas thin-lined arrows indicate only one traversal. For each case, the resulting LRS are listed.

The second method we explore is to use a specificity once occurrence of this subsequence where this is the
heuristic in pattern matching. As shown by the results longest repeating.

of Schechter et al., Padmanabhan and Mogul, and Table

1, higher-order Markov models result in higher To help illustrate, suppose we have the case where a
prediction rates when there is a penultimate path matchweb site contains the pages A, B, C, and D, where A
The principle of specificity encourages the use ofcontains a hyperlink to B and B contains hyperlinks to
higher-order path matches whenever possible tdoth C and D. As shown in Figure 2, if users
maximize hit rates. The drawback of this approach isrepeatedly navigate from A to B, but only one user
that the likelihood of a higher-order path match is quiteclicks through to C and only one user clicks through to
small, resulting in lower overall hit rates. The D (as in Case 1), the longest repeating subsequence is
decreased likelihood of a long path match is in part aAB. If however more than one user clicks through
function of the inverse Gaussian distribution of pathfrom B to D (as in Case 2), then both AB and ABD are
lengths, where over 80% of the distribution is longest repeating subsequences. In this event, AB is a
accounted for by paths of length four or less. It also is aLRS since on at least one other occasion, AB was not
function of the exponential growth in the combinations followed by ABD. In Case 3, both ABC and ABD are

of possible paths, where the length of the path is thd.RS since both occur more than once and are the
base and the exponent is the average number of linkngest subsequences. Note that AB is not a LRS since
per page within the web site. As an example, given dt is never the longest repeating subsequence as in Case
site with an average of three links per page, a path of} for the LRS ABD.

length eight will have 6,561 possible combinations

assuming only forward traversals. Due to limitations inLRS have several interesting properties. First, the
the ability of server logs to completely capture usercomplexity of the resulting n-grams is reduced as the
navigation, recorded paths are not limited to onlylow probability transitions are automatically excluded
forward links, which makes the set of possible from further analysis. This reduction happens for all

combinations even larger. transitions that occur onlyl times, which in some
cases, will result in a prediction not being made. For
5.1 Longest Repeating Sequences example, with a threshold d=1 the penultimate match

for the LRS AB is A in Case 1. In this case, a
A longest repeating subsequence [8] is a sequence @irediction will not be made after the pages A and B

items where have been requested. The reduction in complexity
typically results in a slight loss of pattern matching, as
1)subsequence means a set of consecutive items, will be made evident in the below experiments.
2)repeated means the item occurs more than some
thresholdT, whereT typically equals one, and To contrast, if all 2order Markov approximations

3)longest means that although a subsequence may be were being used to make predictions and path AB has
part of another repeated subsequence, there is at leafieen observed, the system would have to randomly



select either C or D since each are equally probable. 15.3 Model complexity reduction
a hint-based prefetching system were used, a set of
predictions could also be made by the server and passegthechter et al. [20] note that their profiling method
along to the client with the contents of the currently requires that a path of leng®be decomposed into all
requested page. In this case, a list could be returneglubpaths. They point out that to store the profile for a
that contains both C and D, each with equal probability.single path of lengtts (i.e., all the necessary subpaths)
We will study the effect of varying result list size in requires storage that grows as®)( Note, however,
section 6.3. Note also that in Case 2, after seeing ABhatn distinct paths of lengtiSwill not necessarily each
the LRS predictive model will predict D, just as would require OF’) storage. The distinct paths of lengsh
all the 2%order Markov approximations. In this will share many redundant subpaths of length less than
manner, the LRS model can be viewed as a propef The problem with the Schechter et al. analysis is that
subset of the K-order Markov approximations. it fails to incorporate the combinatorics of surfing
paths. Moreover, it is only in the worst case that one
Another interesting property of the LRS model is its needs to store all distinct paths and all distinct subpaths.
bias towards specificity. Any single page-to-pageOne may have the goal of storing those that are likely to
transition that is always repeated as part of longete needed, and this is the aim of the LRS pattern
sequences is not included into the LRS model. Forextraction method.
web sites, a transition from the popular entry points
usually results in all forward links being followed more The amount of space required for all modelsRS and
than some threshold@. For predictive purposes, this Markovd] depends on the combinatorics (e.g., the
reduces the number of penultimate matches that theedundancy) of user paths. Basically, we need to know
LRS model can make for shorter paths and as direchow the number of patternsof paths and subpaths

result, lowers the overall hit rate for the model. grows as a process of surfing. A model of the path
combinatorics could be formulated if we understood the
5.2 Hybrid LRS-Markov Models underlying path-generating process [6]. Unfortunately,

the process that generates user paths within web sites
We now propose two straightforward hybrid models has not been characterized in detail (although see [12]
that use LRS subsequences extracted from training datéor beginnings) and may well very from site to site as
In the first hybrid LRS model we extract LRS patterns well as from time to time.
from the training data and use these to estimate a first-
order Markov model. That is, we decompose each LR3n the absence of a more informed surfing process
pattern into a series of corresponding one-hop n-gramgnodel, we explore the following simple model.
e.g., the LRS ABCD would result in AB, BC, and CD Assume that surfing paths have an average branching
1-grams. We call this model ane-hop LRSnodel. In ~ factorb. Thatis, surfers may start inplaces, and from
Section 6.1, we compare the one-hop LRS modefach page they move to one bfpages on average.
against a first-order Markov model estimated from allASSume that the surfers move at random, thereby
the paths in a training data set. generating random paths. Surfing paths of ler§ttan
be divided intoSk subpath partitions of length 0 k<
o> Each subpath partition of lengtk will have b
atterns (assuming randomly chosen paths alondthe
ranches). So the complexity co€(k), in terms of
number of patterns as a function of subpath lenigth
will be

The second hybrid LRS model decomposes th
extracted LRS subsequences into all possible n-grams.
The resulting model is a reduced set of n-grams o
various lengths. We call this thAll-K"™-Order LRS
model, since all orders ok are able to make S
predictions. The main advantage of this model is that it C(S)= Z(S/i)bi

incorporates the specificity principle of pattern i=1

matching by utilizing the increased predictive power

contained in longer paths. Below, we test the Afl-K As noted by Newell and Rosenbloom [14], this does not
Order LRS model against aAll-K"-Order Markov ~ have a closed-form solution but one can show that the
model. As with the All-K™-Order LRS model the All-  derivative is such that

K"-Order Markov model is constructed by

decomposing all possible subsequences into varying C'(S) = glog®)s

length n-grams.



It should also be noted, that under this random processee if there was a matching prefix (Match) for each
model longer path patterns are less likely to recur tharpath, and if so, if the correct transition was predicted
shorter path patterns. (Hit). From this, the probability of a match Pr(Match),
the probability of a hit given a match Pr(Hit|Match), the
For the one-hop models, the worst case complexity of it rate across all transitions Pr(Hit), and the benefit-
one-hop Markov model is ®f), whereV is the number  cost ratio Pr(Hit)/Pr(Miss) were computed along with
of pages in the web site and every page is connected tihe corresponding miss probabilities.
every other page. In practice, the connectivity of web
pages is sparser as evidenced by the low number dfable 2 displays the results for the one-hop Markov
hyperlinks per page [2]. Such sparse connectivitymodel and the one-hop LRS model. Overall, there were
graphs are well suited for adjacency-list 13,189 unique hops in the training data with the one-
representations, which require \BE) whereE is the  hop LRS model reducing this set by nearly a third to
number of edges between pag¥s As mentioned 4,953 unique hops. The hit probabilities in Table 2 are
previously, the worst-case storage requirements for Allslightly higher than in Table 1. These discrepancies
K™-order Markov approximations are Sj. result from weekday and weekend traffic differing
significantly at xerox.com and that the data used in
The result of applying LRS to a set of path data is aTable 2 contained only weekday data for the training
possible pruning of the resulting Markov models. Theand testing sets.
extent of the pruning depends on the amount of
redundancy and the value selected for the repeatingable 2. Results of comparing a one-hop Markov model with
thresholdT. In the worst case, the amount of storagethe one-hop LRS model.

required for the LRS models is equal to the worst-case One-hop  One-hop
for the equivalent Markov models. As we shall see, in Markov LRS
practice, the reduction can be quite significant, though Number of one-hops 13,189 4,953
we note that the amount of reduction will likely vary Model Size (bytes) 372,218 136,177
from web site to web site and even within sites Total transitions in test data 25,485 25,485
depending on traffic patterns. Matches 25,263 24,363
Hits 6,402 6,056
6. Evaluation Pr(Match) .99 .96
Pr(Hit|Match) .25 .25
In order to test whether the hybrid LRS models help Pr(Hit) 25 24
achieve the goal of reducing complexity while Pr(Miss|Match) 75 75
maint_aining predictive power, we condgcted a setl of Pr(Miss) 74 72
experiments on the same data used in our previous Pr(Hit)/Pr(Miss) 24 23

study [17] summarized above. For the below analyses,

three consecutive weekdays were chosen starting on o one-hop LRS model produces a reduction in the

Monday May 11, 1998 for the training data and . . L
Toursday May 14, 1990 for e es vy, There w2 328 O 0 st he model e satyng e
63,329 user paths for the training days and 19,069 path pexity P pie. 9 b

for the test day. As with our previous evaluation,t e sharp reduction in the model's complexity would

redictions were not made when the model did notreSU|t in an equally sharp reduction in predictive ability.
Eontain a matching pattern However, this is not the case as the one-hop LRS model

performs nearly as well as the one-hop Markov model
in terms of the total number of predictions made
(25,263 one-hop Markov versus 24,363 one-hop LRS),
total number of hits (6,402 one-hop Markov versus

Qne-hop Markov mod_ells and their derivatives are6,056 one-hop LRS), and the overall probability of
important to study empirically as they are conceptually

s . 0 ’
simple and easy to implement. Developing a riChcorrectly predicting the next page Pr(Hit) (25% one-hop

0, -
understanding of these models helps frame the res,ult'\s/Iarkov Versus 24% one-hop LRS). Both models

and tradeoffs of more complex models. For this produced similar miss probabilities, with the Markov

experiment. the one-hop Markov and the one-hob LR odel resulting in a 75% incorrect prediction rate and
P ' . 10p - P he LRS model 72%. The benefit-to-cost ratio for each
models were built using three training days. For each

path in the test day, the path was decomposed into a ngOdel Is nearly identical.

of sequential transitions. Each model was then tested to

6.1 One-hop Markov and LRS Comparison



The one-hop LRS model was able to significantly 1

reduce model complexity while preserving predictive ]

ability. However both these models are very simple 0.8 1 O All-Kth-Order Markov __|

and they do not leverage the greater predictive abilities m All-Kth-Order LRS

of longer paths. o6 ] One-Hop Markov |
= ’ @ One-Hop LRS

6.2 All-K "-order Markov approximation g ]

and All-K M-order LRS Comparison g 047

In order to adhere to the principle of specificity, longer 0.2

paths should be used wherever possible given their

greater predictive power. With this in mind, we set out 0

to explore the differences between the Afl4grder Pr(Match) Pr(Hit[Match) Pr(Hit)

Markov model and the All-K -order LRS model. As Figure 3. Summary of the likelihood of being able to make a
with the one-hop analysis above, since the All-KRS prediction Pr(Match), correct prediction given a match
is a subset of all All-K-order Markov approximations, pr(HitjMatch) and overall hit rate Pr(Hit) of each model.

we did not expect to see be.tter predictive capabilities, g by Schechter etal. A prediction was not made if a
but rather wanted to examine the tradeoffs between ¢ match was not found.

complexity reduction and the model's predictive power.

Table 3 shows the results of the experiment. As with

the previous experiments, the test data consisted of
25,485 transitions. As one would expect, the

complexity of storing the All-K-order Markov is

Table 3. Results from testing the All-R-order Markov and
the All-K™-order LRS models.

All-K ™order  All-K ™-
Markov order LRS

Number of one-hops 217,064 18,549 significant as there are _close to one quarter million n-
Model Size (bytes) 8.847.160 616700 9ram sequences which in a naive representation require
L 8,800 Kbytes. The All-K-order LRS model reduces
Total transitions in test data 25,485 25,485 . .
Matches 25 963 54,363 the model space by an order of magnltudg, decreasing
) : ' the total number of n-grams to 18,549, which consume
Hits 7,704 6.991 416 Kbytes of space, which is nearly double that for the
Pr(Match) 99 99 one-hop Markov model and almost six times that for
Pr(Hit|Match) 31 27 the one-hop LRS model. The All*korder Markov
Pr(Hit) 30 27 model was able to match nearly all transitions and
Pr(Miss|Match) .69 .73 resulted in a correct prediction 31% of the time. The
Pr(Miss) .69 .72 performance of this model is better than the one-hop
Pr(Hit)/Pr(Miss) 44 .38 Markov model tested earlier, highlighting the

specificity principle. The All-K-order LRS model
For this experiment, the same three training days an@erformed nearly as well, correctly predicting the next
test day were used. For each training day, each patRage request 27% of the time, with an overall miss rate
was decomposed into all corresponding n-grams for th@f 73% compared to 69% for the Markov model. The
All-K M-order Markov model. With the All-B-order  benefit-to-cost ratio for the Markov model exceeds that
LRS model, the LRS were first computed and then eacHor the LRS model (.44 versus .38).
LRS was decomposed into the set of all n-gram
subsequences. For the evaluation, each transition in Bigure 3 summarizes the results of the two experiments
path of the test data was broken down into itsWith respectto hitrates. In certain cases, the difference
corresponding subsequence suffixes. The resultin§etween the predictive power of the Alfkmay not
suffixes were then checked to see if there was autweigh the considerable space savings of the one-hop
matching n-gram for each model. The prediction withmodels. ~ While the All-K-order Markov model
the greatest specificity (number of element-wiseprovides the highest hit rate, the one-hop Markov
matches between training and test paths) weighted b§podel provides 83% of the predictive power while
conditional probability was then selected as theconsuming only 4.2% of the space. The same is true for
prediction. This weighted specificity measure differs the one-hop LRS, where 80% of the predictive power is
slightly from that used in our previous study and thataccomplished using only 1.5% of the space.



6.3 Parameterization of Prediction Set

0.8

Restricting the prediction to only one guess imposes a 07

rather stringent constraint. One could also predict a 0.6 - /?:/.:‘/:
larger set of pages that could be surfed to on the nextg 5 | M

click by a user. For certain applications that aim to
reduce wuser latency like hint-based perfecting =

architectures, it is important to understand the cost-= 0.3
benefit tradeoffs in a systematic manner. This section 0.2
explores how the hit rate varies when considering larger ¢
sets of predictions.

}

—&— All-Kth-Order Markov —
—&— A|l-Kth-Order LRS

—— One-Hop Markov

—e— One-Hop LRS

0 T T T T T T T T T

We evaluated each model's performance when 12 3 4 5 6 7 8 910
returning sets of between one and ten predictions. Each Size of Prediction Set

set was constructed by ranking the predictions about t Figure 4. The effect on making a correct prediction as a

next page visit in decreasing order of likelihood, an function of the number of predictions made by each model.
selecting the topmosh predictions. For the one-hop

mode|S, the predictions were ranked by probab|||ty OfAnOther variable that was not parameterized in the
predicted transition. For the AllR-order models, the above experiments was the confidence level for each
predictions were ranked by the weighted specificityPrediction. Inspection of the data revealed that in
principle. several cases, each model was making predictions that
Figure 4 shows the probability of each model correctlywere not very likely. A modified pattern-matching
predicting the next page visit across different prediction@lgorithm could be restricted to only make predictions
set sizes. As with the previous experiments, the All-when a given probability of making a stessful
K"-order models performed better than the one-hogPrediction was achieved. ~ While lowering the
models due to the increased information contained irProbability of a match Pr(Match), the reduced overall
the longer paths and the LRS models performed slighthpit Pr(Hit) rate could be offset by the increased
worse than the Markov models at a fraction of thelikelihood of being correct Pr(Hit|Match). This is
model space. Increasing the prediction set has &specially appropriate for applications where the cost of
dramatic impact on predictive power, with the beingwrong outweighs the benefits of being right.
predictive power of each method nearly doubling by

increasing the set size to four elements. The application of the LRS models to prefetching and
latency reduction is also of interest. Given the compact
7. Euture Work size of the LRS models, one can imagine HTTP server

threads issuing hint lists to clients while maintaining the

Motivated by the principle of weighted path specificity model in memory. Our preference is a system in which
and complexity reduction, we have shown that smallthe server provides the client with a list of suggested
compact models of user surfing behavior exist thatPrefetchable items. The client then decides what items
retain predictive power. Clearly, other methods exist toto Prefetch when. This would not require, but might
predict future access of resources. While this paper haenefit greatly from modifying the current pre-
focused on enhancements to various Markov modelscomputed static LRS model into an adaptive, real-time
we believe that the concept of LRS can beessfully model, especially since the optimal hint set size will

applied to Markov models in other domains as well asmost likely vary from server to server as well as page to
to other suffix-based methods. page within a server. The overall effectiveness of this

application and modifications needs to be evaluated. In

In the above experiments, subsequences that occurrégsimilar manner, LRS provides a compact information-

more than once were considered repeating. In theorye€nse method to store user paths for later data analysis.
repeating can be defined to be any occurrence threshold

T. We hypothesize that model complexity can beFrom a more psychological perspective, we note that
reduced even further while maintaining acceptabld-RS may represent the common navigational sub-units
predictive power by raising the thresholdr.  Or “chunks” across all users and documents on a web
Determining the ideal threshold will depend upon theSite. That is, the repeating subsequences may be an

specific data and the intended application. appropriate logical unit to encode the paths most
traveled. We postulate that these chunks are well suited
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